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Abstract: How to combine heterogeneous data sources for reliable prediction of transcriptional regulation is a challenge. Here we 
present an easy but powerful method to integrate Chromatin immunoprecipitation (ChIP)-chip and knock-out data. Since these two 
types of data provide complementary (physical and functional) information about transcription, the method combining them is expected 
to achieve high detection rates and very low false positive rates. We try to seek the optimal integration of these two data using hyper-
geometric distribution. We evaluate our method on yeast data and compare our predictions with YEASTRACT, high-quality ChIP-chip 
data, and literature. The results show that even using low-quality ChIP-chip data, our method uncovers more relations than those inferred 
before from high-quality data. Furthermore our method achieves a low false positive rate. We find experimental and computational 
evidence in literature for most transcription factor (TF)-gene relations uncovered by our method.
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Introduction
The dynamic program that a cell utilizes in response 
to internal and external stimuli is carried out through 
coordinated action of many genes and proteins. 
Transcriptional regulation plays an important role in 
the program. Thus unraveling transcriptional interac-
tions is critical to our understanding of the complex 
regulation mechanisms.

Recent advances in high-throughput DNA micro-
arrays and chromatin immunoprecipitation (ChIP) 
assays have provided us with an unprecedented 
amount of information about transcriptional regula-
tion on a genomic scale. Gene expression profiles 
under various conditions are the key data source for 
inferring transcriptional relations. Some researchers 
modeled gene expression data using random Boolean 
networks, mutual information, and probabilistic 
models to reconstruct regulatory networks.1–18 These 
approaches, although useful, provide only indirect 
evidence of regulatory interactions. Gene pertur-
bation experiments (e.g. transcription factor (TF) 
knock-out) and ChIP-chip experiments serve as com-
plementary data sources. Gene perturbation experi-
ments uncover functional relations between TFs and 
their target genes, but they cannot distinguish those 
indirect relations from direct ones. Hu et al profiled 
expression with individual deletions of 263 tran-
scription factors in S. cerevisiae and used directed-
weighted graph modeling and regulatory epistasis 
analysis to remove indirect regulatory relationships.19 
ChIP-chip experiments provide direct physical 
information of the binding between TFs and DNA 
regions. However, ChIP-chip binding data may not 
be functional in terms of transcriptional regulation. 
Most importantly, both types of data are insufficient 
independently, and depending on the chosen P-value 
threshold, include many false positive or false nega-
tive TF-target relationships.

Since each data source provides partial but comple-
mentary information, some research has attempted to 
integrate those diverse data sources for regulatory net-
work reconstruction.20–37 A typical approach is to first 
find potential co-regulated genes and the genes that are 
further analyzed for other biological evidence, such 
as common binding motifs and common Gene Ontol-
ogy (GO) terms. Bar-Joseph et al24 relaxed the ChIP-
chip P-value threshold if there was strong evidence 
from expression data. Harbison et al26 combined 

ChIP-chip data, six motif-discovering algorithms, 
and phylogenetic conservation to construct an initial 
map of yeast’s transcriptional regulatory code. 
Lemmens et al30 integrated three independent data 
sources: ChIP-chip data, motif information, and gene 
expression profiles to correlate regulatory programs 
with regulators and corresponding motifs to a set of 
co-expressed genes.

Here we present a novel method to infer relations 
between TF and target genes by integrating the TF 
knock-out data and ChIP-chip binding data. Since 
TF knock-out data suggest functional relations, while 
ChIP-chip binding data provide physical interactions, 
the intersection of these two types of data shows strong 
evidence about transcriptional relations between TF 
and target genes. However, Hu et al19 found that the 
overlap is quite low, which may be caused by the 
low quality of the data and the stringent and arbitrary 
P-value threshold (p  = 0.001). In order to increase 
the intersection with less false positives, we range 
both of the P-value thresholds from 0.001 to 0.05 
and try to find the optimal P-value threshold pair, at 
which the most significant intersection is obtained. 
We demonstrate the method on the yeast data, where 
it shows that the intersection increases quite a lot. 
Most inferred TF-target relations have experimental 
evidence or other computational evidence, which is 
inferred by combining ChIP-chip data, phylogenetic 
conservation, motif discovery, other expression data, 
and enrichment for genes in the same Gene Ontology. 
The method could be easily extended to identify 
cooperativity among transcription factors or combine 
other heterogeneous high-throughput data.

