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Abstract: In the present paper we review the translocation network involving TET and ETS family members with special focus on the 
Ewing family of tumors. FUS (fusion, involved in t(12;16) in malignant liposarcoma = TLS, Translocated in liposarcoma), EWSR1 
(Ewing sarcoma breakpoint region 1) and TAF15 (TATA box-binding protein-associated factor, 68-KD) are the three human members of 
the TET family of RNA binding proteins. In addition, two EWSR1 pseudogenes are present in the human genome. TET family members 
are involved in several oncogenic gene fusions. Five of the 18 known fusion partners belong to the E26 (E twenty-six, ETS) family of 
transcription factors. Gene fusions between TET or ETS family members and other fusion partners link these gene fusions to a large 
network of oncogenic gene rearrangements.
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Introduction
Several tumor entities are characterized by recurrent 
chromosomal aberrations which lead to the activation 
of oncogenes. Two types of oncogene activation 
can be distinguished: Firstly, regulatory elements of 
a gene can be juxtaposed to an oncogene, resulting 
in loss of physiological regulation of this oncogene. 
A well known example for this type of oncogene 
activation is Burkitt’s lymphoma (BL). The majority 
of BL carry translocations between the MYC (v-myc 
myelocytomatosis viral oncogene homolog) oncogene 
and one of the immunoglobulin loci.1 High expression 
of MYC in BL is driven by regulatory elements of the 
immunoglobulin loci2 and deregulated expression of 
MYC in B cells is a major factor for the malignant 
phenotype of BL cells.3–5 Formation of tumor 
specific fusion proteins represents the second type of 
oncogene activation. In the present paper, we focus 
on fusion proteins of the TET-ETS (Translocated 
in liposarcoma/Ewing sarcoma breakpoint region 
1/TATA box binding protein-associated factor—avian 
erythroblastosis virus E26 oncogene homolog) family 
of aberrant transcription factors.

This class of oncogenes has been described in 
Ewing family tumors (EFT). Initially described as 

endothelioma,6 EFT represent a group of bone and soft 
tissue sarcomas with uncertain histogenetic origin. 
Gene expression analyses indicate a relationship 
between EFT and endothelial, neuroectodermal, as 
well as mesenchymal stem cells.7–10 The majority 
of EFT carry chromosomal translocations between 
chromosomes 11 and 22.11 By molecular analysis 
of this translocation a gene fusion between EWSR1 
(Ewing sarcoma breakpoint region 1) and FLI1 
(Friend leukemia virus integration 1) was detected.12 
EWSR1-FLI1 is the proto-type of fusion proteins 
involving members of the TET family of RNA 
binding proteins and members of the ETS family 
of transcription factors. In addition to TET-ETS 
fusions, translocations between TET genes and 
other fusion partners have been identified (Fig. 1 
and Table 1).13–41 ETS transcription factors can be 
divided into several groups and sub-families.42 All 
ETS transcription factors that have been identified as 
fusion partners for TET proteins are members of the 
sub-family ETS and are included in the groups PEA3 
or ERG (PEA3 group: ETS variant 1 (ETV1), ETS 
variant 4 (ETV4 = PEA3, polyomavirus enhancer 
activator-3); ERG group: ETS related gene (ERG), 
fifth Ewing variant (FEV), FLI1). A third gene in 
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Figure �. Translocations involving members of the TeT family. The three members of the TET family (blue) are involved in different gene fusions 
involving members of the ETS family of transcription factors (red) and other genes. Each line represents a gene fusion. Genes that are involved in gene 
fusions with the same fusion partner(s) are grouped together in rectangles. 
Abbreviations: ATF1, activating transcription factor 1; CREB1, cAMP responsive element binding protein 1; CREB3L1/2, cAMP responsive element binding 
protein 3-like 1/2; DDiT3, DNA-damage-inducible transcript 3; ERG, ETS related gene; ETv1/4, ETS variant 1/4; EwSR1, Ewing sarcoma breakpoint 
region 1; FEV, fifth Ewing variant; FLI1 , Friend leukemia integration 1; FUS, fusion involved in malignant liposarcoma; NFATC2, nuclear factor of activated 
T-cells, cytoplasmic, calcineurin-dependent 2; NR4A3, nuclear receptor subfamily 4, group A, member 3; PATZ1, POZ (BTB) and AT hook containing zinc 
finger 1; POU5F1, POU class 5 homeobox 1; SP3, specificity protein 3 transcription factor; TAF15, TATA box binding protein-associated factor, 68 kDa; 
WT1, Wilms tumor 1; ZNF384, zinc finger protein 384. The corresponding chromosomal breakpoints and references are summarized in table 1.
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the PEA3 group, ETV5 (ETS variant 5) has not 
been identified as fusion partner for TET proteins. 
However, ETV5 is up-regulated (together with 
ETV1) by CIC-DUX4 (capicua homolog-double 
homeobox, 4) oncofusion proteins which have been 
found in so called “Ewing-like sarcomas”.43 Gene 
fusions between ETV1, ETV4, ETV5 or ERG and 

