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Abstract: Analysis of gene expression data provides an objective and efficient technique for sub‑classification of leukemia. The purpose 
of the present study was to design a committee neural networks based classification systems to subcategorize leukemia gene expression 
data. In the study, a binary classification system was considered to differentiate acute lymphoblastic leukemia from acute myeloid 
leukemia. A ternary classification system which classifies leukemia expression data into three subclasses including B‑cell acute 
lymphoblastic leukemia, T‑cell acute lymphoblastic leukemia and acute myeloid leukemia was also developed. In each classification 
system gene expression profiles of leukemia patients were first subjected to a sequence of simple preprocessing steps. This resulted in 
filtering out approximately 95 percent of the non‑informative genes. The remaining 5 percent of the informative genes were used to 
train a set of artificial neural networks with different parameters and architectures. The networks that gave the best results during initial 
testing were recruited into a committee. The committee decision was by majority voting. The committee neural network system was 
later evaluated using data not used in training. The binary classification system classified microarray gene expression profiles into two 
categories with 100 percent accuracy and the ternary system correctly predicted the three subclasses of leukemia in over 97 percent of 
the cases.
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Introduction
Leukemia affects more than 44000 individuals each 
year in the United States alone, and it has one of the 
top mortality rates among different types of cancer.1 
Leukemia is the cancer of the blood. It belongs to a broad 
array of diseases commonly referenced as hematological 
malignancies. If the disease occurs in the lymphocyte 
forming marrow cells then it is called lymphocytic or 
lymphoblastic. T‑cell acute lymphoblastic leukemia 
(T‑cell ALL) is observed in 15 percent of lymphoblastic 
leukemia patients whereas acute B‑cell lymphoblastic 
leukemia (B‑cell ALL) affects 85 percent of all the 
acute lymphoblastic leukemia (ALL) patients. If the 
acute disease occurs in the bone marrow cells that form 
the red blood cells, white blood cells or platelets then 
the term acute myelogenous or acute myeloid leukemia 
(AML) is employed. There is a significant need to 
detect and subcategorize the disease at its inception. 
Also, accurate subtype classification is absolutely vital 
as the treatment protocol varies significantly from one 
subtype to the other.

Traditionally, leukemia cells have been categorized 
considering their morphological appearance. Highly 
skilled resources are needed to identify the differences 
between tumor cells. The process can be tedious, time 
intensive and highly expensive. It is interesting to note 
that even with the adequate availability of the necessary 
resources the technique is not foolproof. Cells can appear 
similar morphologically but respond very differently 
to cytotoxic drugs and therapy.2 These limitations 
of the traditional technique led to a need to identify 
other parameters which could be used as a basis for 
cell categorization. Gene expression data may provide 
useful information for sub‑classification studies. DNA 
microarrays have played an important role in monitoring 
gene expression data of thousands of genes at the same 
time. It is possible to determine the comparative levels 
of expression of genes in normal cells against abnormal 
cells. Study of expression levels can lead to helpful 
insights in making classification decisions based on 
gene signature of cells under question.

Recently, several studies have reported utilization 
of machine learning techniques for differential 
classification of leukemia. The first study on leukemia 
subtype classification using microarray data was 
performed by Golub et al.3 The study built a binary 
classification system in order to automate classification 
of leukemia into its primary subclasses. It identified a 