Methods
We integrated the ChIP-chip binding data from 
Harbison et al26 and the TF knock out expression 
data from Hu et al19 The overlap of these two data 
was low at stringent P-value thresholds (both of the 
P-value  = 0.001). While using lenient P-value 
thresholds might well improve the overlap, it might 
also produce many false positives. In order to improve 
the overlap with less false positives, we ranged both 
of the P-value thresholds from 0.001 to 0.05 in steps 
of 0.001, and tried to find for each TF the optimal 
P-value threshold pair, at which the most significant 
intersection would be obtained. The schematic dia-
gram of the method is shown in Figure 1.
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selecting sets of target genes
Let us denote by G the common pool of genes 
that ChIP-chip and knock-out experiments used. 
Considering a specific transcription factor t, we identify 
two subsets of G, binding target set Bt and effectual 
target set Et. Bt includes genes with significant ChIP-
chip binding to TF t (binding P-value  Pbt), while Et 
contains the genes whose mRNA expression are sig-
nificantly altered in the transcription factor t knock-
out experiments (P-value  Pet). Pbt and Pet are 
P-value thresholds for binding and knock-out experi-
ments respectively. Finally we define the intersection 
of these two sets Bt and Et as It = Bt ∩ Et.

Calculating the significance 
of the intersection
To statistically access the significance of the 
intersection of the two target sets, we calculate the 
probability of obtaining an intersection size |It| this 
large or greater, given the two sets are independent. 
With the assumption that It is randomly picked, the 
size of the intersection |It| is distributed according 
to the hypergeometric distribution. The probability 
to obtain an intersection size |It| is computed by 

the formula, where x represents the random variable 
for the intersection of two target sets.
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The P-value Pt as the probability of observing an 
intersection this large or greater can thus be computed 
by the formula, where x represents the random variable 
for the intersection of two target sets.
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searching the optimal P-value  
threshold pair
For each transcription factor t, we consider all possible 
combinations of Pbt and Pet on a scale ranging 
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Figure 1. schematic diagram of the method. The starting point for this method depends on ChIP binding data and TF knockout data (the data sources 
showed on the left). For each TF, two thresholds are selected for the ChIP binding data and TF deletion data, respectively. When the binding P value of 
a single gene is less than the binding threshold, this gene is considered to be the binding target. similarly, if the effectual P value of a single gene in a 
deletion experiment is less than its assigned threshold, then this gene is defined as the affected target. Both of the two thresholds are set in the range from 
0.001 to 0.05 with an increment of 0.001. A value called overlapping significance is calculated based on the binding target set, the affected target set and 
the intersection of them (the intersecting ovals in the middle). This process is reiterated for all possible combinations of thresholds so that the maximal 
overlapping significance is obtained (procedures and formulas are showed on the right).
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from 0.001 to 0.05 by an increment of 0.001. The 
significance of the intersection for each combination 
is obtained as Pt(Pbt, Pet). Finally, we compare all 
2500 (50 × 50) combinations and find the minimum 
one Pt

* , which is the most significant. The corre-
sponding P-value thresholds are considered to be 
the optimal pair ( , )* *Pb Pet t . The intersection for 
choosing the optimal threshold pair, I t

*  is more 
likely to be the truly target set of the transcription 
factor t.
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Results
The first 30 transcription factors with statistically 
significant ( )*P et < −1 4  intersection between the 
binding target set and the effectual target set were 
chosen for further analysis. Overall, 631 unique 
TF-target gene interactions have been identified using 
our method, containing 5971 genes regulated by those 
30 transcription factors. On the other hand, 430 of the 
TF-target gene interactions (430/631 = 68.15%) would 
not be detected if we selected the traditional stringent 
P-value threshold (both of the P-value  = 0.001). 
The targets, the optimal P-value threshold pair, and 
the intersection significance for all TFs are shown in 
Supplementary Table 1.

Comparison with YeAsTrACT 
database
YEASTRACT database presently contains regulatory 
associations of the yeast genes based on more than 1000 
bibliographic references.38,39 To validate our results, 
we compared the targets identified in our method 
with documented associations between a Transcrip-
tion Factor and a target gene in YEASTRACT, which 
are supported by published data showing at least 
one of the experimental evidences. As a result, 440 
out of the 631 associations in our results have been 
confirmed. (Those relations found in YEASTARCT 
are shown in supplementary Table 2). The number 
of identified targets with stringent P-value cutoff 
in comparison to that using our method has been 

shown in Figure 2. The results show that our method 
significantly reduces the false negatives with less 
false positives. As an example, RAP1 was assigned 
to a set of 126 regulated genes using our method, 
while only 70 targets were identified with stringent 
P-value cutoff. Out of the remaining 56 targets with 
our method we found other experimental evidence 
in YEASTRACT for 51.

