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Abstract: Coalescent-based Bayesian Markov chain Monte Carlo (MCMC) inference generates estimates of evolutionary parameters 
and their posterior probability distributions. As the number of sequences increases, the length of time taken to complete an MCMC 
analysis increases as well. Here, we investigate an approach to distribute the MCMC analysis across a cluster of computers. To do 
this, we use bootstrapped topologies as fixed genealogies, perform a single MCMC analysis on each genealogy without topological 
rearrangements, and pool the results across all MCMC analyses. We show, through simulations, that although the standard MCMC 
performs better than the bootstrap-MCMC at estimating the effective population size (scaled by mutation rate), the bootstrap-MCMC 
returns better estimates of growth rates. Additionally, we find that our bootstrap-MCMC analyses are, on average, 37 times faster for 
equivalent effective sample sizes.
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Introduction
The coalescent is a mathematical description of 
the genealogy of a sample of sequences from a 
Wright-Fisher population. Kingman1,2 showed that 
the times to common ancestry of any pair of lineages, 
measured from present to past, can be approximated by 
exponential random variables with the expected time 
proportional to 2N/i(i - 1), where N is the effective size 
of the population, and i is the number of lineages that 
have yet to coalesce as we move from the tips to the 
root of the tree. If the population is subdivided and/or 
has changed in size, then these intervals are functions 
of migration rates and/or growth rates, respectively. 
As a means of inferring population genetic parameters, 
its use has grown, and this growth has been spurred 
by our increasing ability to sample sequences from 
many individuals in a population. We can derive a 
maximum-likelihood estimate (MLE) of the effective 
population size (scaled by the mutation rate) by 
finding the value that maximises the probability of 
observing the series of coalescent intervals obtained 
with our sample genealogy, G, given by
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where time, t, is measured in substitutions, ρi is 
the length of the ith interval, also in substitutions, 
and Θ ∝ 2N µ ( µ is the mutation rate, and the 
proportionality constant depends on whether the 
population is haploid or diploid).

Of course, the genealogy is seldom known with 
certainty, and the approach adopted over the last 
few years has been to develop clever computational 
methods that integrate over all genealogies, weighting 
each genealogy by its likelihood:3,4

P D P D G P G dG
G

( | ) ( | ) ( | )Θ Θ= ∫ � (2)

The term P(D | G) is the standard phylogenetic 
likelihood.

This approach also applies to the Bayesian 
methods that have been developed.5 Here, the aim 
is to recover the posterior probability distribution, 
P(Θ | D) ∝ P(D | Θ)P(Θ), where P(Θ) is the prior 
distribution of Θ. Bayesian methods that have been 
developed to take account of the uncertainty in the 

genealogy rely on Markov chain Monte Carlo (MCMC) 
integration with or without importance sampling. 
With MCMC, a genealogy or a parameter value, ′Xi , 
is perturbed according to some proposal distribution 
or strategy to ′+Xi 1, the posterior probability of ′+Xi 1  is 
calculated, and ′+Xi 1  is accepted or rejected based on 
the ratio of the posterior probabilities of ′+Xi 1  and ′Xi  
and the proposal probabilities of moving from ′Xi  to 

′+Xi 1 and ′+Xi 1 to ′Xi .
MCMC is a powerful computational technique 

that is naturally suited to Bayesian inference because, 
in its simplest and most intuitive form, it delivers a 
probability distribution of parameter values instead of 
one value that maximizes some function. In this paper, 
we will focus on MCMC and its use in coalescent-
based Bayesian inference. There are many issues 
relating to the performance of MCMC: how do we 
know when the Markov chain has converged to the 
target distribution, how frequently should we sample, 
how long should chains be, and so on. We will 
ignore all of these, largely because there are many 
good texts, primers and reviews on these topics. 
Instead, we will focus on a method that permits us 
to distribute our MCMC coalescent integration across 
a computational cluster to achieve an increase in the 
speed of execution.

There are three main reasons to use cluster-based 
computing for MCMC: to assist with mixing, to 
increase the speed of the MCMC procedure, and as 
a check for convergence. For instance, MrBayes6 
uses a computational cluster to perform multi-chain 
Metropolis Coupled MCMC, permitting samples 
to mix across different chains. BayesPhylogenies7 
uses a computational cluster to calculate the 
likelihoods of parts of the data, thus increasing the 
speed of execution. Finally, it is also possible to 
run several MCMC chains of the same data on a 
cluster to check for convergence to the same target 
distribution.

