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Abstract: Microarray measurements of mRNA abundances is a standard tool for evaluation of transcriptional activity in functional 
genomics. The methodology underlying these measurements assumes existence of a direct link between transcription levels, that is, 
gene-specific mRNA copy numbers present in the cell, and transcription rates, that is, the numbers of gene-specific mRNA molecules 
synthesized per unit of time. In this paper, the question of whether or not such a tight interdependence may exist is examined in the 
context of nonlinear dynamics of genetic regulatory networks. Using the equations of chemical kinetics, a model has been constructed 
that is capable of explicitly taking into consideration nonlinear interactions between the genes through the teamwork of transcription 
factors. Jacobian analysis of stability has shown that steady state equilibrium is impossible in such systems. However, phase space 
compressibility is found to be negative, thus suggesting that asymptotic stability may exist and assume either the form of limit cycle or 
of a chaotic attractor. It is argued that in rapidly fluctuating or chaotic systems, direct evaluation of transcription rates through transcrip-
tion levels is highly problematic. It is also noted that even if a hypothetical steady state did exist, the knowledge of transcription levels 
alone would not be sufficient for the evaluation of transcription rates; an additional set of parameters, namely the mRNA decay rates, 
would be required. An overall conclusion of the work is that the measurements of mRNA abundances are not truly representative of 
the functionality of genes and structural fidelity of the genetic codes.
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1. Introduction
DNA microarray measurements of mRNA abundances 
are widely recognized as a powerful tool for obtain-
ing the whole-genome information regarding tran-
scriptional activity. After the introduction of DNA 
microarrays1–4 and the initial rush of enthusiasm 
and great hopes,5–7 a period of sober evaluation of 
capabilities and pitfalls has emerged in which repro-
ducibility has become a dominant concern.8,9 Thus, 
in the editorial preceding,10 the report summarizing 
a large-scale Microarray Quality Control Project 
(MAQC), this period of development is characterized 
as follows:

“... doubts linger about the reproducibility of microarray 
experiments at different sites, the comparability of results on 
different platforms and even the variability of microarray results 
in the same laboratory. After 15 years of research and develop-
ment, broad consensus is still lacking concerning best practice 
not only for experimental design and sample preparation, but 
also for data acquisition, statistical analysis and interpretation. 
Though problematic for bench research, lack of resolution of 
these issues continues to even more seriously hamper transla-
tion of microarray technology into the regulatory and clinical 
settings ... Clearly, microarrays have a long way to go before 
they can be used to support regulatory decision-making or 
accurate and consistent prediction of patient outcomes in the 
clinic.”

Despite all these difficulties, there is a reason-
able hope that relentless efforts towards improve-
ment of technology, standardization of protocols and 
increasing cross-platform compatibility sooner or 
later will produce a desirable result, and the measure-
ments will arrive at the status of satisfactory accuracy 
and self-consistency. However, it should be noted 
that many questions of interpretation of microarray 
measurements are still wide open and require much 
more analytical work. Among these questions is one 
of utmost importance: whether the measurements 
of mRNA abundances may serve at all as a basis 
for conclusions regarding transcriptional activity of 
corresponding genes.

Since the very inception of microarrays, these 
measurements have been termed gene expression 
profiling, and this term has been used interchange-
ably with transcription profiling. Such a terminology 
assumes that through the measurements of intracel-
lular mRNA abundances (i.e. mRNA copy numbers) 

one can come to some conclusions regarding the 
status and/or activity of the corresponding genes. 
However, as is well known, each transcription event 
is supported by a team of transcription factors (TF), 
the proteins translated from a whole host of other 
mRNAs (e.g.11). This means that any gene-specific 
mRNA concentration is in a sense a product of the 
teamwork of cooperating genes, and in which the 
gene responsible for the mRNA in question may 
not even play a dominant role. In the literature, one 
may find numerous examples in which mRNA mea-
surements are directly used for fitting the models of 
genetic regulatory networks.12–19 A good review of 
these efforts is given in.20 These examples clearly 
indicate that there is a widespread tendency to assume 
that measurements of mRNA abundances represent 
a reasonably solid basis for making the inferences 
regarding transcriptional activity of corresponding 
parent genes.

Is it really true that such a direct link between the 
mRNA concentrations within the cell and the tran-
scription rates of corresponding genes does exist? 
In order to clarify this question, let us consider the 
following example. Suppose that a microarray experi-
ment shows that a certain mRNA (say, mRNA-X) is 
under-expressed (that is, has a low copy number) in 
the control group (CG) as compared to that in the 
treatment group (TG). Would it necessarily mean 
that the Gene-X in the control group is shut down (or 
has very low activity) but in the treatment group it is 
active? A reasonable answer would be maybe. This 
is because along with a straightforward yes there is 
also a possibility that the genes in CG and TG are 
equally active, but due to some epigenetic reasons 
the mRNA-X in CG is chemically unstable and gets 
quickly dissolved in the cytoplasm leaving no traces 
of transcriptional activity. This example shows that 
mRNA abundance, apart from activity of the corre-
sponding gene, depends on many other factors that 
may or may not be gene-specific. There is a constant 
influx of a large assortment of proteins from the cyto-
plasm to the nucleus serving as transcription factors 
(TF). Therefore, abilities of the individual genes to 
transcribe are also dependent on the availability of 
those factors, and fidelity of the gene’s genetic code 
may or may not play a role in maintaining a normal 
transcription rate. Even under the simplest assump-
tion that ribosomes synthesize only one polypeptide 
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chain from one mRNA molecule, a (large) number of 
other mRNAs are indirectly involved in the activity 
of each individual gene.

In more formal mathematical language, the question 
may be reformulated as follows. Suppose that rX is 
the concentration of mRNA-X molecules present in 
the cell, and drX       /dt = [drX       /dt]+ – [drX       /dr]–, where + 
and - signs distinguish transcription and degrada-
tion rates, respectively. The question we are trying to 
resolve is whether or not rX and [drX        /dt]+ are some-
how linked to each other? A simple analogy may help 
to clarify the difference between rX and [drX    /dt]+. 
It is similar to that between someone’s income and 
his/her account balance. A frugal spender may have 
big savings (transcription level, rX) despite a modest 
income (transcription rate, [drX       /dt]+). An indiscrimi-
nate spender can squander his/her multimillion dollar 
income (transcription rate, [drX         /dt]+) and drive the 
estate to bankruptcy, that is, to a zero or a negative 
balance (transcription level, rX). Therefore, even 
complete knowledge of someone’s account balance 
generates no information regarding his/her income. 
In other words, there is no direct relation between rX 
and [drX     /dt]+. Such a relation may become known 
only after solving the dynamical equation for rX, that 
is drX     /dt = FX (rX, rY, rX , …). However, due to num-
erous interactions in the system, the solution would 
depend on the states of all the interacting variables, 
therefore [drX     /dt]+ cannot depend on the rX only.