Comparison with high-quality  
ChIP-chip data
Hu et al19 found that the overlap between the binding 
target set and the effectual target set improved when 
using the different high-quality ChIP-chip data, sug-
gesting that data quality may be one reason for the 
low overlap. Our results indicated that the stringent 
P-value cutoff may be another reason. Even with the 
low-quality ChIP-chip data, our method obtained 
126 common targets for RAP1 between the binding 
targets and effectual ones, compared with 144 shared 
between the binding targets from high-quality 
ChIP-chip and effectual ones. However, out of the 
126 targets we found other experimental evidence in 
YEASTRACT for 121. Furthermore, 104 out of the 
126 targets were proven with high-quality ChIP-chip 
data. In contrast, although only 70 RAP1 targets can 
be identified at the 0.001 P-value cutoffs, there are 
still 8 of them not proven. These results indicate that 
we have reduced 42 false negatives by using relaxed 
P-value for binding data at the expense of increasing 
14 “false positives” even if the high-quality ChIP-
chip data are treated as gold standard dataset. How-
ever, out of these 14 “false positives” we have found 
other experimental evidence in YEASTRACT for 
9 (see Fig. 3A).

We compared our results with SWI4 high-quality 
ChIP-chip data (see Fig. 3B), which also suggests 
that our method can obtain more reliable relations 
even with the low-quality ChIP-chip data. Only 
10 were in the intersection of the binding targets 
set from low-quality ChIP-chip data and effectual 
targets set with stringent P-value cutoffs. Also only 
16 appeared in the intersection of the binding targets 
set from high-quality ChIP-chip data and effectual 
targets set. However, 48 were detected using a pair of 
relaxed optimal P-value cutoffs (0.04 for the binding 
P-value and 0.029 for the effectual P-value) even 
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with the low-quality ChIP-chip data. 23 out of the 
48 targets are proven with high-quality ChIP-chip 
data. Additionally, 39 out of the 48 targets have been 
confirmed in YEASTRACT. Out of the 9 remaining 
targets (HHF1 HHT1 YER158C, HSP150, BDF1, 
SUR7, NDE1, HOR7, RSN1) for which we cannot 
find evidence in YEASTARCT, HHT1 and HHF1 
are histone genes. Whole-genome binding studies 
have suggested that the histone gene promoters 
are bound by MBF and/or SBF40,41 and Hess et al’s 
data42 showed that swi4∆ causes a mild reduction 
in HHT1and HHF1 mRNA levels. Furthermore 
MBF (Mbp1 and Swi6) and SBF (Swi4 and Swi6) 
cause transcriptional defects at HTA1-HTB1 and 
HHT1-HHF1.42 Inferred from the above information, 
HHT1 and HHF1 may be the novel targets of SWI4. 
Reinoso-Martín43 found that HSP150 mRNA levels 
were slightly induced by caspofungin after 1 hour 
in wild-type cells but increased significantly in the 

swi4∆ mutant, which suggests that HSP150 is one 
target of SWI4.

Overlap with literature
Our results have well coincided with previous biological 
literature. As an example, consider Leu3, a pathway-
specific regulator of genes encoding enzymes 
involved in branched-chain amino acid biosynthesis. 
Using our methods, we have found that LEU3 regu-
lates 5 additional genes (LEU4, ILV5, ILV3, ALD5 
and ISU2) that would not have been identified using 
the stringent 0.001 P-value threshold pair. Two of 
them (LEU4 and ILV5) are among the seven estab-
lished LEU3 targets that comprise the pathway for 
branched amino acid biosynthesis.44 Three of these 
genes (LEU4, ILV5 and ILV3) have been annotated 
as being involved in “branched chain family amino 
acid biosynthesis”. Furthermore, the other two genes 
(ALD5 and ISU2) have been inferred as Leu3 targets 