In this paper, we examine an approach first proposed 
by Felsenstein8 which involves the use of bootstrap 
trees. This method has not been implemented in 
any existing software, nor has it been tested to any 
great extent. Our aim is to study the properties of 
estimates derived using this approach, in an attempt 
to determine whether the relative benefits of increased 
computational speed outweigh any loss in estimation 
efficiency.
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The Procedure
We begin by noting that a genealogy, G, can be 
characterized by an ordered history, H, that denotes the 
order in which labeled lineages coalesce, and a vector, 
C, of coalescent intervals. We write G = {H, C}, and

	 P D P D H C P H C dC
CH

( | ) ( |{ , }) ({ , } | )Θ Θ=
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∞
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Clearly, the likelihood of Θ will be influenced by 
ordered histories that are, themselves, most likely—
the leftmost term within the integral indicates this. 
One way to recover the set of “likely” ordered 
histories is to use the histories of bootstrapped trees. 
By bootstrapping the data as proposed by Felsenstein9 
and reconstructing the sequence phylogenies to obtain 
the set, B, of bootstrapped histories, we can write:
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As before, to obtain the posterior probability of Θ, 
we have
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where Z is an unknown normalizing constant that 
cancels out in the MCMC process. Eqn 5 immediately 
suggests a strategy: distribute to each node on 
a computational cluster a fixed history from B, 
turn off topological rearrangements, and pool the 
posterior distributions obtained from all nodes. When 
topological rearrangements are turned off, the topology 
of the genealogy remains fixed for the entire 
MCMC run. The value of this approach is two-fold: 
(1) it allows a parallel implementation of MCMC; 
and (2) for each bootstrapped history, MCMC 
perturbations focus only on continuous parameters 
(i.e. branch lengths, coalescent parameters, and 
substitution model parameters). In our simulations, 
this delivers an increase in computational speed.

Of course, as Felsenstein8 noted, there is no 
guarantee that the bootstrap histories will be the “more 
likely” histories in any technical sense, but intuition 
suggests that they will constitute an assemblage of 
trees with reasonably high likelihoods. As an aside, 

it is worth noting that Kuhner, Yamato, and Felsenstein4 
argued against this approach because bootstrap trees 
admit zero-length branches and estimates of Θ based 
on these branches will be indeterminate under the 
coalescent likelihood (Eqn. 1). However, what we 
have done here is allow the MCMC procedure to alter 
the branch lengths, so we effectively strip the branch-
lengths away leaving only the history.

Simulations
Seventy haploid sequences, each 1000 bases long, 
were generated randomly under the coalescent process 
using SimCoal 2.10 The constant population size 
was set at 100,000. The mutation rate was 1.5 × 10-6 
mutations per site per generation. Ten replicates were 
generated. This process was also repeated using 
sample sizes of  140 and 210 sequences. Sequences were 
also generated assuming an exponentially growing 
population with a current (or terminal) population 
size of 100,000 increasing at a rate of 0.0005, again 
with ten replicates for samples of 70, 140, and 210 
sequences.

For each data set, 100 bootstrap trees were 
generated using PHYML v1.2.2.11 A BIONJ distance-
based tree is used as the starting tree in PHYML and 
optimized under a HKY substitution model using 
maximum likelihood with four substitution rate 
categories. All the other parameters (e.g. transition/
transversion ratio, proportion of invariable sites and 
gamma distribution shape-parameter) were estimated 
using PHYML.

Bootstrapped trees were midpoint-rooted and 
were then analyzed using BEAST12 with shortened 
chain length (3 million). Thus, we performed 100 
MCMC runs for each data set and the topology 
used in each run was fixed on a different bootstrap 
tree topology. MCMC samples from all runs 
on the set of bootstrapped topologies were then 
combined to obtain the final marginal distributions. 
Additionally, each original (non-bootstrapped) dataset 
was analysed with BEAST allowing topological 
rearrangements, as a comparison. The number of 
generations for these “standard” MCMC analyses 
were set to allow the Effective Sample Size (ESS) 
to approximate that obtained using the bootstrap-
MCMC analyses. Generally, MCMC chains for the 
standard analyses ran for 60–420 million generations. 
For all analyses, parameters of the substitution model 
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were allowed to vary, uniform priors were used for 
all continuous parameter variables, the chains were 
sampled every 5000 generations, and the first 10% 
were discarded as burn-in values. All MCMC analyses 
were run on a 10-node SGI Altix XE320 cluster, with 
each node consisting of  2 × Quad Core Xeon 2.8 GHz 
processors. In total, 80 cores were available.