list of genes whose expression levels correlated with 
the class vector, which was constructed based on the 
known subtypes of the samples. This list of genes 
was considered as informative genes. The sample 
classification was then performed using a neighborhood 
analysis method based on the information provided by 
the informative genes. Their study verified the conjecture 
that there were a set of genes whose expression pattern 
was strongly correlated with the class distinction to be 
predicted and this set of informative genes can be used 
for sample classifications. Strong predictions for 29 of 
the 34 test samples with 100% accuracy were achieved. 
In addition to the supervised classification problem, 
an automatic class discovery method, self organizing 
maps method, was also explored in the study. The study 
concluded that it was possible to classification cancer 
subtypes based solely on gene expression patterns. 
Mallick et al4 used several Bayesian classification 
techniques for leukemia sub‑categorization (ALL and 
AML). Antonov et al5 used a maximal margin linear 
programming approach. They utilized the information 
content of 185 genes to obtain 100 percent prediction 
accuracy in classification of leukemia into two 
subclasses. Several researchers have used variations 
of support vector machine based algorithms to tackle 
the leukemia sub‑classification problem.6–8 Several 
other investigators9,10 have used neural networks for 
cancer classification problems. Berrar et al9 developed 
a multi‑classification system that took into account the 
subclasses of ALL and AML. They used probabilistic 
neural networks to classify leukemia into eight 
classes. An accuracy of 62 percent was achieved. The 
performance of a neural network depends on several 
factors including the initial random weights, the training 
data, the activation function used, and the structure 
of the network including the number of hidden layer 
neurons, etc.11–14 Machine learning theory points to 
the fact that the reliability of a machine learning based 
classification system significantly depends upon the 
nature of the input data, the amount of training nurtured 
to the classification system and the ability of the 
algorithm to adapt to the incoming data. The confidence 
and the reliability of the classification system can 
be improved by using an ensemble of techniques. 
Reddy et al11,12 Palreddy et al13 and Das et al14 have 
developed and evaluated the technique of committee 
neural networks. They found significant improvement 
in the prediction performance with committee networks 

http://www.la-press.com


Committee neural networks for cancer sample classification

Bioinformatics and Biology Insights 2009:3 91

when compared to individual networks. This technique 
yields a confirmed classification or misclassification 
with more reliability. A similar technique has been 
used to classify cancer samples based on microarray 
data by.15,16 In the study by Liu et al15 an advanced 
combinational feature selection method in conjunction 
with ensemble neural networks was introduced. They 
found that the method generally improves the accuracy 
and robustness of sample classification. This study uses 
a simple feature selection method,17 non‑parametric 
t‑test for the binary system and analysis of variance 
for the ternary system, and explores the accuracy and 
stability of a system of committee neural networks 
when it is used to sub‑classification of gene expression 
data from leukemia patients.

Methdology
data
This study used the leukemia gene expression data 
collected by Golub et al.3 This dataset comprised of 
72 bone marrow samples of which 38 were B‑cell ALL, 
9 were T‑cell ALL and 25 were AML samples. Each 
profile was made up of quantitative expression levels for 
7129 probes. In the original study of this set of microarray 
gene expression data, the data from 37 patients was used 
for training and the data from the remaining 35 patients 
was used in testing. In this study, the testing dataset 
was divided into two subsets of 8 and 27 samples each. 
The first set of 8 samples was used in initial testing and 
remaining 27 samples were used in final testing.

data preprocessing
The training dataset consisted of gene expression 
profiles for 37 patients. Each profile comprised of 
7129 gene expression values. The preprocessing 
was carried out on the same lines of Dudoit et al.18 
Endogenous control genes were eliminated from 
consideration. Genes with “absent” calls across 
samples were eliminated from consideration. Genes 
with less than 2.5 fold change across samples were 
eliminated from consideration. Genes with expression 
values of less than 20 and greater than 16000 were 
thresholded to 20 and 16000 respectively. The 
remaining gene expressions were normalized so that 
the expression levels are in the range of -1 to 1. For 
the binary system, non‑parametric t‑test was used to 
select informative genes. The genes were resorted 
according to increasing p‑values. Highly informative 

genes can be obtained at the top of the list. In case 
of the ternary system, an analysis of variance 
(ANOVA) was carried out across three classes for 
each gene set.