Attempts to formulate complex intracellular 
behavior using the concepts of nonlinear dynamics 
have been undertaken in many works.21–24 Essen-
tially, this is the way in which the very concept of 
genetic regulatory network has come to existence. 
Up-to-date, experimental attempts to directly evalu-
ate the differences and interdependencies between 
TRs and TLs have been scanty but all of them have 
produced remarkable results. Bernstein et al in exp-
eriments with Escherichia coli found no correlation 
between the transcript abundance and the tran-
script stability (in biology, this term is often used 
in lieu of the term mRNA decay rate).25 In the 
breakthrough time-course experiment,26 the TLs and 
TRs have been measured simultaneously in bud-
ding yeast. It was found that from a total of 5,500 
TL-TR time-series pairs, about half turned out to be 
uncorrelated with each other. Cheadle et al come to 
the overall conclusion that “regulation of mRNA 

stability contributes significantly to the observed 
changes in gene expression,” and that “effective cor-
relation of observed changes in gene expression with 
shared transcription regulatory elements remain dif-
ficult to demonstrate convincingly”.27,28 The ques-
tion of correlation between transcription levels and 
transcription rates in a multidimensional system has 
been addressed in the work by this author.29 It was 
shown by simulation that in a network of very high 
complexity (i.e., link density), the dissimilarities 
between temporal behaviors of TL and TR increase 
as the network dimension increases because of a lon-
ger chain of intermediate events leading to each act 
of gene expression. These considerations show that 
the gene’s TR is not something that is easy to infer 
from the measurements of TL. Apart from those 
indicated above, there are a number of other reasons 
that make it problematic to directly evaluate tran-
scriptional regulation from microarray experiments. 
Detailed discussion of these additional aspects of 
the problem goes beyond the scope of this paper; a 
good review is available from.30

The goal of this paper is to discuss the prerequisites 
for the very possibility that certain TL-TR relation-
ships could exist. An overall message we intend to 
convey is that DNA microarray data cannot serve as 
an unambiguous basis for making judgments regard-
ing the ability of genes to generate transcripts.

2. Mathematical Descriptions of Gene 
expression Biochemistry
Mathematical description of biochemical reactions is 
deeply rooted in statistical thermodynamics, and its 
special branch called chemical kinetics. At its very 
core, a system of chemical reactions may be written 
in the form of the Law of Mass Action
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where N is the number of protein types present in the 
system which is considered to be identical with the 
number of mRNA types; ϕi, ψi are the 2N-vectors of 
kinetic rates, and Pim, Qim are the 2N × 2N matrices of 
stoichiometric coefficients in the direct and inverse 
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reactions, respectively.31,32 Depending on the nature 
and complexity of the system under investigation, 
the quantities {xi} may represent concentrations of 
various biochemical constituents participating in the 
process, including individual molecules or their agg-
regates. The system (1.1) is also known as S-System. 
Applicability of S-Systems to description of bioch-
emical processes and to fitting microarray data have 
been extensively discussed in the literature.23,31–36

In order to adapt a general system (1.1) to the 
specific goals of describing the biochemistry of gene 
expression, we split it into two parts. We introduce 
the N-vectors of the protein copy numbers, p, and of 
the mRNA copy numbers, r (per cell). Equation (1.1) 
is now rewritten as follows
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where, in accordance with notation of (1.1),
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Equations (1.2) depict gene expression as a closed 
circulatory system in which the synthesis of mRNA 
molecules (transcription) is followed by the synthesis 
of proteins by ribosomes (translation) and return 
of the proteins back to the regulatory sites as tran-
scription factors for other genes. This is, of course, 
a highly idealized schema in which many secondary 
processes are ignored. However, such an idealization 
is suitable for our purposes. We intend to demonstrate 
that even in such a restrictive system the relations 
between transcription levels and transcription rates 
may be very complex and fuzzy. In a real life situa-
tion, when a number of secondary factors distort even 
this restrictive functionality, these relationships may 
be even fuzzier or absent altogether.

The first term in the first Equation (1.2), 
A r pi k ki
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proteins by ribosomes. Coefficient Ai here is the rate 
of translation, i.e. the number of proteins of i-th type 

synthesized by ribosome per unit of time. According 
to the Central Dogma in molecular biology, only one 
mRNA type participates in the translation of the i-th 
protein, and this is the i-th mRNA. Also, with a good 
approximation, one may surmise that other proteins 
are not involved in the translation of the i-th protein. 
This means that Ai = αiri.

The second term in the first Equation (1.2),
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the i-th protein. In our idealized system, such a dis-
appearance occurs only when the protein reaches 
the designated regulatory site, associates with DNA 
and becomes a TF. According to the Central Dogma, 
mRNAs do not participate in this process. We also 
take into consideration that there are no chemical 
reactions between the proteins within the regula-
tory site which could produce new proteins. All this 
means that Bi = βi pi.

The first term in the second Equation (1.2), 
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, describes transcription, that 
is the synthesis of the mRNA of i-th type. Other 
mRNAs do not participate in this process. As is 
well known, transcription requires participation 
of a large number of proteins, typically from 30 
to 100, serving as TFs and as building blocks for 
the RNA Polymerase, the centerpiece of decoding 
machinery.11 Therefore, a general form of this term 
is C pi i

k
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. Collections of the proteins serving 
as TFs are generally gene-specific (which, of course, 
does not preclude some overlap with other genes). 
Typically, the stoichiometric matrices, Pik, are sparse 
with the majority of elements being zero and the rest 
of them being small integers. The number of 
transcription factors, νi k

N
ikP= ∑ =1  per gene is a 

characteristic of the complexity of the system; 
in,29 an average of these quantities λ ν= ∑ =i

N
i N1  

has been termed the index of complexity. In general 
network theory, the parameter, ζ = λN, is also called 
link density.

The second term in the second Equation (1.2), 
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p , describes decay of mRNAs in 
the process of templating by ribosome and subsequent 
dissolution in the cytoplasmic environment. Since 
after translation the mRNA molecules do not return 
back to transcription machinery, the decay rate may 
be written simply as Di = δiri.
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Summarizing all these considerations (and slightly 
simplifying indexing), we rewrite (1.2) as
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Similar equations (though without a disclosure 
of the analytical structure of the mRNA production 
term) for describing gene expression kinetics has been 
proposed in.21 In the work29 by this author, a slightly 
more general form of equation (1.4) has been used for 
studying stochastic oscillation in multidimensional 
regulatory networks.

In the considerations leading to (1.4), the author 
does not claim any novelty; they are provided solely for 
keeping the paper self-contained and for highlighting 
the biological origins of assumptions. Equations (1.4) 
bear much similarity to those proposed in.20,37 The 
difference is that in the latter works the elements of 
stoichiometric matrices are allowed to be any real 
numbers, both positive and negative, thus providing 
a wider flexibility in model fitting. However, such an 
algorithmic advantage comes at the cost of losing direct 
link to the equations of chemical kinetics in which the 
elements of stoichiometric matrices are nothing else 
as the numbers of transcription factors; these are the 
positive integers. In addition, as will be shown later 
in this paper, the non-negativity of stoichiometric 
matrices is an important prerequisite in the network 
analysis, in general, and in the analysis of dynamical 
stability, in particular.38

Despite a fairly innocuous look, equations (1.4) 
are, in fact, very complex, and there is no easy 
way to deal with them. The difficulty is residing 
in the mRNA production term, Ci, which is a poly-
nomial function of very high order in the protein 
concentrations. The way this problem was dealt 
with in21 consisted of linearization around some 
hypothesized steady state. In,29 the existence of 
such a steady state has been questioned, and it was 
shown that without special, very stringent condi-
tions imposed on the coefficients in (1.4) such a 
steady state could not exist. Hence, instead of 
linearization, the nonlinear term has been replaced 
by a random force thus converting the system to 
a linear stochastic differential equation. Stochastic 
properties of the random force have been derived 

iteratively through a fairly involved successive 
approximation procedure.