Analyses of median estimates of Θ and growth 
rates, G (where applicable) were performed using 
JMP 7.0.13 To analyse the simulations, mixed-model 
nested Analyses of Variance (ANOVAs) were used, 
with Method (either Standard MCMC or Bootstrap 
MCMC) and Simulation (70 sequences, 140 sequences 
or 210 sequences) as fixed categorical effects, and 
replicate as a random effect nested within Simulation. 
The interaction effect between Method and Simulation 
was also a factor in the model.

Results
Results for all simulations are given in Tables 1 and 2. 
For constant sized populations, the bootstrap-MCMC 
estimates of Θ averaged 0.163, compared to the 
true value of 0.150—this equates to about a 10% 
difference between the true and estimated values. 
In contrast, the standard MCMC returned an average 
of 0.149, a difference of less than 1%. The difference 
in estimation between the bootstrap-MCMC and 
the standard MCMC was statistically significant 
(p-value  0.001). ANOVA indicated there was 
no significant difference as sequence numbers 
changed, nor was there interaction between Method 
(i.e. bootstrap-MCMC vs standard MCMC) and 
Simulation (i.e. numbers of sequences). Also, 4 of the 
30 95%HPDs obtained using the bootstrap-MCMC 
did not enclose the true value, whereas only 1 of the 
30 95%HPDs of the standard MCMC excluded the 
true value, although this is not statistically significant 
at the 5% level.

In contrast, when we compare the bootstrap-
MCMC and the standard MCMC estimates of growth 
rate, we find that there is a statistically significant 
interaction effect between Method and Simulation 
(p-value  0.01), with the standard MCMC performing 
more poorly as numbers of sequences increased. 
Also, the 95%HPDs of bootstrap-MCMC analyses 
enclose the true value of growth rate more 
frequently (23/30) than those obtained with the standard 
MCMC (15/30; p-value  0.05). The bias seen in 

the standard MCMC is not surprising: Kuhner et al14 
demonstrated that the ML estimates of growth rate 
tend to be significantly biased upwards. We expect 
Bayesian estimates to show the same tendency, 
particularly with uninformative priors.

Whereas the standard MCMC does not appear to 
estimate growth rates as well as the bootstrap-MCMC, 
it seems to estimate the terminal value of Θ better than 
the bootstrap-MCMC, and theses estimates improve 
as more sequences are added. Of the 30 95% HPDs, 
7 of the bootstrap-MCMC HPDs exclude the true 
value, whereas all standard MCMC HPDs enclose the 
true value (p-value  0.01).

Interestingly, the frequency distribution of posterior 
probabilities is multimodal for the bootstrap-MCMC 
and unimodal for the standard MCMC (Figs. 1A, B). 
In retrospect, this is not surprising, since only a 
small part of topology space is explored under the 
bootstrap-MCMC. It is worth noting, however, that 
the number of modes on the marginal distribution 
of log-posterior probabilities obtained using the 
bootstrap-MCMC does not correspond to the number 
of unique topologies obtained using the bootstrap. 
There are more topologies obtained than modes on 
the marginal distribution of posterior probabilities. 
Also, it is worth pointing out that the bootstrap-
MCMC obtains lower log-posterior probabilities 
than the standard MCMC.

Finally, if we compare the times of the runs, we 
find that if the MCMC run for 100 bootstrapped 
topologies was performed on a 80-core cluster, the 
bootstrap MCMC took an average of just over an 
hour (61 mins, range: 44–94 mins) to obtain an 
average ESS of 17372; in contrast, the standard 
MCMC took, on average, 37 hrs (2216 mins, range: 
1446–4373 mins) to obtain approximately the same 
ESS (17888).

Discussion
In this paper, we explore the properties of an approach 
to coalescent-based Bayesian MCMC estimation 
of evolutionary parameters that begins with a set 
of bootstrapped topologies which remains fixed 
throughout the analyses. Distributing these topologies 
across a cluster of computers affords up to a 
37-fold increase in computational speed. In terms of 
estimation efficiency, the results are mixed: whereas 
the standard MCMC performs better at estimating Θ, 
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Table 1. Parameter estimated from sequences under constant growth rate using both bootstrap-MCMC and 
standard-MCMC. The true value of Θ is Nµ = 0.15.