Training of neural networks
It had been reported that neural network classifiers 
based on about top 100 genes outperformed 
classifiers with significantly less or more genes.10 In 
this study, to ensure most of informative genes are 
included in building the classifiers, the top 250 genes 
from the preprocessed list were considered in the 
training of several neural networks. The 250 genes 
were then divided into ten groups of 25 genes each. 
Each of these gene groups were used to train several 
multilayer feed forward fully connected neural 
networks. Each of these networks had 25 input nodes 
corresponding to each gene expression and an output 
node corresponding to a leukemia subclass. For the 
binary system, the two output nodes represent the 
subclasses ALL and AML. In case of the ternary 
system, they are T‑ALL, B‑ALL and AML. The 
values obtained at each output node were converted 
to binary format. The outputs are in the range of 
0 to 1. When the output is “1”, it indicates the test 
sample belong to the class. “0” indicates the sample 
does not belong to the class. It is seldom the case 
that a test sample gives an exact “0” or an exact 
“1” at the output layer. Hence we forced any output 
greater than 0.7 to “1” and floored any output lesser 
than 0.7 to “0”. Previous studies have used values 
between 0.6 and 0.95 as the thresholding levels.11–14 
The parameters used in this study were based on 
these values and finalized through trial and error. The 
exact thresholds varied depending upon the nature 
of study. Several networks were trained with each 
of the ten datasets. These networks differed from 
one another in the initial weights, number of hidden 
input layers (2 to 3 hidden layers), and number 
of neurons in each hidden layer (12 to 26 hidden 
layer neurons). It was observed that the networks 
converged very efficiently when a hyperbolic tangent 
sigmoid function was used for the hidden layers 
and a log sigmoid function was used for the output 
layer. All the neural networks were trained using 
the Levenberg‑Marquardt function in MATLAB.19 
The error goals were set to 1e‑10 and the number of 
epochs was set to 1000.
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Recruitment of the neural network 
committee
The trained networks were subjected to initial 
validation. The initial validation set comprised of eight 
samples encompassing all subclasses of leukemia. 
Networks that performed best in evaluating the initial 
validation dataset were considered in the recruitment 
of a neural network committee. The best networks were 
recruited into a committee based classification system. 
The majority opinion of the individual members of the 
committee formed the overall decision.

evaluation of the committee
The performance of the recruited committee was 
evaluated using a fresh dataset of 27 samples. These 
consisted of 17 B‑cell ALL, 2 T‑cell ALL and 8 AML 
samples. The samples of the final evaluation dataset 
were different from those present in the training 
dataset and the initial validation dataset. Figure 1 
presents the architectural diagram of the designed 
ternary classification system.

Results
data reprocessing
The data preprocessing steps led to filtration of 
2334 genes which were deemed non‑informative and 
eliminated from consideration. After the genes were 

ordered according to increasing p‑values, the genes at 
the top of the list yielded a high level of differential 
information. The top 250 genes from this list were 
considered for preparation of parameter sets for the 
neural networks. Figure 2 shows the gene expression 
values of the top 50 genes for the binary classification 
system. In the figure, the actual values of expressions 
were scaled to a full range of a hot color map and 
the intensity values were plotted. Distinct division 
between the two groups of data can be seen in the 
Figure. In case of the ternary system, of the 250 genes 
51 genes showed differential expression for B‑cell 
ALLs, 88 genes showed differential expression 
for T‑cell ALLs and 73 genes showed differential 
expression for AMLs. The intensity values are plotted 
in the form of heat maps in Figures 3a, b, and c.

Performance of the committee
For the binary classification system, the preprocessed 
data was used to train thirty six neural networks. 
The trained networks were initially tested against an 
initial validation set comprising of eight samples. The 
worst case performance was from a network which 
correctly predicted only four of the eight samples of 
the initial validation set. The best case performance 
was achieved by one network which rightly classified 
all 8 samples. Five top performing networks were 
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Figure 1. Architectural diagram of the Committee Neural Network System: The 250 gene expression data was divided into ten sets of 25 each. Several 
neural networks were trained using each of these sets. Each network has three output nodes corresponding to each classification (T‑ALL, B‑ALL, and 
AML). The best performing 11 networks were recruited into a committee. The committee decision was by majority opinion.
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recruited into a committee. The committee gave 
100 percent classification accuracy for the initial 
validation set as shown in Table 1. This committee was 
then used for validating a fresh set of data comprising 
of 27 samples. Of the individual networks of the 
committee, the best case performance was obtained 
by three networks which rightly predicted the class 
in all the 27 cases. The worst case performance was 
obtained by one network which predicted the right 
class 24 out of 27 times (Table 2). However, the 
committee decision with majority opinion correctly 
classified the data in 100 percent of the cases (Table 3). 
Since neither the initial validation nor final validation 
datasets was used for training purposes, the combined 
accuracy achieved by the system for 35 samples was 
100 percent.