different other fusion partners have also been detected 
in prostate cancer.43–51 One of these fusion partners, 
SLC45A3 (solute carrier family 45, member 3), 
forms additional gene fusions with the ETS family 
member ELK4 (ETS-like transcription factor 4).52 
Like the other fusion partners, ELK4 is a member of 
the sub-family ETS, but represents the first member 

Table �. Gene fusions involving members of the TET family.

TeT gene Fusion partner Location Typical aberration Disease Ref.
eWsR� 
(22q12.2)

ATF� 12q13 t(12;22)(q13;q12) Clear cell sarcoma; 
angiomatoid malignant 
fibrous histiocytoma

13,14

cReB� 2q34 t(2;22)(q33;q12) Clear cell sarcoma; 
angiomatoid malignant 
fibrous histiocytoma

15,16

DDIT� 12q13.1–q13.2 t(12;22)(q13;q12) Liposarcoma 17
eRG 21q22.3 t(21;22)(q22;q12) EFT 18
eTV� 7q21.3 t(7;22)(p21;q12) EFT 19
eTV4 17q21 t(17;22)(q21;q12) EFT 20
FeV 2q36 t(2;22)(q35;q12) EFT 21
FLI� 11q24.1–q24.3 t(11;22)(q24;q12) EFT 12
nFATc� 20q13.2–q13.3 r(20;22) EFT 22
nR4A� 9q22 t(9;22)(q31;q12) Myxoid chondrosarcoma 23
pATZ� 22q12.2 inv(22)(q12q12) EFT 24
pBX� 1q23 t(1;22)(q23;q12) Myoepithelioma 25
pOU5F� 6p21.31 t(6;22)(p21;q12) Undifferentiated sarcoma; 

mucoepidermoid  
carcinoma; hidradenoma

26,27

sp� 2q31 t(2;22)(q31;q12) Undifferentiated small 
round cell sarcoma

28

WT� 11p13 t(11;22)(p13;q12) Desmoplastic small round  
cell tumor

29

ZnF�84 12p12 t(12;22)(p13;q12) ALL, acute undifferentiated 
leukemia

30

FUs 
(16q11.2)

ATF� 12q13 t(12;16)(q13;p11) Angiomatoid malignant  
fibrous histiocytoma

13

cReB�L� 11p11.2 t(11;16)(p11;p11) Fibromyxoid sarcoma 31
cReB�L� 7q34 t(7;16)(q34;p11) Fibrosarcoma; Fibromyxoid 

sarcoma
32,33

DDIT� 12q13.1–q13.2 t(12;16)(q13;p11) Liposarcoma 34
eRG 21q22.3 t(16;21)(p11;q22) EFT, AML, ALL 35–39
FeV 2q36 t(2;16)(q35;p11) EFT 40

TAF�5 nR4A� 9q22 t(9;17)(q31;q12) Myxoid chondrosarcoma 41
(17q11.1–q11.2) ZnF�84 12p12 t(12;17)(p13;q12) AML, ALL 30

Abbreviations: ALL, acute lymphoblastic leukemia;  AML, acute myelogenous leukemia; EFT, Ewing family tumor. Gene abbreviations see legend to figure 1.
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of the ELK group.42 An unusual gene fusion between 
two ETS family members has been described in 
acute myeloid leukemia.53 This fusion leads to the 
formation of fusion proteins between ERG and ELF4 
(E74-like factor 4), a member of the ELF sub-family 
of ETS transcription factors.