Simulation Est. θ boot.— 
Mean (Median)

Est. θ Full— 
Mean (Median)

θ 95% HPD—Bootstrap 
(Standard)

Post. ESS—Bootstrap 
(Standard)

70 Sequences 0 0.171 (0.169) 0.167 (0.165) 0.130, 0.217 (0.126, 0.210) 17650 (22910)
70 Sequences 1 0.157 (0.155) 0.143 (0.142) 0.118, 0.199 (0.108, 0.181) 29820 (32180)
70 Sequences 2 0.166 (0.164) 0.150 (0.148) 0.126, 0.210 (0.114, 0.189) 26390 (23610)
70 Sequences 3 0.175 (0.173) 0.141 (0.140) 0.125, 0.228 (0.108, 0.179) 13760 (11630)
70 Sequences 4 0.196 (0.194) 0.175 (0.173) 0.148, 0.248 (0.131, 0.218) 3002 (3648)
70 Sequences 5 0.169 (0.166) 0.146 (0.145) 0.123, 0.220 (0.111, 0.185) 25470 (25110)
70 Sequences 6 0.155 (0.153) 0.154 (0.152) 0.117, 0.194 (0.117, 0.194) 42420 (36840)
70 Sequences 7 0.125 (0.124) 0.124 (0.122) 0.095, 0.159 (0.093, 0.156) 31040 (33920)
70 Sequences 8 0.130 (0.128) 0.128 (0.126) 0.098, 0.164 (0.097, 0.162) 40670 (38470)
70 Sequences 9 0.158 (0.156) 0.149 (0.147) 0.117, 0.199 (0.111, 0.186) 35480 (34940)
140 Sequences 0 0.153 (0.152) 0.147 (0.146) 0.125, 0.182 (0.120, 0.175) 25550 (27850)
140 Sequences 1 0.141 (0.140) 0.119 (0.118) 0.112, 0.172 (0.097, 0.142) 12230 (13000)
140 Sequences 2 0.151 (0.150) 0.145 (0.145) 0.124, 0.181 (0.119, 0.172) 26640 (22830)
140 Sequences 3 0.191 (0.189) 0.169 (0.168) 0.154, 0.228 (0.139, 0.201) 17660 (18690)
140 Sequences 4 0.158 (0.157) 0.153 (0.152) 0.129, 0.189 (0.125, 0.182) 26390 (27460)
140 Sequences 5 0.133 (0.132) 0.128 (0.127) 0.108, 0.160 (0.105, 0.153) 22860 (19510)
140 Sequences 6 0.171 (0.170) 0.135 (0.135) 0.134, 0.209 (0.112, 0.162) 8927 (9467)
140 Sequences 7 0.180 (0.178) 0.159 (0.158) 0.146, 0.217 (0.129, 0.189) 16210 (16420)
140 Sequences 8 0.187 (0.185) 0.174 (0.173) 0.151, 0.225 (0.144, 0.207) 10200 (10780)
140 Sequences 9 0.172 (0.171) 0.152 (0.151) 0.140, 0.208 (0.123, 0.180) 10240 (11550)
210 Sequences 0 0.176 (0.175) 0.150 (0.150) 0.147, 0.206 (0.128, 0.175) 4032 (3953)
210 Sequences 1 0.159 (0.158) 0.147 (0.146) 0.134, 0.185 (0.124, 0.170) 14850 (23130)
210 Sequences 2 0.174 (0.172) 0.147 (0.147) 0.141, 0.211 (0.125, 0.171) 8089 (8350)
210 Sequences 3 0.159 (0.158) 0.150 (0.149) 0.134, 0.185 (0.127, 0.174) 16700 (25630)
210 Sequences 4 0.186 (0.185) 0.174 (0.173) 0.156, 0.215 (0.146, 0.200) 3325 (3984)
210 Sequences 5 0.160 (0.158) 0.142 (0.141) 0.129, 0.196 (0.121, 0.165) 14150 (14650)
210 Sequences 6 0.168 (0.167) 0.159 (0.159) 0.142, 0.195 (0.134, 0.183) 16160 (15320)
210 Sequences 7 0.166 (0.165) 0.158 (0.158) 0.140, 0.193 (0.134, 0.185) 17630 (18850)
210 Sequences 8 0.180 (0.179) 0.163 (0.162) 0.152, 0.209 (0.139, 0.188) 15220 (18880)
210 Sequences 9 0.160 (0.159) 0.151 (0.151) 0.135, 0.186 (0.127, 0.174) 17120 (16750)

it fails to estimate growth rate as well as the 
bootstrap-MCMC.