Similarly, in case of the three class problem, the 
preprocessed data was divided into ten groups of 
25 genes each. Each of these groups was used to 

train around 10 to 12 neural networks. A total of 
115 networks were trained in this manner. Each of 
the trained networks was validated against the initial 
validation datasets. The worst case performance was 
from 5 networks which correctly predicted only four 
of the eight samples of the initial validation set. The 
best case performance was achieved by 20 networks 
which rightly classified all 8 samples. Networks which 
accurately predicted at least 7 out of the 8 test cases 
were considered. A committee of 11 networks was 
formed and evaluated against the final testing dataset 
of 27 samples. Table 4 presents six classification 
results that explain the majority voting technique 
of a neural network committee. The values in bold 
indicate misclassifications. The actual classes were 
obtained from lab results and were downloaded from 
the website of the Broad Institute.

The recruited committee gave 100 percent 
classification accuracy for the initial validation 

Figure 2. Expression intensity values of top 50 genes for the binary classification system are scaled to a ‘hot’ color map. The x-axis displays the patients 
clubbed according to disease while the y axis shows informative genes.
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Figure 3. Expression intensity values of the top most informative genes for the ternary classification system are scaled to a “hot” color map. The x-axis 
displays the patients grouped according to the disease while the y-axis shows informative genes. Figure 3a shows genes that differentiate B-ALLs from 
T-ALLs and AMLs. Figure 3b shows genes that differentiate T-ALLs from B-ALLs and AMLs. Figure 3c shows genes that differentiate AMLs from B-ALLs 
and T-ALLs.

A B

C
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set (Table 5). The recruited committee was further 
validated using a fresh set of data comprising of 
27 samples, it correctly predicted 26 out of the 27 final 
validation cases to yield a prediction accuracy of 
96.29 percent (Table 6). Of the individual networks 
of the committee, the best case performance was 
obtained by three networks which correctly predicted 
the class in 26 out of the 27 cases. The worst case 
performance was obtained by one network which 
rightly predicted the class 20 out of 27 times. Since 
neither of the initial validation and final validation 
datasets was used for training purposes, the combined 
accuracy achieved by the system for 35 samples was 
97.14 percent (Table 7). The confusion matrix for the 
system is presented in Table 8. It gives a class‑wise 
distribution of accuracy of the individual networks 
and that of the committee.

Discussion
The present study represents an application 
of committee neural networks for leukemia 
classification using microarray gene expression data. 
The classification systems required a very simple 
preprocessing procedure and gave an accuracy of 
100 percent for a two class classification problem 
(Table 3) and 97.14 percent for a three class 
classification problem as it failed to classify 1 out of 
35 validation sets (Table 7). For both systems, only 
one network from the individual committees managed 
to achieve an equivalent accuracy as that of the 
committees. Furthermore, considering the heuristic 
nature of machine learning algorithms, the committee 

decision provided a highly reliable result with more 
confidence than the individual networks.