Material and Methods
Cell line SK-N-MC54 was obtained from the Deutsche 
Sammlung für Mikroorganismen und Zellkulturen 
(Braunschweig, Germany). Cells were cultured in 
RPMI1640 medium supplemented with 10% fetal calf 
serum and penicillin/streptomycin. For visualization 
of mitotic figures in living cells, cells were transfected 
with vector pBOS-H2BGFP55,56 (Becton-Dickinson, 
Heidelberg, Germany) and stable transfectants were 
selected by treatment with 2 µg/ml blasticidin. 
Information about gene fusions was collected 
from the literature and the Mitelman Database of 
Chromosome  Aberrations in Cancer.57 For identification 
of EWSR1 pseudogenes we performed a BLAST 
search58 using the mRNA sequence of EWSR1 exons 
1–7 as query. For comparison of EWSR1 transcripts 
and pseudogenes, the open reading frame of EWSR1-
FLI1 type I was amplified from cell line A-67359 with 
EWSR1 and FLI1 specific primers (5’-TTG GAT 
CCG CTT CAG CTA GAA GGC CAC T-3’; 5’-AAA 
AGC TTA TGG CGT CCA CGG ATT AC-3’) and 
sequenced by using the BigDye Terminator Cycle 
Sequencing Kit (Applied Biosystems, Foster City, 
CA, USA) according to manufacturer’s instructions. 
Sequence alignment between the EWSR1 gene, 
EWSR1 transcripts and pseudogenes was visualized 
by using GeneDoc.60

Results and Discussion
Several of the fusion partners of TET and ETS family 
members are involved in additional chromosomal 
rearrangements. For example, PBX1 (pre-B-cell 
leukemia homeobox 1) and ZNF384 (zinc finger 
protein 384) are both involved in translocations with 
EWSR1 and the unrelated transcription factor TCF3 
(transcription factor 3).61,62 The observation that such 
translocations often occur in tumors of the same type as 
the corresponding translocations involving TET and/or 
ETS family members suggest that these translocations 
have similar pathophysiological effects. For instance, 
fusion proteins between the TET proteins EWSR1 

or TAF15 and NR4A3 (nuclear receptor subfamily 4, 
group A, member 3; a member of the steroid/
thyroid hormone and retinoid receptor super-family)63 
have been observed in myxoid chondrosarcoma.23,41 
In the same tumor type translocations between 
NR4A3 and TCF12 (transcription factor 12)64 or TFG 
(neurotrophic tyrosine kinase, receptor, type 1-fused 
gene)65 have been found. Interestingly, TFG was 
found initially by searching for TET family members,66 
but (like TCF12) has only low sequence similarity 
with EWSR1, FUS and TAF15. Such rearrangements 
link TET-ETS translocations with seemingly 
unrelated gene fusions, including fusions involving 
the ETS transcription factor ETV6 (ETS variant 6; 
Fig. 2). ETV6 (also known as TEL: translocation, 
ETS, leukemia) is the only ETS family member for 
which gene fusions have been described but which 
is not involved in gene fusions with TET family 
members or SLC45A3 (solute carrier family 45, 
member 3). ACSL3 (acyl-CoA synthetase-like 3)-
ETV150 and ETV6-ACSL6 (acyl-CoA synthetase-
like 6)67 gene fusions both involve an ETS family 
member and a member of the long chain acyl-CoA 
synthetase family. However, whereas ASCL3-ETV1 
gene fusions allow the expression of a truncated 
ETV1,50 it seems that fusions between ASCL6 and 
ETV6 did not allow expression of ETV6 or fusion 
proteins. Therefore, these two gene fusions might 
exert different pathogenetic functions.