RAP1 SUM1 SWI4 LEU3 UME6 TEC1 ARG81 ARG80SFP1 SKN7 RFX1 SPT2 GCR1 BAS1 DIG1 HMS1 ACE2 YAP1 STB4 MBP1 OPI1 SKO1 PUT3 STB5 SWI6 TYE7 GAL80GCR2 SUT1 INO2
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Figure 2. Comparison with YEASTARCT. For the 30 TFs, number of the target genes identified with the stringent P-value threshold pair (Pbt = 0.001, Pet 
= 0.001) (blue), number of the target genes inferred with the optimal threshold pair (Pb*t, Pe*t) by our method (green), and the number of our predictions 
supported in YeAsTArCT are shown (red).
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Figure 3. Comparison with high-quality ChIP-chip data. Oval nodes are for genes identified with stringent P-value cutoffs (Pbt = 0.001, Pet = 0.001), while 
rectangular nodes are for additional genes identified using optimal relaxed threshold pair by our method. Nodes with red solid border are for relations 
supported by YeAsTrACT, otherwise with black dash border. solid nodes are for the genes supported by high-quality ChIP-chip data. A) 126 identified 
target genes of RAP1. 56 additional target genes are identified (rectangular), while 51 (rectangular with red solid border) are supported by YEASTRACT 
and 34 (solid rectangular) are supported by high-quality ChIP-chip data. B) We have identified 48 target genes of SWI4 including SWI4 itself. SWI4-SWI4 
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using computational methods combining ChIP and 
expression analyses.45

As another example, consider GCR1, which is 
required for maximal transcription of many genes, 
including genes encoding glycolytic enzymes. Tpi1p 
is an abundant glycolytic enzyme that makes up about 
2% of the soluble cellular protein while GCR1 binding 
is required for activation of TPI1.46 Other glycolytic 
genes such as ENO2 and  ADH1 are dependent on GCR1 
gene function for full expression.47,48 Finally, consider 
transcription factors that have functions previously 
reported to control the cell cycle during growth. The 
UME6 gene of S. cerevisiae was identified as a mitotic 
repressor of early meiosis-specific gene expression. 
It provides target specificity by binding to the URS1 
sequence element (TAGCCGCCGA) that is located 
upstream from many early meiosis-specific genes. 
UME6 (“Unscheduled Meiotic gene Expression”) 
is a key transcriptional regulator of early meiotic 
genes such as SPO149,50 and SPO13.49–51 In addition 
to the regulation of meiosis-specific genes, UME6 
has been implicated in the transcriptional regulation 
of genes involved in arginine catabolism. Expression 
of the catabolic genes CAR1 encoding arginase and 
omithine transaminase is repressed by nitrogen. 
Previous studies have indicated that the UME6 gene 
is involved in mediating this repression.51,52

To further validate our results, we selected some 
transcriptional factors whose target genes predic-
tion showed a relatively low overlap with informa-
tion from YEASTRACT, and compared them with 
other predictions of MacIsaac KD et al53 and Pham 
TH et al54 MacIsaac KD et al53 combined phylo-
genetic conservation-based motif discovery algo-
rithms, PhyloCon, and Converge to create a refined 
regulatory map for S. cerevisiae by reanalyzing 
the same ChIP-chip binding data. Pham TH et al54 
developed a method that combined three different 
expression datasets with the same ChIP-chip binding 
data with a relaxed threshold (P-value = 0.005) 
to discover target genes based on rule induction. 
Although our methods combined data TF knock-out 
data different than MacIsaac KD et al53 and Pham 
TH et al54 and used a different approach, the results 
showed that most of our predictions that were not 
supported by YEASTARCT could be proven by data 
from MacIsaac KD et al53 and Pham TH et al.54 For 
example, our method identified 21 additional targets 

of SWI6 with the optimal relaxed P-value thresholds 
pair. Unfortunately we could find evidence from 
YEASTRACT for only 5 of them. However, 13 of the 
21 additional targets were also predicted by the study 
of MacIsaac KD et al53 and 9 of them were inferred 
by the study of Pham TH et al54 Combining the 
evidence from the above two sources and information 
from YEASTRACT, 14 in 21 have been convinced 
of genuine targets of SWI6 (see Table 1). Among 
the left 7 target genes, YMR144 W and YOR248 W 
were predicted as SWI6 targets by Harbison et al26 
Other five genes (CIS3, YER079 W, FTR1, PLB3, 
and HTZ1) could be inferred as SWI6 targets as they 
showed close relationship with the SBF complex 
(SWI4/SWI6). CIS3, a glycoprotein-encoding gene, 
was reported to have conserved binding sites for 
SWI6-SWI4 complex.55 YER079 W, FTR1, PLB3, 
and HTZ1 also showed evidence to be related with 
SWI4.55 As another example, although all of the 
10 additional targets of DIG1 could not be supported 
by YEASTRACT, 6 targets could be found in the 
results of MacIsaac KD et al53 and 5 in Pham TH 
et al54 (see Table 2). In the remaining 4 genes, MFA1 
and AGA2 were involved in mating or pheromone 
response;56 they stood a good chance to be the targets 
of DIG1, which was also known to be involved in the 
regulation of mating-specific genes and the invasive 
growth pathway.57