It is fair to say that in the absence of any analytic 
solution, most estimation methods in phylogenetics 
and evolutionary genetics rely on heuristic procedures. 
MCMC itself is a heuristic procedure that only 
guarantees convergence to the target distribution 
(generally, the posterior probabilities), under appropriate 
conditions, without any specification of when that 

convergence will be reached. Consequently, we 
never know that we are sampling from the correct 
distribution without running additional tests. Heuristic 
methods are useful because, typically, a researcher is 
prepared to make a trade-off  between the time it takes to 
run an analysis (i.e. computational efficiency) and the 
degree of uncertainty in the estimates (i.e. estimation 
efficiency). This is particularly true as we accumulate 
more sequences, because standard MCMC analyses 
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Figure 1. Posterior distribution from bootstrap-MCMC and standard-MCMC. 
Example of the log-posterior probability distribution from both bootstrap-
MCMC (top) and standard-MCMC (below) obtained with 210 sequences 
simulated with a constant population size. Note also the difference in 
scales of the horizontal axes.

will require longer times to run. As noted above, the 
method described here achieves a phenomenal speed 
increase with our simulations.

The method proposed here can almost certainly be 
improved. If, instead of using bootstrapped trees, we 
use trees that are most likely, or nearly most-likely, 
then we will get closer to essence of the procedure 
described above. After all, we only use bootstrap 
trees because we think that these are going to be in the 
neighborhood of the likelihood peak. Also, if instead of 
midpoint rooting our bootstrap trees, we found the root 
that was the most likely under some clock-constraint, 

we would again have better topologies to work with. 
However, in both these instances, we would take time 
to obtain our set of topologies, and this in turn would 
defeat the purpose of the exercise: the rapid delivery of 
estimates of evolutionary parameters with reasonable 
coverage properties. One possible solution, suggested 
by a reviewer, is to use UPGMA to build the starting 
topologies. The value of UPGMA is that the root for 
the tree is found naturally as part of the agglomerative 
process. UPGMA works well when a strict molecular 
clock applies (as in our simulations), but performs 
badly when there is lineage-specific rate variation. 
We repeated our analyses using UPGMA, but found 
no substantial differences to the patterns obtained 
with mid-point rooting, except that for growth rates, 
the bootstrap MCMC performed more poorly than the 
standard MCMC (data not shown).

Of course, the gains in computational efficiency 
of the method described here depend on access to a 
computational cluster. Such availability is no longer 
an issue in most research institutions. There are a 
variety of strategies that can be used to distribute 
MCMC analyses across a computational cluster. The 
simulated annealing literature also has distributed 
computing approaches that warrant exploration.15 
In fact, the simplest approach may be to run multiple 
independent chains, and pool the posterior distributions, 
but there are two problems with this strategy: (a) each 
chain needs to burn in, and (b) there is no sharing 
of information across chains. Other strategies attempt 
to correct for these shortcomings, but arguably, a 
synthesis of several methods may be needed to deliver 
a significant speed increase. For instance, before the 
chain has converged, Metropolis Coupled MCMC 
may be appropriate, but after the burn-in period, 
pooling the distributions from several different and 
independent chains can be used to increase the effective 
sample size. Recently, the paper by Lakner et al16 
examined the mixing and convergence characteristics 
of different MCMC topological rearrangements. They 
concluded that mixing and burn-in may be improved 
by a hybrid approach with different moves applied at 
different parts of the chain. Most recently, Suchard 
and Rambaut17 have demonstrated a significant 
speed increase with BEAST by deploying parts of 
the analysis on Graphics Processing Units (GPUs). 
Interest in GPU computing is increasing rapidly, and 
there is the potential for significant speed gains; the 
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drawback is that parallelization has to be implemented 
in a particular way because of the constraints of GPU 
architecture. Alternatively, if we are willing to obtain 
good but “approximate” posterior distributions, then 
bootstrapping as we have applied it here, may be the 
answer.
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