The formation of fusion genes involving members 
of the TET and/or ETS family has multiple oncogenic 
effects. One effect is the deregulated expression of 
the 3’ fusion partner which is driven by the promoter 
of the 5’ fusion partner. In prostate cancer, the 
formation of fusion proteins has been described,46 
but most gene fusions lead to up-regulation of ETS-
factors by heterologous promoters without formation 
of fusion proteins.44,50 Aberrant regulation of target 
genes can explain some of the oncogenic activity of 
gene fusions involving ETS family members or other 
transcription factors. The EFT specific EWSR1-
FLI1 oncofusion protein has similar DNA binding 
specificity as FLI1.68 In addition, up-regulation of 
ETS factors by unrelated oncogenic events in so 
called “Ewing-like sarcomas” suggest that activation 
of ETS factors without formation of novel fusion 
proteins is largely sufficient for induction of the EFT 
phenotype.43
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Figure �. The extended TeT-eTs translocation network. Fusion partners of TET family members (blue) are involve in several other gene fusions linking 
TET fusions to seemingly unrelated gene fusions. Members of the ETS family of transcription factors are colored in red. Each line represents a gene fusion. 
Genes that are involved in gene fusions with the same fusion partner(s) are grouped together in rectangles. included is the CiC-DUX4 gene fusion which 
is not directly linked to the network but leads to up-regulation (arrows) of ETS transcription factors in tumors with similarities to Ewing family tumors.43 The 
genes MLL (mixed lineage leukemia), TRB@ (T cell receptor beta locus), iGH@ (immunoglobulin heavy chain locus), iGK@ (immunoglobulin kappa light 
chain locus) and iGL@ (immunoglobulin lambda light chain locus) are involved in rearrangements with several other genes that have been not included 
for space limitations.

symbol name Locus
ABL� v-abl Abelson murine leukemia viral oncogene homolog 1 9q34.1
ABL� v-abl Abelson murine leukemia viral oncogene homolog 2 1q24–q25
AcsL� Acyl-CoA synthetase long-chain family member 3 2q34–q35
AcsL6 Acyl-CoA synthetase long-chain family member 6 5q31
AFF� AF4/FMR2 family, member 3 2q11.2–q12
ALK Anaplastic lymphoma receptor tyrosine kinase 2p23
ARnT Aryl hydrocarbon receptor nuclear translocator 1q21
AspscR� Alveolar soft part sarcoma chromosome region, candidate 1 17q25.3
AsXL� Additional sex combs like 1 20q11.1
ATF� Activating transcription factor 1 12q13
ATIc 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/iMP cyclohydrolase 2q35
BAZ�A Bromodomain adjacent to zinc finger domain, 2A 12q24.3-qter
BcL� B-cell CLL/lymphoma 2 18q21.3
BcR Breakpoint cluster region 22q11.23
BRD� Bromodomain containing 1 22q13.33
c�5orf�� Chromosome 15 open reading frame 21 15q21.1
c�0orf��� Chromosome 20 open reading frame 112 20q11.1–q11.23
c�orf�7 Chromosome 3 open reading frame 27 3q21
cAnT� Calcium activated nucleotidase 1 17q25.3
cApRIn� Cell cycle associated protein 1 11p13
cARs Cysteinyl-tRNA synthetase 11p15.5
cBFA�T� Core-binding factor, runt domain, alpha subunit 2; translocated to, 3 16q24