The present study represents a step forward in 
sub‑classification of Leukemia. Several researchers 
have worked on the Leukemia dataset as a two 
class problem and obtained accuracies in the range 
of 80 to 100 percent in their efforts. Golub et al3 
classified leukemia data into ALL and AML. They 
used a nearest neighbor analysis technique to identify 
1100 genes which provided differential information 
for the two sub‑classes. Their technique correctly 
predicted 29 out of 34 test cases to yield an accuracy 
of only 85 percent. Mallick et al4 constructed binary 
classification models for differential classification 
of different cancers, including leukemia. The 
Bayesian classifiers that they developed were based 
on the Reproducing Kernel Hilbert Space (RKHS) 
approach. They constructed multiple models for their 
classification purposes and obtained accuracies in 
the range of 85 percent to 97 percent. Berrar et al9 
worked on multi‑classification of the leukemia 
dataset. They designed a probabilistic neural 
networks based classifier to subcategorize ALLs and 
AMLs into six sub‑classes with a prediction accuracy 
of 62 percent. In the present study, the accuracy of 
the two‑class classifier was 100 percent. In case of 
the three‑class classifier, the classification accuracy 
was 97.14 percent. We note that the accuracy level 
was obtained based on the available number of 
samples in the three subclasses of leukemia cancer. 
The sub‑categories of AML were not considered 
individually in the study, because there were not 

Table 1. Performance of the recruited committee for the two class system on the initial validation dataset.

Network nn1 nn2 nn3 nn4 nn5 Committee 
result

Correct classification out 
of 8 samples presented

7 8 7 7 7 8

Accuracy 87.5 100 87.5 87.5 87.5 100

Table 2. Performance of the recruited committee for the two class system on the final validation dataset.
Network nn1 nn2 nn3 nn4 nn5 Committee 

result
Correct classification out of 
27 samples presented

24 27 25 27 27 27

Accuracy 88.9 100 92.6 100 100 100
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Table 5. Performance of the recruited committee for the three class system on the initial validation dataset.

Network nn1 nn2 nn3 nn4 nn5 nn6 nn7 nn8 nn9 nn10 nn11 Committee 
result

Correct classification out 
of 8 samples presented

7 7 7 7 7 8 8 8 8 8 8 8

Accuracy 87.5 87.5 87.5 87.5 87.5 100 100 100 100 100 100 100

Table 3. The overall performance of the recruited committee for the binary classification system.

Network nn1 nn2 nn3 nn4 nn5 Committee 
result

Correct classification 
out of 35 samples

31 35 32 34 34 35

Accuracy 88.6 100 91.4 97.1 97.1 100

Table 4. Sample results to demonstrate the working of a committee system.

samples
 1 2 3 4 5 6
NN1 B-ALL B-ALL B-ALL nc AML AML
NN2 B-ALL nc AML AML AML nc
NN3 B-ALL B-ALL AML AML AML AML
NN4 B-ALL B-ALL AML AML AML B-ALL
NN5 B-ALL B-ALL AML T-ALL AML AML
NN6 B-ALL B-ALL AML T-ALL AML AML
NN7 B-ALL B-ALL AML T-ALL AML AML
NN8 B-ALL nc T-ALL T-ALL nc AML
NN9 B-ALL B-ALL T-ALL T-ALL B-ALL B-ALL
NN10 B-ALL B-ALL T-ALL T-ALL B-ALL B-ALL
NN11 B-ALL B-ALL T-ALL T-ALL B-ALL B-ALL
Committee decision B-ALL B-ALL AML T-ALL AML AML
Actual class B-ALL B-ALL T-ALL T-ALL AML AML

Table 6. Performance of the recruited committee for the three class system on the final validation dataset.

Network nn1 nn2 nn3 nn4 nn5 nn6 nn7 nn8 nn9 nn10 nn11 Committee 
result

Correct classification 
out of 27 samples 
presented

26 20 26 23 25 25 25 26 24 23 23 26

Accuracy 96.3 74.1 96.3 85.2 92.6 92.6 92.6 96.3 88.9 85.2 85.2 96.3
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adequate samples to have representation in the 
training, initial and final test datasets.