As stated above, the goal of this paper is to 
explore whether or not measurement of the transcrip-
tion levels, ri, may be used for inferring information 
regarding the transcription rates Ci. For the reasons 
to be explained later in this paper, a specific form of 
dependence of transcription rates on protein concen-
trations, that is Ci = Ci (p) is not of crucial impor-
tance in this consideration; the only prerequisite is 
just recognition of an evident fact that there are many 
TFs facilitating each transcription, and that these TFs 
are predominantly the protein molecules. Four ques-
tions should be considered in this context. First, if 
an equilibrium state in the system described by (1.4) 
did exist, then would it be possible to express the 
transcription rates through the transcription levels? 
Second, does an equilibrium state indeed exist in the 
system described by (1.4)? Third, if an equilibrium 
state does exist then can it be stable? Fourth, if an 
equilibrium state does exist but it is not stable then 
what kind of dynamical behavior could be reason-
ably expected of such a system?

Prior to exploring these issues, some conventions 
regarding vocabulary are introduced.

3. some Terminology
Since in different contexts the words stability, equi-
librium, steady state and such are often used quite dif-
ferently, there is a need to introduce the meanings of 
these words as they are used in this paper.

Fixed point is a point in the space of all the system’s 
variables, i.e. protein and mRNA concentrations 
(a.k.a. phase space) in which the time derivatives are 
zero, i.e.  p r( ) ( ) .t dp dt t dr dti i= { } ≡ ≡ { } ≡0 0and  
By this definition, the fixed point does not move in 
phase space with time. The fixed point is also called 
the equilibrium point.

Equilibrium at a fixed point may be stable or 
unstable. Stable equilibrium is a state for which small 
deviations from the fixed point generate internal forces 
that push the system back towards equilibrium. These 
forces may occur due to the existence of negative feed-
back loops. Unstable equilibrium is a state for which 
small deviations from the fixed point generate internal 
forces that push the system even further from equilib-
rium, often causing the system’s collapse. These forces 
may indicate existence of the positive feedback loops.
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The term steady state may refer to both motionless 
position of the system at the stable fixed point and 
stationary oscillations in the vicinity of this position. 
In the latter case, the term steady state may be used 
interchangeably with the term limit cycle. Experimen-
tally, such a motion is often interpreted as a stationary 
stochastic process, that is, such a process in which 
statistical characteristics do not change with time.

Asymptotic dynamic stability is the property of a 
dynamical system to approach, with time, a certain 
domain in phase space and stay within this domain 
forever. This domain is often called the attractor. 
Motions within this domain may include stable oscil-
lations or chaotic orbits.

The concept of dynamical stability is fundamen-
tally different from the concept of biological robust-
ness. An in-depth discussion of this difference has 
been given by this author in a number of previous 
works.39–42 See the Discussion section for some addi-
tional details and references.

4. Interrelations Between Transcription 
Levels and Transcription Rates  
at equilibrium
The fixed point, r pi i

0 0,{ }, of the system (1.4) is the 
solution of simultaneous algebraic equations

 α β δi i i i i i ir p C r i N0 0 0 0 1= = =, ( ) , , ...,p  (1.5)

According to a number of sources,36 including the 
works by this author,43,44 the solution to (1.5) does exist 
and is unique; the exact analytical form of the solu-
tion will be addressed later. It is important to realize 
though that even if a fixed point does exist, the deter-
mination of the transcription rate is only possible if 
the kinetic rates of degradation, {δi}, are known. This 
fact has recently transpired in a number of publica-
tions (e.g.45,46). As observed in a number of experi-
mental studies, the value of parameters {δi} may vary 
within orders of magnitude. Thus, it has been shown 
in47 that in mouse embryonic stem cells, the mRNA 
half-lives are distributed approximately lognormally 
(see Fig. 1F in47) with the mode at ∼5.5 hours and 
range from 2 to 24 hours (measured) and beyond (not 
measured). The study of time-course kinetics and 
half-lives of ∼1500 mRNAs in microbial cells has 
been undertaken in.48 The half-lives have been found 
to vary from less than 30 sec to more than 20 min. 
An important observation made in this work is that 
the half-lives are clustered into comparatively tight 
groups, and that observed co-regulation of genes may 
in fact originate from the mere fact that the half-lives 
of corresponding mRNAs are close to each other. 
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Figure 1. Typical spectra of eigenvalues. Top row: kinetic rates are distributed uniformly (beta with shapes 1 and 1). Bottom row: distribution is unimodal 
(beta shapes 3 and 3. Left column: rates are constant and equal to the averages of those in right column.
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It is not yet known what biochemical factors influence 
degradation rates, {δi}. Preliminary considerations, 
mixed with intuition, suggest that the mRNA decay 
rates are not sequence-specific; rather they are depen-
dent on the mRNA’s length and some structural pro-
perties such as the number of exon junctions per open 
reading frame.47 Authors48 even go as far as to claim: 
“Based on our present knowledge, it seems clear that 
determinants of mRNA stability in bacteria cannot 
be identified from the primary sequence of mRNA.” 
Obviously, all this means that the mRNA decay rates 
are not gene-specific, and therefore observed mRNA 
abundances have little to do with the transcription 
rates of the genes they were transcribed from. This 
conclusion is of crucial importance for the interpreta-
tion of microarray data. Since {δi} are highly vari-
able and unknown, the {Ci (p

0)} cannot be evaluated 
through the ri

0{ }  even if the latter are experimentally 
determined and available. Standard microarray proto-
cols are capable to detect only differences in mRNA 
abundances and do not include concurrent measure-
ments of mRNA half-lives. High mRNA abundances 
may simply originate from their long half-lives 
which, as shown in,47,48 are not gene-specific. All 
this means that, unless the mRNA abundances and 
mRNA decay rates are measured simultaneously in 
the same experimental settings, the transcription rates 
cannot be appropriately identified even in the state 
of equilibrium.

5. Jacobian (in)stability  
of the equilibrium
Let us suppose now, quite hypothetically, that the 
mRNA decay rates, {δi}, somehow became available. 
Would it be sufficient for estimating the transcription 
levels from transcription rates? To this end, the ques-
tion of stability at equilibrium comes into focus. This 
is because it is utterly unlikely that if the equilibrium 
is unstable then the system would reside in this state 
for a long time. It would be similar to a pyramid being 
carefully balanced on its tip and stably residing in this 
position for a long time despite all kinds of distur-
bances around. It is illustrative that for the equilib-
rium of a pyramid the forces should be balanced in 
two dimensions (two angles of rotation), whereas in 
a genetic regulatory system the balancing should be 
applied to the dimensions in hundreds and thousands. 
If a system departs from the fixed point, then the only 

link between transcription level and transcription rate 
expressed by the second equation in (1.5) disappears, 
and the very question of relations between them 
becomes immaterial.