(Continued)
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symbol name Locus
ccDc6 Coiled-coil domain containing 6 10q21
ccDc88c Coiled-coil domain containing 88C 14q32.11
cDK5RAp� CDK5 regulatory subunit associated protein 2 9q33.2
cDX� Caudal type homeo box 2 13q12.3
cep��0 Centrosomal protein 110 kDa 9q33–q34
cHcHD7 Coiled-coil-helix-coiled-coil-helix domain containing 7 8q12.1
cHIc� Cysteine-rich hydrophobic domain 2 4q11
cIc Capicua homolog 19q13.2
cLTc Clathrin, heavy chain (Hc) 17q11–qter
cLTcL� Clathrin, heavy chain-like 1 22q11.21
cOL�A� Collagen, type i, alpha 2 7q22.1
cpne8 Copine viii 12q12
cpsF6 Cleavage and polyadenylation specific factor 6, 68 kDa 12q15
cReB� cAMP responsive element binding protein 1 2q34
cReB�L� cAMP responsive element binding protein 3-like 1 11p11.2
cReB�L� cAMP responsive element binding protein 3-like 2 7q34
cReBBp CREB binding protein 16p13.3
cTnnB� catenin (cadherin-associated protein), beta 1, 88 kDa 3p21
cYTsB cytospin B 17p11.2
DAcH� dachshund homolog 1 13q22
DDIT� DNA-damage-inducible transcript 3 12q13.1–q13.2
DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 17q21
DUsp�0 Dual specificity phosphatase 10 1q41
DUX4 Double homeobox, 4 4q35
eLF4 E74-like factor 4 Xq26
eLK4 ETS-like transcription factor 4 1q32
eLn Elastin 7q11.23
eML� Echinoderm microtubule associated protein like 1 14q32
eML4 Echinoderm microtubule associated protein like 4 2p22–p21
ep�00 E1A binding protein p300 22q13.2
eRc� ELKS/RAB6-interacting/CAST family member 1 12p13.3
eRG ETS related gene (v-ets erythroblastosis virus E26 oncogene homolog) 21q22.3
esT�4 EST from chromosome 14 (unknown) 14q21.1
eTV� ETS variant 1 7p21.3
eTV4 ETS variant 4 17q21
eTV5 ETS variant 5 3q28
eTV6 ETS variant 6 (TEL1 oncogene) 12p13
eVI� Ecotropic viral integration site 1 3q24–q28
eWsR� Ewing sarcoma breakpoint region 1 22q12.2
FeV Fifth Ewing variant 2q36
FGA7 Fused gene 7 to AML1(unknown) 4q28
FGFR� Fibroblast growth factor receptor 1 8p11.2–p11.1
FGFR�Op FGFR1 oncogene partner 6q27
FGFR�Op� FGFR1 oncogene partner 2 12p11.23
FGFR� Fibroblast growth factor receptor 3 4p16.3
FIp�L� FiP1 like 1 4q12
FLI� Friend leukemia virus integration 1 11q24.1–q24.3
FLT� Fms-related tyrosine kinase 3 13q12
FOXp� Forkhead box P1 3p14.1
FRK Fyn-related kinase 6q21–q22.3
FUs Fusion (involved in t(12;16) in malignant liposarcoma) 16p11.2
GIT� G protein-coupled receptor kinase interacting ArfGAP 2 12q24.1
GOLGA5 Golgi autoantigen, golgin subfamily a, 5 14q32.12–q32.13
GOT� Glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1) 10q24.1–q25.1
HAs� Hyaluronan synthase 2 8q24.12
HeRVK_�7p��.� Human endogenous retroviral family K 17p13.1
HeRVK_��q��.�� Human endogenous retroviral family K 22q11.23
HIp� Huntingtin interacting protein 1 7q11.23
HIpK� Homeodomain interacting protein kinase 1 1p13.2
HLF Hepatic leukemia factor 17q22
HnRpA�B� Heterogeneous nuclear ribonucleoprotein A2/B1 7p15

(Continued)
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symbol name Locus
HOOK� Hook homolog 3 8p11.21
IGH@ immunoglobulin heavy locus 14q32.33
IGK@ immunoglobulin kappa locus 2p12
IGL@ immunoglobulin lambda locus 22q11.1–q11.2
ITK iL2-inducible T-cell kinase 5q31–q32
JAK� Janus kinase 2 9p24
KIAA�468 LisH domain and HEAT repeat-containing protein KIAA1468 18q21.33
KIAA�6�8 KIAA1618 (hypothetical protein LOC57714) 17q25.3
KIF�B Kinesin family member 3B 20q11.21
KIF5B Kinesin family member 5B 10pter–q22.1
KLK� Kallikrein-related peptidase 2 19q13.41
KTn� Kinectin 1 (kinesin receptor) 14q22.1
LIFR Leukemia inhibitory factor receptor alpha 5p13–p12
LOc����86 LOC113386 similar to envelope protein (human endogenous retroviral family K) 19q13.43
LOc�9�0�7 LOC392027 (ribosome-binding protein 1 pseudogene) 7p12.1
LOc64698� LOC646982 (twelve-thirteen translocation leukemia gene) 13q14.11
MAcROD� MACRO domain containing 1 11q11
MDs� Myelodysplasia syndrome 1 3q26
MDs� Myelodysplasia syndrome 2 1p36
MeT Met proto-oncogene (hepatocyte growth factor receptor) 7q31
MLF� Myeloid leukemia factor 1 3q25.1
MLL Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog) 11q23
Mn� Meningioma (disrupted in balanced translocation) 1 22q12.1
MnX� Motor neuron and pancreas homeobox 1 7q36
Msn Moesin Xq11.2–q12
MYB v-myb myeloblastosis viral oncogene homolog 6q22-q23
MYH9 Myosin, heavy chain 9, non-muscle 22q13.1
MYO�8A Myosin XviiiA 17q11.2
MYsT� MYST histone acetyltransferase (monocytic leukemia) 3 8p11
MYsT4 MYST histone acetyltransferase (monocytic leukemia) 4 10q22.2
ncOA� Nuclear receptor coactivator 2 8q13.3
ncOA4 Nuclear receptor coactivator 4 10q11.2
nDe� nudE nuclear distribution gene E homolog 1 16p13.11
nFATc� Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 20q13.2–q13.3
nIn Ninein (GSK3B interacting protein) 14q22.1
nOnO non-POU domain containing, octamer-binding Xq13.1
nOp� NOP2 nucleolar protein homolog 12p13
npM� Nucleophosmin (nucleolar phosphoprotein B23, numatrin) 5q35
nR4A� Nuclear receptor subfamily 4, group A, member 3 9q22
nTRK� Neurotrophic tyrosine kinase, receptor, type 1 1q21–q22
nTRK� Neurotrophic tyrosine kinase, receptor, type 3 15q25
nUMA� Nuclear mitotic apparatus protein 1 11q13
pATZ� POZ (BTB) and AT hook containing zinc finger 1 22q12.2
pAX5 Paired box gene 5 9p13
pBX� pre-B-cell leukemia homeobox 1 1q23
pcM� Pericentriolar material 1 8p22–p21.3
pDe4DIp Phosphodiesterase 4D interacting protein 1q12
pDGFRA Platelet-derived growth factor receptor, alpha polypeptide 4q11–q13
pDGFRB Platelet-derived growth factor receptor, beta polypeptide 5q31-q32
peR� Period homolog 1 17p13.1–p12
pLAG� Pleiomorphic adenoma gene 1 8q12
pML Promyelocytic leukemia 15q22
pOM��� POM121 membrane glycoprotein 7q11.23
pOU5F� POU class 5 homeobox 1 6p21.31
pRcc Papillary renal cell carcinoma (translocation-associated) 1q21.1
pRDM�6 PR domain containing 16 1p36.23–p33
pRDX4 Peroxiredoxin 4 Xp22.11
pRKAR�A Protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific extinguisher 1) 17q23–q24
pRKG� Protein kinase, cGMP-dependent, type ii 4q13.1–q21.1
pTpRR Protein tyrosine phosphatase, receptor type, R 12q15
RABep� Rabaptin, RAB GTPase binding effector protein 1 17p13.2