The present study developed a technique of using 
different data parameters to train different networks. 
The committee consisted of member networks trained 
with different data. The size of the informative gene sets 
has varied from less than ten to greater than hundred. 
The drawback of using small gene sets in designing 
classification systems is that the decision is based on a 
very small informative set thus raising questions on the 
reliability of the system. Since the expression of a gene 
is dependent on a lot of conditions some known while 
others unknown, it is never advisable to make a decision 
based on a very small gene expression set. Utilization 
of large gene expression sets, suffer from other 
problems. Although, it ensures that enough information 
is available to base a decision upon, the drawback of 
using large datasets is the increased complexity of the 
machine learning algorithms and, the high probability 
of numerical instability in the system. The present 
study utilized the positives of both approaches. By 
incorporating several processing elements with small 
input parameter sets (25 inputs per processing element) 
each, we kept the mathematical complexity as low as 
possible. At the same time, by using 250 informative 
genes, our classification system based its judgment on 
a sufficiently large informative set. It was observed that 
the 250th most informative gene had a p‑value between 

classes less than 0.001 thus giving an idea about the level 
of information that the genes imparted to the system.

The preprocessed set comprised of the top 250 
highly informative genes. It is known that genes interact 
with each other through biological networks such as 
regulatory networks and signaling networks. To identify 
the interconnection and reduce the redundant genes in 
the classification models are yet to be done. In this 
study, we relied on the neural networks with varying 
architectures to interpret the information content of 
each gene. More than 100 networks were trained using 
the sample sets of 25 genes each. The architectures 
of the individual networks varied in the number of 
hidden layers, the hidden layer neurons, the transfer 
functions and the learning functions. Although the 
training experiments were scheduled to terminate 
either upon reaching 1000 epochs or an error goal 
of 1e–17, it was observed that network convergence 
was obtained well before the limiting conditions were 
reached. The networks gave a consistent performance 
in terms of training time and accuracy for one to two 
hidden layers comprising of 14 to 25 hidden neurons. 
The performance became inconsistent when these 
parameters were modified. Intermediate validation 
was carried out on a set of eight samples.

For the two class classification problem, the 
committee neural networks provided 100 percent 
accuracy for both initial and final validation data sets. 
In case of the three class problem, the initial validation 
gave 100 percent accuracy. However, the classifier 
misclassified a T‑cell ALL sample as an AML when 
tested against the fresh validation set. One reason 
for this misclassification was the limited number 
of samples in the training set. Although the neural 
network converged to zero, only five samples of T‑cell 
ALLs were present in the training set. Availability of 
more samples to represent the class of T‑cell ALLs 
may have improved the prediction accuracy.

Reddy et al11,12 Das et al14 and Palreddy et al13 
have developed and used committee networks for 

Table 7. The overall performance of the recruited committee for the ternary classification system.

Network nn1 nn2 nn3 nn4 nn5 nn6 nn7 nn8 nn9 nn10 nn11 Committee 
result

Correct classification 
out of 35 samples

33 27 33 30 32 33 33 34 32 31 31 34

Accuracy 94.3 77.1 94.3 85.7 91.4 94.3 94.3 97.1 91.4 88.6 88.6 97.14

Table 8. Confusion matrix for the three class system.

Actual
B-ALL T-ALL AML Σ

Predicted B-ALL 19 0 0 19
T-ALL 0 3 0 3
AML 0 1 12 13

Σ 19 4 12 35
Sensitivity 100 75 100
Specificity  100 97.14 100
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classification of swallow acceleration signals and 
speech signals. However, in all theses studies, the same 
input vector was used to train a series of networks. The 
current study used different sets of input parameters 
to train different neural networks. This technique 
was analogous to the concept of a jury decision with 
members having widely differing backgrounds.

Conclusion
The gene expression profiles, each more than 7000 genes, 
were successfully processed to identify a subset of 
250 genes that could distinguish the classes from each 
other. A committee neural network system was designed 
to classify leukemia into ALL and AML using the 
microarray gene expression data. The classification 
accuracy was 100 percent. A committee neural network 
system for three class classification was also developed to 
classify leukemia into T‑cell ALL, B‑cell ALL and AML 
using the expression data. The committee members were 
trained with different input parameters. The committee, 
through majority voting, correctly classified a total of 
34 of the 35 validation data sets, yielding an accuracy of 
97.14 percent for the three class classification problem.
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