gene ontology enrichment analysis
Finally, to ensure that we found biologically mean-
ingful targets, we performed Gene ontology analyses 
using the Saccharomyces Genome Database web site 
to evaluate whether a gene set was enriched for biolog-
ically relevant targets (see Table 3). It turned out that 
the regulated gene sets generally identified groups of 
genes that functioned in a similar biological pathway 
and were generally accurate in assigning regulators 
to sets of genes whose functions were consistent with 
the regulators’ known roles. For example, ARG80 
was well known to be a transcription factor required 
for specific regulation of arginine metabolism in 
yeast.58 Four out of the five genes (P-value  3e-15) 
(ARG5,6/YER069W, ARG3/YJL088 W, ARG8/
YOL140W, CPA1/YOR303W) that we identified using 
our method were annotated as being involved in 
“arginine biosynthetic process”. The same situation 
happened to GAL80, which was a well-characterized 
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Table 1. List of sWI6 targets with computational evidence.

TFs ORF YeAsTRAcT MacIsaac KD et al53 pham TH et al54 Literature evidence
sWI6 YBR071W x x

sWI6 ChA1 x x

sWI6 hTA1 x x x

sWI6 YER079W

sWI6 PUP3 x x x

sWI6 sWI4 x x

sWI6 FTr1

sWI6 CIs3

sWI6 rPs4A x x

sWI6 hMs2 x x

sWI6 CWP2 x x x

sWI6 eXg1 x x x

sWI6 YOX1 x x x x

sWI6 YMr144W

sWI6 sCW10 x x x x

sWI6 PLB3

sWI6 hTZ1

sWI6 sKM1 x x x

sWI6 srL1 x x x x

sWI6 YOR248W

sWI6 OPY2 x x x x

Table 2. List of DIg1 targets with computational evidence.

TFs ORF YeAsTRAcT MacIsaac KD et al53 pham TH et al54 Literature evidence
DIg1 UBC4 x x x

DIg1 TeC1 x x

DIg1 KAr4 x x x

DIg1 YDr042C

DIg1 YDr210C-D

DIg1 MFA1

DIg1 sTe2 x x x

DIg1 AgA2

DIg1 BAr1 x x x

DIg1 ARO7  x x x
The notion ‘X’ denotes “overlapped results”. The last column combines the left three columns, indicating whether there is any evidence from YeAsTrACT, 
MacIsaac KD et al53 and Pham Th et al.54
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Table 3. List of some enriched gO annotations.

Regulators Functional description of regulators # of  
genes

Significantly shared  
GO annotations

P value 

RAp1 high level transcriptional activation of genes 
encoding ribosomal proteins and glycolytic 
enzymes

126 (86/126) structural constituent 
of ribosome 
(91/126) translation

2.66e-100 
 
8.79E-83

sUM1 Mitotic repression of middle sporulation-specific 
genes, general replication initiation

45 (16/45) sporulation 9.93e-15

LeU3 regulates the transcription of genes encoding 
enzymes involved in branched-chain amino 
acid synthesis

10 (6/10) branched chain family 
amino acid biosynthetic 
process

1.45e-13

UMe6 Transcriptional regulator of early meiotic genes, 
transcriptional regulation of genes involved 
in arginine catabolism

44 (2/43) arginine catabolic 
process 
(7/43) meiosis

0.00571 
 
0.00797

Tec1 required for full Ty1 expression, Ty1-mediated 
gene activation

20 (17/20) transposition, 
rnA-mediated

3.85E-25

ARG81 Involved in the regulation of arginine-
responsive genes

9 (6/9) arginine metabolic 
process

2.78E-13

sFp1 Controls expression of many ribosome 
biogenesis genes in response to nutrients and 
stress, regulates g2/M transitions during mitotic 
cell cycle and DnA-damage response