(Continued)
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symbol name Locus
RAnBp� RAN binding protein 2 2q12.3
RARA Retinoic acid receptor, alpha 17q21
ReT Ret proto-oncogene 10q11.2
RpL��p� Ribosomal protein L22 pseudogene 1 3q26.2
Rpn� Ribophorin i 3q21.3
RUnX� Runt-related transcription factor 1 (AML1) 21q22.3
RUnX�T� Runt-related transcription factor 1; translocated to, 1 (cyclin D-related, ETO) 8q22
sec��A SEC31 homolog A 4q21.22

sFpQ Splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated) 1p34.3
sH�D�9 SH3 domain containing 19 4q31.3
sLc45A� Solute carrier family 45, member 3 1q32.1
sLcO�B� Solute carrier organic anion transporter family, member 1B3 12p12
sp� Sp3 (specificity protein 3) transcription factor 2q31
spTBn� Spectrin, beta, non-erythrocytic 1 2p21
ssBp� Single-stranded DNA binding protein 2 5q14.1
sTAT5B Signal transducer and activator of transcription 5B 17q11.2
sTL Six-twelve leukemia 6q22.33
sTRn Striatin, calmodulin binding protein 2p22–p21
sYK Spleen tyrosine kinase 9q22
TAF�5 TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 68kDa 17q11.1–q11.2
TceA� Transcription elongation factor A (Sii), 1 8q11.2
TcF�� Transcription factor 12 15q21
TcF� Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47) 19p13.3
TFe� Transcription factor binding to iGHM enhancer 3 Xp11.22
TFG TRK-fused gene 3q12.2
TFpT TCF3 (E2A) fusion partner (in childhood Leukemia) 19q13
TMpRss� Transmembrane protease, serine 2 21q22.3
Tp5�Bp� Tumor protein p53 binding protein 1 15q15–q21
TpM� Tropomyosin 3 1q21.2
TpM4 Tropomyosin 4 19p13.1
TpR Translocated promoter region (to activated MET oncogene) 1q25
TRB@ T cell receptor beta locus 7q34
TRIM�4 Tripartite motif-containing 24 7q32–q34
TRIM�� Tripartite motif-containing 33 1p13.1
TRIp�� Thyroid hormone receptor interactor 11 14q31–q32
TRps� Trichorhinophalangeal syndrome i 8q24.12
Usp4� Ubiquitin specific peptidase 42 7p22.1
WT� wilms tumor 1 11p13
YTHDF� YTH domain family, member 2 1p35
ZBTB�6 Zinc finger and BTB domain containing 16 11q23.1
ZFpM� Zinc finger protein, multitype 2 8q23
ZMIZ� Zinc finger, MIZ-type containing 1 10q22.3
ZMYM� Zinc finger, MYM-type 2 13q11–q12
ZnF�84 Zinc finger protein 384 12p12
ZnF5�� Zinc finger protein 521 18q11.2
ZnF687 Zinc finger protein 687 1q21.3