A standard way of analyzing stability consists in 
linearization of dynamics in the vicinity of the fixed 
point, obtaining the Jacobian matrix and comput-
ing the spectrum of its eigenvalues. Presence in the 
spectrum of eigenvalues with positive real parts is 
an indicator of instability.49 A detailed derivation of 
the Jacobian matrix, Jim, for the systems described by 
(1.1) is given in Ref43 by this author. The Jacobian 
matrix is

 J P Q i m Nim
i

im im= - =1
1 2
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Symbolically, the specifications of stoichiometric 
matrices for gene expression kinetics are as follows
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The only matrix requiring some explanation is 
PmRNA

prot  describing stoichiometry of transcription. Its 
components, εij, indicate how many proteins of type j 
serve as a TF for the gene i. Since only a compara-
tively small fraction of all the protein species com-
prising the proteome participate in each transcription, 
the majority of all εij are zeros, the majority of non-
zeros are ones, and sometimes εij may be equal to two. 
Should more specific data become available, these 
assumptions may be easily modified. A convenient 
way to express this property mathematically is to 
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assume that εij are randomly drawn from the Poisson 
or binomial distribution. This is not supposed to 
mean that the stoichiometric coefficients are indeed 
random; it is just a technical way of saying that the 
parameterizations of stoichiometry and kinetics are 
entirely independent.

We introduce two auxiliary matrices

 
, ..., , , ...,U V= ( ) = ( )- -

+
- -diag diagN N Nτ τ τ τ1

1 1
1

1
2

1

 
(1.10)

According to eq. (1.6) and (1.8), the Jacobian 
matrix is representable as

 
J

A B

C D
( ) ,0 ==

 
(1.11)

where A = -U, D = -V, B = U, C = Vε. We need to 
find the solutions of the characteristic equation

 
J

A I B

C D I
( )λ

λ
λ

=
-

-
= 0

 
(1.12)

Applying Shur’s formula for the determinants of 
block matrices,50 we reduce J (λ) to

 det ( ) det ( ) ( )  J VU V I U Iλ λ λ= + +[ ]εε -  (1.13)

In order to envision a general structure of the spec-
trum (1.13), we first make some inessential simpli-
fication. After that, we demonstrate numerically that 
this simplification is quite satisfactory and does not 
distort the results. To this end, we replace diag (U) 
and diag (V     ) by their mean values, which, according 
to eq. (10) in43, are equal to 1, thus bringing (1.3) to

 det ( ) det ( )J Iλ λ= - - +εε 1 2  (1.14)

Denoting Λ = (1 + λ)2, we arrive to the characteristic 
equation

 det ||ε - ΛI|| = 0 (1.15)

If Λ1:N are the eigenvalues of ||ε||, then the roots 
of J (λ) = 0 are λ1 2 1

1 2 1:( ) :N N= ± -Λ . The problem is 
now reduced to finding the spectrum of ||ε||. Since ||ε|| 
is non-negative, then, according to the fundamental 
Perron-Frobenius theorem,50 there always exists a 
unique real positive eigenvalue, Λmax, which is greater 
than the moduli of the rest of the eigenvalues. In order 
to demonstrate instability, it is sufficient to show that 
Λmax  1. In this case, the λ—spectrum contains at least 
one eigenvalue with a positive real part, λmax  0.

We have performed an extensive series of numeric 
computations of Jacobian spectra under wide rang-
ing assumptions regarding kinetic rates and stoichio-
metric matrices. Several important findings have 
resulted from these computations. First, it turns out 
that not only λmax  0, but also there exists a large set 
of other eigenvalues with positive real parts. We will 
refer to this property as massive instability. Second, 
the eigenvalue spectra are fairly robust with respect 
to the replacement of actual diag (U) and diag (V) 
by their means. Therefore, the simplification which 
led to (1.14) (that is, the replacement of diag (U) 
and diag (V) by their means) is justified. Third, such 
massive instability takes place under widely vary-
ing assumptions regarding distributions of kinetic 
rates and stoichiometric coefficients. To the best 
of the author’s knowledge, these results are not yet 
known and may represent some interest on their own, 
beyond the context of this paper.

Examples supporting the above three statements 
are given in the following Figures. In each of them, 
Jacobian matrices of order 1000 have been analyzed. 
Figure 1 shows the results of computations for two 
drastically different distributions of kinetic rates. 
In the top row, kinetic rates are distributed uniformly 
(beta distribution with shapes 1 and 1). In the bottom 
row, the distribution is unimodal (beta with shapes 3 
and 3). Comparison between rows shows that the dis-
tributional shapes of kinetic rates are not of much 
importance for overall structure of the spectrum, 
and therefore have a little impact on its stability. The 
graphs in the right column depict the spectra obtained 
with variable kinetic rates, whereas in the left column 
are shown those with the constant rates. It is seen 
that they are identical. Importantly, for all four cases 
the fractions of all roots located in the right half of 
complex plane (called hereafter the instability index) 
are identical. This is an illustration of the fact that 
replacement of the kinetic rates by their averages has 
little or no impact on the spectrum; this means that the 
assumption underlying the derivation of (1.14) is well 
justified. (For the reader’s convenience, the densities 
of the beta distribution for various combinations of 
shape parameters are given in Fig. 8).

These properties largely remain intact in even 
more extreme cases. Eigenvalue spectra for dras-
tically different distributions of kinetic rates are 
depicted in Figure 2. In the top row, the kinetic rates 
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are unimodal with very little variation and a sharp 
peak in the center of the interval (beta with shapes 10 
and 10). This setting represents a highly hypotheti-
cal case of almost constant kinetic rates across the 
entire spectrum of biochemical reactions. In the bot-
tom row, the distribution is bimodal with sharp peaks 
at the edges (beta with shapes 0.3 and 0.3). This is the 
case representing a mixture of very fast and very slow 
processes. Again, in the left column the rates are con-
stant, and in the right column variable. Comparison 
reveals some differences, but neither violate the key 
conclusion that all the spectra are unstable, nor do 
they lead to drastically different instability indexes.

The same pattern is seen in Figure 3. In the top 
row, the kinetic rates have steep elevation to the right 
end of the interval (beta with shapes 3 and 0.3). Such 
a distribution of kinetic rates depicts the dominance 
of fast processes. In the bottom row, the kinetic rates 
have steep elevation to the left end of the interval 
(beta with shapes 0.3 and 3), which corresponds to 
the dominance of slow processes. There are some 
differences in the spectra, but all of them are unstable 
with approximately identical instability indexes.

All the above computations have been made with 
the Poisson parameter 0.01. With a genome size of 
1000, this means that the link density (i.e. average 
number of protein serving as transcription factors 
per gene) is about 10. Figure 4 shows the impact 
of increasing complexity on the eigenspectrum. 
The kinetic rates in this Figure are the same as in 
Figure 1, but there is a difference in stoichiometry: the 
link density is ten times greater. Again, all four spectra 
are almost indistinguishable, but the instability index 
is drastically higher than in Figures 1–3. The conclu-
sion which may be derived from this example is that 
instability increases with increasing complexity. Just 
out of curiosity, we have also looked into an utterly 
unrealistic case when the link density approaches 
the dimension of the system. In the gene expres-
sion context, it would mean that an overwhelming 
majority of the protein species serve as transcription 
factors in each particular gene. This case is depicted 
in Figure 5. Instability has increased even further, and 
the spectrum became almost symmetric.

The general structure of the spectra in Figures 1–5 
may be understood from the following considerations. 