66 (42/66) structural constituent 
of ribosome 
(46/66) translation

8.62E-45 
 
2.90e-39

RFX1 Involved in DnA damage and replication 
checkpoint pathway

6 (3/6) deoxyribonucleotide 
biosynthetic process

2.18E-07

GcR1 Transcriptional activators of glycolytic genes 50 (10/50) glycolysis 5.94e-14
BAs1 Involved in the expression of genes encoding 

enzymes acting in the histidine, purine, and 
pyrimidine biosynthetic pathways

12 (4/12) purine ribonucleoside 
monophosphate biosynthetic 
process

1.28E-07

ARG80 Involved in regulation of arginine-responsive 
genes

5 (4/5) arginine biosynthetic 
process

7.63E-10

DIG1 Involved in the regulation of mating-specific 
genes, inhibits pheromone-responsive 
transcription

13 (8/13) sexual reproduction 
(8/13) response to 
pheromone

1.89E-09 
2.93e-10

HMs1 Overexpression confers hyperfilamentous growth 23 (15/23) cytosolic part 1.02e-15
Ace2 Activates transcription of genes expressed in 

the g1 phase
12 (4/12) cytokinesis, completion 

of separation
8.06E-08

YAp1 Activates the transcription of anti-oxidant genes 
in response to oxidative stress

8 (4/8) response to oxidative 
stress

5.32e-05

OpI1 negative regulation of phospholipid 
biosynthetic genes

3 (2/3) fatty acid synthase 
complex

2.54e-06

sKO1 Cytosolic and nuclear protein involved in 
osmotic and oxidative stress responses

9 (2/9) structural constituent 
of cell wall

0.00094

TYe7 transcriptional activator in Ty1-mediated gene 
expression, binds e-boxes of glycolytic genes 
and contributes to their activation

24 (9/24) transposition, 
rnA-mediated 
(4/24) glycolysis

7.74E-08  
 
9.21e-05

GAL80 involved in transcriptional regulation in 
response to galactose

6 (4/6) galactose metabolic 
process

1.86E-09

GcR2 transcriptional activators of glycolytic genes 6 (6/6) glycolysis 5.08E-14
sUT1 involved in sterol uptake; involved in induction 

of hypoxic gene expression
13 (3/13) structural constituent 

of cell wall
1.37E-05

InO2 required for derepression of phospholipid 
biosynthetic genes in response to inositol 
depletion

5 (4/5) lipid biosynthetic process 2.77E-05

Functional description of regulators is from the saccharomyces genome Database.
Gene Ontology analysis done using GO Term Finder in SGD in  Aug 31, 2008; 5952 genes were included in the background set with P-value cut-off  0.01.
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transcription factor involved in a genetic switch. The 
switch, which consisted of three proteins, controlled 
the genes that encoded the enzymes required for 
galactose metabolism at the level of transcription.59 
Four out of six genes that we identified as the 
targets of GAL80 (GAL7/YBR018C, GAL10/
YBR019C, GAL1/YBR020W, GAL2/YLR081W) 
were involved in galactose metabolic process. For 
another example, GCR2 was the transcription factor 
affecting expression of most glycolytic genes in 
S. cerevisiae.60 All six of these genes were directly 
on the committed pathway to leucine or valine bio-
synthesis (PGI1/YBR196C, TPI1/YDR050C, TDH3/
YGR192C, TDH2/YJR009C, FBA1/YKL060C, and 
GPM1/YKL152C).

Discussion
ChIP-chip data contain information about physically 
binding interactions, while TF knock-out experiments 
provide information about functional relations. 
By combining these two complementary data sources, 
the method is expected to uncover the TF-target 
relations. However, the data quality and the arbi-
trary P-value threshold lead to the low overlap 
between these two data. In this study, we developed 
a novel method to integrate these two data for infer-
ring TF-target gene relations. The key aspect of our 
approach is to find the optimal P-value threshold pair 
for each TF, at which the most significant overlap is 
obtained. Our method is powerful because it allows the 
P-value threshold to be relaxed if there is supporting 
evidence from each of these two complementary data. 
Comparison of the results with the YEASTRACT 
and the literature shows that experimental evidence 
exists for most of TF-target gene relations in our 
results. Considering those relations between TF and 
target genes for which there is no direct experimental 
evidence, we are able to found other computational 
evidence. Furthermore a plausible explanation could 
often be inferred from the functional links between 
the TF and target genes.

It should be noted that although we focused on the 
TF-target gene relations, our method could be easily 
extended to discover the cooperativity among tran-
scription factors by combining these two data from 
different TFs. It could also be used to combine the 
information from multiple ChIP-chip experiments on 

the same TF when these data are available. With more 
and more genomic data available, it will become 
an inevitable trend to study the complex biological 
systems based on computational integration of those 
heterogeneous data. Our work provides a simple but 
novel method to integrate available biological infor-
mation in a principled fashion.
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