On the other hand, EWSR1-FLI1 has a higher 
transformation activity than FLI1,69 indicating that the 
fusion protein has oncogenic capacities that are not 
attributed to over-expression of the ETS translocation 
partner alone. Recent evidence indicate that the 
chimeric EWSR1-FLI1 transcription factor bind 

not only ETS consensus sites but also microsatellite 
sequences. The enrichment of such sequences in 
proximity to known EFT associated genes suggests 
that EWSR1-FLI1 fusion proteins regulate gene 
expression after binding to these microsatellite 
sequences.70 In addition to the direct regulation of 
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gene expression, EWSR1-FLI1 exert transcription 
factor activity-independent oncogenic activities. 
EWSR1-FLI1 activates gene transcription,70,71 but 
tumorigenicity of  EWSR1-FLI1 is partially independent 
on DNA binding.72 Interference of several TET fusion 
proteins with the splicing machinery has been 
observed.73–76 Because TET proteins are involved 
in RNA splicing,77–79 this might be indicative for 
an interference between wild type TET proteins 
and fusion proteins. Indeed, inhibition of wild type 
EWSR1 function by EWSR1-FLI has been described.80 
Interestingly, this inhibition leads to mitotic defects. 
Aberrant mitotic figures can be regularly observed in 
cultured EFT cells (Fig. 3) and might be responsible 
for the high frequency of secondary chromosomal 

aberrations seen in EFT.81,82 Finally, the different 
activities of the fusion proteins lead to altered gene 
expression. Despite a similar histological appearance, 
TET-ETS positive EFT have a gene expression profile 
which clearly discriminates these tumors from other 
tumors of the family of so called small round blue cell 
tumors.7,83,84 Several target genes of TET-ETS fusion 
proteins have been identified85–99 and different TET-
ETS fusion proteins induce a similar tumorigenic 
activity in transgenic cells.100 On the other hand, the 
consequences of TET-ETS fusion protein activity 
depend on the cellular background101,102 and fusion type 
dependent differences in the gene expression profile of 
EFT have been observed.103,104 The fusion type as well 
as the genes expression profile have been identified 

A

B

C

D

Figure �. Visualization of aberrant mitosis in living eFT cells. SK-N-MC cells were transfected with an expression vector for a histone H2B-green 
fluorescent protein fusion as described in Material and Methods and mitotic figures were analyzed in living cells by fluorescence microscopy (A, c) and 
phase contrast microscopy (B, D) in the same visual field. x200, zoomed image. Aberrant mitotic figures are marked with red arrows. In panels c and D a 
second mitosis can be seen (blue arrow).
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as prognostic factors for EFT patients.105–109 The 
exact function of TET-ETS fusion proteins in cancer 
pathogenesis remains unclear. Case reports describing 
patients with two TET-ETS translocations in the same 
tumor might indicate that TET-ETS translocations are 
not the primary event leading to tumor formation.110 
Nevertheless, TET-ETS fusion proteins are required 
for growth of EFT and several strategies for the 
inactivation of TET-ETS fusion transcripts have been 
developed.111–114 EFT have a neuronal phenotype 
which can partially be explained by the activity of 
EWSR1-ETS fusion proteins.7,115–118 TET proteins are 
involved in neuronal biology and a link between TET 
proteins and neurodegenerative diseases have been 
established.119,120 However, the function of wild type 
TET proteins is not restricted to the nervous system 
but is also required for hematopoiesis.121 Surprisingly, 
EWSR1-FLI1 expressing transgenic animals did not 
develop EFT like sarcomas but leukemia.122 Restricted 
expression of the fusion proteins in mesenchymal 
cells leads to sarcoma formation only in the setting 
of additional TP53 aberrations.123 These observations 
indicate that TET-ETS fusion proteins are not sufficient 
to induce tumor formation. Similarly, TET-ETS fusion 
proteins are not sufficient to induce the complete 
gene expression program of EFT. Which factors are 
responsible for expression of EFT-associated but 
TET-ETS-independent genes (e.g. lipase member I, 
LIPI)124 is unknown. Recently, tumor stem cells 
in EFT have been identified.125 Interestingly, these 
cells are characterized by expression of transcription 
factors NANOG (Tir Na Nog) and POU5F1 (POU 
(Pituitary-specific 1, Octamer transcription factor, 
Uncoordinated-86) domain, class 5, transcription 
factor 1). Expression of these factors is usually 
not observed in mesenchymal stem cells but is a 
characteristic feature of embryonic stem cells.126 
Cell populations with the phenotype of embryonic 
stem cells have been identified in the adult body.127,128 
Whether such cell populations are permissive for 
EWSR1-FLI1 induced transformation and whether 
EFT are derived from these cell populations have to 
be determined.