Average Rates; Beta.Shps = (10,10)
N = 1000; distr: pois; lmb = 0.01;  lnk.dnst = 10; inst.ind = 0.22 

Variable Rates; Beta.Shps = (10,10)
N = 1000; distr: pois; lmb = 0.01;  lnk.dnst = 10; inst.ind = 0.22 

Average Rates; Beta.Shps = (0.3, 0.3)
N = 1000; distr: pois; lmb = 0.01;  lnk.dnst = 10; inst.ind = 0.22 
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N = 1000; distr: pois; lmb = 0.01;  lnk.dnst = 10; inst.ind = 0.16 

Figure 2. Spectra of eigenvalues for drastically different distributions of kinetic rates. Top row: kinetic rates are unimodal with very little variations (beta with 
shapes 10 and 10. Bottom row: distribution is bimodal with sharp peaks at zero and one (beta with shapes 0.3 and 0.3. Left column: rates are constant 
and equal to the averages of those in right column.
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Average Rates; Beta.Shps = (1,1)
N = 1000; distr: pois; lmb = 0.1;  lnk.dnst = 100; inst.ind = 0.36 

Variable Rates; Beta.Shps = (1,1)
N = 1000; distr: pois; lmb = 0.1;  lnk.dnst = 100; inst.ind = 0.33 

Average Rates; Beta.Shps = (10,10)
N = 1000; distr: pois; lmb = 0.1;  lnk.dnst = 100; inst.ind = 0.36 

Variable Rates; Beta.Shps = (10,10)
N = 1000; distr: pois; lmb = 0.1;  lnk.dnst = 100; inst.ind = 0.35 
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Figure 4. Top row: kinetic rates are distributed uniformly (beta with shapes 1 and 1). Bottom row: distribution is unimodal (beta shapes 3 and 3. Left 
column: rates are constant and equal to the averages of those in right column. The difference with Figure 1 is that the link density here is 100.
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Variable Rates; Beta.Shps = (0.3,3)
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Figure 3. Spectra of eigenvalues for drastically different distributions of kinetic rates. Top row: kinetic rates are unimodal with sharp peak at the right end 
of the interval (beta with shapes 3 and 0.3). Bottom row: kinetic rates are unimodal with sharp peak at the left end of interval (beta with shapes 0.3 and 3). 
Left column: rates are constant and equal to the averages of those in right column.
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Matrix ||ε|| can be rescaled to the form ||ε|| = ζ ||Ξ|| 
where ζ is the link density (introduced in the Section 2) 
and ||Ξ|| is a stochastic matrix, that is, the one in which 
all the within-row sums are equal to 1. As known from 
the matrix theory (e.g.50 XIII.6), the largest eigen-
value of a stochastic matrix is 1. Therefore, the largest 
eigenvalue of the Jacobian, J (0), is simply

	 λmax = ζ	½ - 1 (1.16)

Indeed, this relation precisely holds in all the cases 
presented in Figures 1–5. Formally speaking, accord-
ing to (1.16), the system is unstable for any ζ  1. In 
the theoretical limit, ζ → 1, which would mean that 
on average there is only one protein per gene serv-
ing as a TF, the system becomes linear, the largest 
eigenvalue tends to zero, and the spectrum shows 
only pure attenuations without oscillations (Fig. 6, 
top row). However, if the link density increases to 2 
(two proteins per regulatory site) then even this com-
paratively weak nonlinearity immediately moves the 
system to instability, the largest egenvalue becomes 
∼2½ -1 = 0.41, and the spectrum manifests oscilla-
tory motions with a large assortment of frequencies, 

attenuations and excitations (50 eigenvalues) (Fig. 6, 
bottom row). It is obvious that with link densities 
from 30 to 100,11 typical for gene expression, any reg-
ulatory dynamics is located deeply within the domain 
of strong instabilities.

6. Limitations and Generalizations
The conclusion made in the previous Section may 
have far reaching implications for understanding 
the dynamics of genetic regulation. Therefore, a 
natural question arises whether or not a restrictive 
model (1.4) used for the above analysis of stability 
indeed warrants such a strong conjecture. In this con-
text, several considerations are in order. First, the 
specific form (1.4) of a biochemical system can be 
easily modified to accommodate other processes. For 
example, one may surmise that mRNA degradation 
is assisted by other proteins; in this case the Qprot

mRNA is 
non-zero. It is also conceivable that transcription may 
be assisted by some mRNAs. In this case, the matrix 
PmRNA

mRNA  should be populated by non-zero stoichiometric 
coefficients. Other modifications and adjustments are 
also possible. Each such augmentation moves the 

Average Rates; Beta.Shps = (1,1)
N = 1000; distr: pois; lmb = 1;  lnk.dnst = 999; inst.ind = 0.43 
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Figure 5. Top row: kinetic rates are distributed uniformly (beta with shapes 1 and 1). Bottom row: distribution is unimodal (beta shapes 3 and 3. Left 
column: rates are constant and equal to the averages of those in right column. The difference with Figure 1 is that the link density here is 1000.
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system towards greater complexity, and therefore 
toward greater nonlinearity and instability. Although 
of some interest, there is no need to perform stability 
analysis for each such modification individually. 
In the works43,44 by this author, stability has been 
studied for the system in its general form (1.1). In the 
author’s Ref,29 the Generalized Law of Mass Action 
has been used instead of a simpler form (1.2). All 
these cases show various degrees of instability per 
minimal assumptions regarding interactions. Actu-
ally, the only significant assumption that would be 
sufficient for instability is that the interactions of 
some sort do exist.

The very applicability of the concepts of chem-
ical kinetics to intracellular biochemistry may also 
be questioned. To this end, the concepts of stoichi-
ometry borrowed from low-dimensional chemistry 
between small (in the biochemical sense) molecules 
may not be quite adequate. To address this concern, 
simulations have been performed in which stoichio-
metric matrices were replaced by more general forms 
rather than simply containing only small positive 
integers. All the results regarding instability remain 

generally valid in these cases too. Thus, Figure 7 
gives an example of spectra with exponentially (top 
row) and gamma (bottom row) distributed stoichio-
metric coefficients. It is quite remarkable that, despite 
such big differences of the distributional shapes, the 
portraits of stability are literally identical to those 
obtained with the Poisson distributed stoichiometry. 
This result allows one to hypothesize that perhaps 
stoichiometry may be expressed in any functional 
form provided that the stoichiometric coefficients 
are positive; link density is the only parameter which 
seems to be of significance. Stated differently, it may 
be said that stability is mostly an epiphenomenon of 
the network’s topology and fairly independent of its 
kinetics. Similar conclusions have been made in a 
number of other sources, e.g.51,52 although using quite 
different theoretical approaches.

Moving to the next level of abstraction, one should 
recall the result by Tournier53 saying that in the 
vicinity of fixed point, any nonlinear system may be 
represented through the S-system.31,36 In the Ref44 by 
this author, this general statement has been specified 
for a class of nonlinear systems which can be called 

Average Rates; Beta.Shps = (3,3)
N = 1000; distr: pois; lmb = 0.001;  lnk.dnst = 1.03; inst.ind = 0  

largest eigenvalue 0

Variable Rates; Beta.Shps = (3,3)
N = 1000; distr: pois; lmb = 0.001;  lnk.dnst = 1.03; inst.ind = 0  
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Figure 6. All four pictures: distribution is unimodal (beta shapes 3 and 3. Top row: link density is 1. Bottom row: link density is 1. Left column: rates are 
constant and equal to the averages of those in right column.
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competitive: dx/dt = F(Px) - G(Qx). In the vicinity of the 
fixed point this system is representable as

 dx

dt
t

P x Q x

i
i

i i ik k
k

i i ik k
k

=

=








 -









∑ ∑

Φ ( | )
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In a sense, this means that in a competitive system, 
a large-scale dynamics may be considered, at least 
locally, as a kind of chemistry per appropriate defini-
tions of chemical constituents and kinetic rates. This 
also means that the above results regarding stability 
may make some sense in a much wider class of non-
linear dynamical systems. In particular, the Jacobian 
matrix of (1.17) is generally neither symmetric nor 
anti-symmetric; hence, its eigenvalues are complex 

numbers with both negative and positive real parts, 
what would indicate dynamic instability.