Recent evidence indicates that epigenetic mechanisms 
play a major role in cancer pathogenesis mediated by 
TET and/or ETS gene fusions. Epigenetic inactivation 
of tumor suppressor genes have been observed 
in EFT129 and inhibitors of histone deacetylation 

or DNA methylation have been shown to exert 
anti-tumor activity against EFT.130,131 Similarly, 
TMPRSS2 (transmembrane protease, serine 2)-ETS 
translocations in prostate cancer are associated with 
increased histone deactetylase expression.132 One 
of the target genes of EWSR1-FLI1, enhancer of 
zeste homolog 2 (EZH2), is involved in epigenetic 
inactivation of genes. Based on the observation 
of high expression of EZH2 in EFT7 a model for 
epigenetic inactivation of differentiation inducing 
genes was proposed.10,133 This model implicates that 
up-regulation of epigenetic silencers like EZH2 by 
TET-ETS fusion proteins fix the tumor cell in an 
un-differentiated state. In deed, inhibition of EZH2 
allows differentiation of EFT cells and inhibits tumor 
growth.10 Another implication of this model is that 
different primary oncogenic events might be fixed 
by TET-ETS fusion proteins leading to similar tumor 
morphology.

Today, only three members of the TET family have 
been identified in the human genome. Another RNA 
binding protein, RBM14 (RNA binding motif 14), 
with weak similarity to TET proteins and involvement 
in regulation of RNA transcription and splicing 
has been identified,134 but translocations involving 
this gene have not been found. Interestingly, the 
human genome contains EWSR1 pseudogenes.135 
By using the cDNA sequence of the EWSR1 part 
from the EWSR1-FLI1 type I translocation as bait 
we found two human pseudogenes. The presence of 
multiple EWSR1 pseudogenes in the human genome 
indicates that EWSR1 sequences have repeatedly 
been involved in rearrangements. One pseudogene on 
chromosome 1 (LOC284685) contains an intronless 
copy of the complete open reading frame of EWSR1 
corresponding to the longer (EWS) isoform (Fig. 4). 
Several point mutations did not allow the translation of 
a corresponding EWSR1 protein. The second copy on 
chromosome 14 (LOC644584) is again an intronless 
copy of the open reading frame of EWSR1. However, 
this copy contains only the 5’ part (corresponding to 
exons 1 to 7) of EWSR1 and resembles EWSR1 in 
the most common type 1 EWSR1-FL1 translocation 
(Fig. 4). Again, several point mutations and deletions 
did not allow translation of a protein. In this 
pseudogene the 3’ part of EWSR1 is replaced by a 
non-coding sequence from chromosome 3 (data not 
shown).
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Taken together, gene rearrangements involving 
members of the TET or ETS families are part of a 
large network of oncogenic gene fusions. Whether 
these gene fusions can be targeted with clinical 
therapeutic benefit has to be shown.
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Figure 4. structure of the human eWsR� gene, transcripts and pseudogenes. mRNA sequences of EwSR1 (isoforms EwS and EwSb) and 
EwSR1-FLi1 (translocation type 1) were aligned with genomic sequences of EwSR1 and the two ESwR1 pseudogenes. Nucleic acids were colored red 
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