A major limitation of ordinary differential equa-
tions, such as (1.1), in application to intracellular bio-
chemistry is that they are valid only for the well stirred 
systems. In such systems, any chemical constituent 
produced anywhere in the system is assumed to become 
immediately available for all the chemical processes 
throughout the system. To some extent, this assump-
tion is acceptable in prokaryotic cells where the tightly 
coiled DNA molecule is surrounded by ribosomes in a 
somewhat random manner and located in close proxi-
mity to each other. In eukaryotic cells, things are entirely 
different. Prior to becoming TFs, the protein molecules 
have to travel from cytoplasm to nucleus by penetrating 
the nuclear membrane and then finding the sequence-
specific regulatory site. The mechanism of how exactly 
this happens is a major and largely unresolved mystery 
in biophysics. In a large body of the literature on the 
topic, three sources54–56 are especially helpful in eluci-
dating physical aspects of protein translocation and in 
providing comprehensive reviews. This question has 
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Figure 7. All four pictures: distribution of kinetic rates is unimodal (beta shapes 3 and 3), and link density is 100. Top row: stoichiometric coefficients are 
distributed exponentially with scale = 0.1. Bottom row: stoichiometric coefficients are distributed as gamma with shape = 2 and rate = 20. Both distributions 
produce the same mean = 0.1. Left column: kinetic rates are constant and equal to the averages of those in right column.
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been also recently visited in the work by this author.57 
Within the context of chemical kinetics, the proteins’ 
travel time may be accounted for by introducing the set 
of delay intervals for the protein variables. A straight-
forward way of doing this is replacement of the mRNA 

production terms γ i k
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where {ζk} is a set of protein-specific delays. Such a 
measure would move the problem from the realm of 
ordinary differential equations to the realm of mathe-
matically much more complex delay equations. It is 
far beyond the scope of this paper to delve deeper into 
this problem. However, it is possible to envision some 
general tendencies associated with the introduction of 
delays. Assuming that the delay times are small as com-
pared to the characteristic times of chemical reactions, 
we obtain

 

p t

p t P
r

p

k k

P

k

N

k

P

k

N

i k k k
k

k
k

k

i k

i k

( )

( ) exp

-[ ]

≈ [ ] 





=

=

∏

∏ -

ς

β α ς

1

1 ==
∑











1

N

 
(1.18)

As seen from (1.18), the problem is now 
transformed into a more complex one, but generally 
remains in the same class of nonlinear problems as 
in the well stirred systems. A new feature is that the 
mRNA production term has become dependent on the 
presence of other mRNAs. Obviously, such a com-
plication is not conducive to more stability because 
it introduces additional feedbacks into the process of 
gene expression and additional uncertainty associated 
with random kinetic rates.

7. Qualitative picture of Instability
The mathematical description of instability offered 
above is a formal representation of a wide class 
of phenomena frequently observed in networks. 
Among them are traffic jams, stampedes, instabili-
ties of combat operations, fluctuations in predator-
prey populations, blackouts of power grids, stock 
market panics, and others.58 Suppose that at a certain 
moment in time all the protein supply lines have been 
perfectly balanced with all the mRNA transcription 
rates, thus rendering equilibrium to the regulatory 
system. Suppose also that due to some random events 
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Figure 8. histograms of the beta distributions for various combinations of shape parameters.
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comprising a rich picture of intracellular stochasticity 
(abundantly discussed in the literature, see43,59 and 
references therein), a certain protein, say pawol, failed 
to report to the designated regulatory site. Obviously, 
transcription activity of the corresponding gene (say, 
gene-X) will be temporarily halted, and the mRNA-X 
molecule will not be synthesized. This also means 
that the protein translated from the mRNA-X, let’s 
call it protein-Y, a much needed TF for regulation 
of the gene-Y, will also fail to appear at the scene. 
These failures will propagate further to other genes. 
Quite accidentally, it may also happen that on a par-
allel sequence of events, an mRNA-Z is destroyed 
prior to reaching a ribosome, thus creating a deficit 
of the protein-Z followed by its own domino effect 
of the regulatory failures. It is easy to envision that, 
since there are 25,000 genes in the genome and each 
requires from 30 to 100 TFs, such unfortunate coinci-
dences should be quite frequent. Due to massive high 
order interactions, perturbations that appeared some-
where in the system easily penetrate to other domains 
of regulation creating unidirectional progression to 
deregulation. It is obvious that in such an environ-
ment, nothing like an orderly protein assembly line 
may exist. Spontaneous failures like traffic jams, 
bottlenecks, backlogs, delays, loss of synchroniza-
tion, etc., are unavoidable circumstances surrounding 
their functioning. Each successful transcription in a 
dynamically unstable system may be only thought of 
as a comparatively rare and sporadic event. In43 such 
events have been termed as instances of stochastic 
cooperativity.

A number of observations support the view of 
transcription as a sequence of sporadic events (see 
more detailed discussions in44,57.) Recent experi-
ments60 demonstrated that even in an individual cell, 
the production of a protein and supporting enzymes 
is a stochastic process following a complex pattern of 
bursting with random distribution of intensities and 
durations. Similarly, it was found in61 that quantita-
tive relations between transcription factor concentra-
tions and the rate of protein production “fluctuate 
dramatically in individual living cells, thereby 
limiting the accuracy with which genetic transcription 
circuits can transfer signals.” The phenomenon of 
burstiness is wide spread in genetic regulation. Thus, 
the authors of62 report that “transcription occurs in 
pulses in muscle fibers.” In Ref.63, it was found that 

“transcription of individual genes in eukaryotic cells 
occurs randomly and infrequently.” Similar observa-
tions have been made in.64–67

Is there any alternative to sporadicity of genetic 
regulation? A common counterargument is that mas-
sive redundancy is a recipe against instabilities and 
sporadicity. In the context of gene expression, the 
redundancy could mean that the proteins of each type 
serving as TFs somewhere throughout the genome 
are always available in the vicinity of any regula-
tory site (let’s call this type of redundancy copy 
number redundancy.) However, it should be taken 
into consideration that the vast majority of TFs in a 
cell are produced within the same cell, and the gene 
expression machinery is their only source. There-
fore, it is a more or less closed supply-demand pro-
duction cycle, without many leftovers or excesses. 
The hypothesis of copy number redundancy would 
require availability of many more proteins than the 
gene expression network is capable of synthesiz-
ing. In a sense, it may be said that there is always 
a shortage of regulatory proteins, and their availabi-
lity depends on the efficiency of the gene expression 
production line itself.

It is also conceivable that yet another type of redun-
dancy, a functional redundancy, may exist. In the con-
text of gene expression, functional redundancy would 
mean that there are many ways to synthesize the same 
protein thus providing alternative modes of function-
ing in spite of sporadicity and instabilities. It should 
be noted, however, that functional redundancy, if it 
exists, would not be a way of eliminating or sup-
pressing instabilities; rather, it would be the way 
of resilience in the face of and coexistence with 
instabilities.

8. Interpretation of the Jacobian 
eigenvalue spectra
Given some initial conditions within a small ε-vicinity 
of the fixed point, x p rε ε ε

0 0 0= { }, , the subsequent 
evolution of the system is described by the equation

x J x

Z Z x

( ) exp ( )

exp ( ), ..., exp ( )

t t

diag t tN

=

= [ ]{ }-

0

1
1

0λ λ ε

 
(1.19)

(e.g.68 Chapter 3), where Z is the similarity matrix 
(in this case, simply having the eigenvectors of J as 
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its columns.) All the eigenvalues may be ordered as 
follows

 λ λ λ λ λ λmin min max max, Re , , Re ,< <{ } < <{ }0 0 0

 (1.20)

The first group containing just one real negative 
eigenvalue, λmin, describes rapid attenuation of 
the perturbation, x xε

0 0- , and relaxation toward 
the equilibrium point, x0. The second group, 
{λmin  Re λ  0}, describes oscillatory decay 
of the perturbations with a variety of attenua-
tion times and periods. All the eigenvalues in this 
group comprise the stable manifold. The third group, 
Re λ = 0, called the center manifold , contains only 
stationary periodic oscillations (unless Im λ = 0.) 
The group {0  Re λ  λmax}, the unstable mani-
fold, describes oscillatory growth of disturbances 
and moving the system further from the equilibrium. 
Finally, the last member in (1.20), λmax, describes 
rapid, purely exponential growth of the disturbances. 
As seen from examples Figures 1–5, typically the 
largest eigenvalue, λmax, is substantially greater than 
the moduli of the rest of the eigenvalues. This means 
that all the numerous transitory details of behavior 
manifested in the spectra are comparatively unim-
portant as they become quickly overridden by the 
rapid exponential growth of just one term, exp(λmax t). 
It also means that the initial state, x0, which is gen-
erally representable as a linear combination of all 
eigenvectors, x e e e0

1 21 2
= + + +c c cNλ λ λ...

max
, without 

loss of generality, may be reduced to the last term, 
cN eλmax

. As shown above, the largest eigenvalue is 
dependent only on the complexity, λmax = ζ	½ - 1. 
We come, therefore, to an important conclusion that 
the characteristic time of existence of the equilibrium 
state rapidly decreases with increasing complexity. 
It is also worth mentioning that kinetic rates have 
a negligible impact on this conclusion; the time of 
decay is overwhelmingly dependent on the system’s 
topology, that is, on its link density.

9. Long Term Behavior
Jacobian analysis of stability in the vicinity of the 
fixed point (often called linear stability) provides 
little guidance regarding the patterns of long term 
behavior of the system. Lessons learned from the 
studies of low dimensional nonlinear systems show 

that their behavior may be extremely complex, often 
manifesting the patterns of deterministic chaos, as 
vividly demonstrated by classical examples of Lorenz 
attractor and Lotka-Volterra population dynamics.49 
Intuition tells us that there is little hope that in highly 
nonlinear systems of very large dimension—and 
genetic regulatory networks are such systems—the 
behavior may miraculously become more orderly. 
Recently, an interesting argument was put forward by 
Dechert et al.69 Using neural network as a model for 
the system’s dynamics, he came to the conclusion that 
as the dimension and the complexity of the network 
increase, the probability of chaotic behavior increases 
to 100%. Since neural networks are dense in the set of 
dynamical systems, the authors conjecture that most 
large dynamical systems ought to be chaotic. Such a 
conclusion is in agreement with an earlier argument 
by Brock that “the larger the dimension of a non-
linear dynamical system, the larger the probability 
that the system dynamics have a positive Lyapunov 
exponent.”70

As mentioned in Section 3, the scenario of asymp-
totic stability assumes that, starting from some 
arbitrary initial conditions within the basin of attrac-
tion, all the trajectories of a dynamical system con-
verge to a certain domain of the phase space and 
stay within it forever. However, the behavior of trajec-
tories within that domain may be quite different. It 
may assume the form of orderly quasi-periodic motion 
(in this case, it is called limit cycle), but it also may 
become chaotic with exponentially fast increasing 
of distances between initially close trajectories. Two 
questions are of key importance for understanding 
the long-term behavior. First, one needs to establish 
the sign of the phase space compressibility. Negative 
compressibility means that the volume occupied by a 
bunch of trajectories decreases with time; that would 
generally indicate asymptotic stability.71 However, 
existence of asymptotic stability does not preclude 
the attractor being chaotic; the Lyapunov Exponent 
analysis is the tool capable of resolving this issue.72 
It is generally accepted that if the Lyapunov spec-
trum contains at least one positive exponent then the 
system is chaotic. Geometrically, this means that ever 
decreasing phase space volume nevertheless becomes 
folded in progressively thinner layers, deformed in 
numerous branches and tentacles with a tendency to 
reach even the farthest domains of the phase space.
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Phase space compressibility for the system (1.4) 
is easy to calculate. For this purpose we use the 
following form of the equations of chemical kinetics
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Suppose that a constituent, xi, is not autocata-
lytic. In the context of gene expression, this means 
that among the TFs for the gene “i”, there are no 
proteins translated from the same gene. In this case, 
Pii

I = -1.Further, we note that according to (1.4) all 
the degradation terms are linear in the correspond-
ing constituents; therefore, Qii

I = 0 . By definition, the 
phase space compressibility is the divergence of the 
vector field, f. Thus,
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In this scenario, the phase space volume is 
contracting; this is an indication of asymptotic 
stability.

It is of interest to examine a more complex case 
when at least some gene expressions are autocatalytic 
but require participation of only one protein expressed 
by the same gene. It is easy to see from general expres-
sions (1.23) and (1.24) that this assumption does not 
change the sign of phase space compressibility since 
the corresponding terms simply vanish. In an even 
more complex, but less likely, scenario when the 
autocatalytic self-reproduction requires participation 
of more than one protein expressed from the same 
gene, the sign of phase space compressibility may 
vary and becomes dependent on many circumstances. 
It is quite possible that in some of these cases, the 
system will lose the property of asymptotic stability 
because high-order self-reproduction is equivalent 
to the existence of a strong positive feedback loop. 

It is also worth mentioning that all the scenarios of 
self-destruction (i.e. the degradations supported by 
the same constituents as those being degraded) cause 
Qii

I > 0, thus leaving the sign of phase space com-
pressibility unchanged and even increasing its abso-
lute value.

Computation of Lyapunov exponents is a daunt-
ing task even for comparatively simple systems,73 
and it seems to be a hopeless undertaking to apply 
standard techniques72 to a system with dimensions 
in the thousands. However, high dimensionality 
may be of some advantage and serve as a basis 
for approximations and simplifications.43 Detailed 
structure of the asymptotic regime, whether it is a 
chaotic attractor or a limit cycle, is not of primary 
importance for understanding dynamics in systems 
of very high dimensions. For practical purposes, it is 
reasonably sufficient just to know that the phase space 
compressibility is negative, therefore some kind of 
asymptotic regime does exist. According to general 
principles of statistical mechanics, rapidly fluctuating 
variables can always be considered stochastically and 
treated as random noise disturbing slower evolution 
of the system. Such an approach automatically leads 
to the replacement of deterministic differential equ-
ations (1.4) by stochastic differential equations and 
transition to description in probabilistic terms using 
the Fokker-Plank equation.74

10. Discussion
When theorists and computational scientists try to 
capture the transcription-translation mechanism in 
the language of differential equations, importance 
of the mRNA decay rates immediately jumps into 
focus. It is not the goal of this paper to claim that 
this importance is poorly understood. The point is 
that in the majority of existing routine microarray 
protocols, the mRNA decay rates are not measured, 
remain unknown and are not taken into consideration 
when making the inferences regarding the states of 
corresponding genes. There is nobody to blame here. 
Measurements of the decay rates require special, and 
in fact very complex, laboratory settings; at this time 
they are mostly of experimental sort rather than a 
routine, simple and commonly available component 
of expression profiling.

The question raised in this paper is not simply a 
question of poor reliability of microarray measurements. 
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The question is deeper. We are making the point that 
measurements of mRNA abundances are not fully 
representative of gene activity. It often happens in 
many areas of science that direct measurements of 
the quantities of interest are not possible, but instead 
some proxies or surrogate variables can be observed. 
A textbook example is that we cannot directly measure 
the temperature of stars. What can be observed and 
measured are only the spectra of their electromag-
netic radiation. But prior to inferring the temperature 
of a star from the analysis of its radiation, a theory 
should exist that relates the temperature to the radia-
tion spectrum. Inferring the quantity of interest (tem-
perature) from the quantities observed (spectrum) 
constitutes the solution of an inverse problem. It is 
quite a common situation that inverse problems are 
either ill-conditioned or not solvable at all. This 
is because solution of the inverse problem would 
require a number of additional quantities, which in 
turn require their own independent measurements 
and even more comprehensive theories. The situation 
with the relations between transcription levels and 
transcription rates is quite similar: transcription rates 
are the unobservable quantities of interest, whereas 
transcription levels are the quantities being actually 
observed. It is true that transcription rates directly 
impact the transcription levels. But it is also true 
that many other processes may impact transcription 
levels. This is why the inverse problem of derivation 
of transcription rates from the transcription levels is 
ill-conditioned and may be not solvable.

The consequences of simplified thinking and lack 
of logically self-consistent view on the nature of 
transcription profiling may have detrimental effect, 
especially in clinical settings. Relative simplicity of 
transcription profiling with microarrays makes them 
an attractive tool for clinical diagnostics. A medical 
practitioner would not hesitate to jump directly from 
the observed abnormal mRNA abundances to conclu-
sion regarding abnormality of corresponding genes. 
The author is trying to convey the idea that there 
is no such direct link and cannot be due to funda-
mental reasons lying in the very basis of intracellular 
biochemistry.

Observed biological robustness of living organ-
isms is not a counterargument to dynamical biochem-
ical instability. Robustness differs from stability in 
that it deals with maintaining the system’s functions 

as opposed to the system’s states.75 The seeming 
contradiction between functional stability of a vast 
organizational structure consisting of a large number 
of biochemical networks and possible dynamical 
instability in each of them is fictitious; it attempts 
to oppose different levels of biological organization. 
A logically satisfactory way of looking into these 
issues is through the paradigm called dual causality 
formulated by Palsson.76 He writes: “Unlike physio-
chemical sciences, biology is subject to dual causality 
or dual causation. Biology is governed not only by 
the natural laws but also by genetic programs. Thus, 
while biological functions obey the natural laws, 
their functions are not predictable by the natural laws 
alone. Biological systems function and evolve under 
the confines of the natural laws according to basic 
biological principles, such as generation of diver-
sity and natural selection. The natural laws can be 
described based on physico-chemical principles and 
used to define the constrains under which organisms 
must operate. How organisms operate under these 
constrains is a function of their evolutionary history 
and survival.” Within this paradigm of dual causality, 
inherent dynamical instability represents the “natural 
laws” and “physico-chemical principles” whereas bio-
logical robustness is a result of evolutionary history 
in which this dynamical instability is effectively used 
for gaining evolutionary advantages and survival.

11. summary
A nonlinear dynamical model for the description of 
gene expression has been introduced. The model 
is based on the equations of chemical kinetics and 
explicitly takes into consideration nonlinear gene-
to-gene interaction through the teamwork of proteins 
serving as transcription factors.

It has been shown that there is a unique fixed point 
in this model; Jacobian analysis of stability has been 
performed for this fixed point. Numeric computation 
of the eigenvalue spectra revealed a high degree of 
dynamical instability inherent in such systems. The 
core element responsible for the emergence of insta-
bility is nonlinearity of the equations of chemical 
kinetics associated with team-work of proteins asso-
ciated with transcription. Instability occurs every time 
when the average number of proteins (per gene) serv-
ing as transcription factors becomes greater than one. 
With the typical number of transcription factors from 
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30 to 100 per gene, genetic regulatory systems lie 
deeply within the domain of dynamical instability.

It has been demonstrated analytically, and con-
firmed numerically, that a simple rule exists connect-
ing the network’s link density with the degree of 
its instability. Namely, the largest eigenvalue of the 
Jacobian spectrum, λmax, the key quantity character-
izing instability, is directly related to the complexity 
of the system measured by the network’s link density, 
ζ: λmax = ζ	½ – 1. It has been shown that this relation 
is highly robust and holds under widely varying 
assumptions regarding probabilistic distributions of 
kinetic rates and stoichiometric coefficients. It may 
be claimed with a high degree of certainty that the 
network’s instability is mainly determined by its link 
density and largely independent of its kinetics.

It has been shown by direct analytical calculation 
that long-term behavior of the regulatory system, 
under some natural assumption of absence of self-
reproducibility, represents a dissipative flow with 
negative phase space compressibility. This guarantees 
asymptotic stability of the system and existence of 
some sort of attractor. The question whether or not 
this attractor is chaotic or, alternatively, represents a 
multispectral quasi-periodic limit cycle remains open 
at this time. This question, however, is of secondary 
importance in systems with the dimensions in the 
thousands.

Direct relations between transcription levels and 
transcription rates are only possible in the state of 
lasting steady state equilibrium. But even in such a 
hypothetical state, inference of transcription rates 
from transcription levels is not possible unless an 
additional set of quantities is measured in the same 
experimental settings; these quantities are the rates of 
mRNA degradation.

The aforementioned result that the largest Jacobian 
eigenvalue, λmax, bears a simple relationship to the 
network link density, ζ, that is, λmax = ζ	½ – 1, may be 
of interest beyond the scope of this paper and useful 
in a wider context of network dynamics.

12. conclusion
A key assumption underlying microarray measurements 
is that measuring mRNA abundances provides 
the basis for definitive statements regarding the 
functionality and integrity of the corresponding genes. 
In particular, excess or deficiency in mRNA copy 

numbers is considered to be an indicator of possible 
damage to their genetic codes. In formal terms, such 
reasoning assumes the existence of a direct link 
between transcription levels and transcription rates. 
As shown above, such a direct link is only possible 
in the state of stable equilibrium. Inherent dynamical 
instability and sporadicity of genetic regulation 
elucidated in this paper make such a direct link highly 
questionable. There may be many reasons other then 
genetic mutation for the mRNA abundances being 
up- or down-regulated.

There is no doubt that the analysis of the transcrip-
tome, along with the proteome and the metabolome, 
may serve as a valuable diagnostic tool. However, 
the logical leap from the state of transcriptome to 
the state of genome is not self-evident and requires 
much more careful substantiation than is currently 
accepted in experimental biology. Better understand-
ing of the essence of microarray measurement may 
help in developing more efficient protocols for use in 
clinical practice. Alternatively, it is conceivable that 
such an in-depth analysis may lead to realization that 
a tool that is inherently unstable is not expected to 
be a reliable instrument for patient-related decision 
making.
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