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Abstract
Objective: To better understand the effects of simvastatin (SS) on the expression and secretion of two chemokines, CXCL10 and 
CX3CL1, by osteoblasts, and to test whether inhibition of isoprenoid intermediates of cholesterol biosynthesis were involved in the 
effects of SS.

Methods: Human osteoblasts were incubated in the presence or absence of the inflammatory cytokines tumor necrosis factor alpha 
(TNF-α) and interferon gamma (IFN-γ), with and without SS (0.1–100 µM). Culture supernatants were then collected, and expression 
of CXCL10 and CX3CL1 mRNA in osteoblasts was examined using quantitative TaqMan real-time polymerase chain reaction. The 
levels of CXCL10 and CX3CL1 were measured using enzyme-linked immunosorbent assays.

Results: At a high concentration (100 µM), SS inhibited expression and secretion of the chemokines and showed cytotoxity, whereas at 
lower concentrations (0.1–1 µM) SS stimulated the expression and secretion of the chemokines. Expression and secretion of CXCL10 
or CX3CL1 from osteoblasts were induced by stimulation with TNF-α and IFN-γ. In addition, SS exerted a biphasic effect on the 
evoked induction of CXCL10 and CX3CL1. Chemokine expression and secretion was also assayed in the presence of mevalonate 
(MEV), geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP). MEV abolished both the inhibitory effect of high-dose 
SS and the stimulatory effect of low-dose SS. On the other hand, GGPP abolished only the inhibitory effects of high-dose SS, and FPP 
had no effect at all.

Conclusions: These findings suggest that osteoblasts are an important cellular source of CXCL10 and CX3CL1, and that statins such 
as SS may modulate the inflammatory process in bone tissues to inhibit bone resorption and stimulate bone formation through biphasic 
modulation chemokine synthesis.
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Introduction
Chemokines and proinflammatory cytokines appear 
to play key roles in a variety of immune/inflammatory 
responses.1,2 The maintenance of skeletal homeostasis 
is a dynamic process driven by the coordinated 
cellular activities of osteoblasts (OBs), osteocytes 
and osteoclasts.3 Moreover, cells involved in bone 
formation (e.g. OBs) express a variety of chemokines 
that likely play key roles during bone remodeling under 
both normal and pathological conditions.4 For example, 
we and others have shown that CX3CL1 (fractalkine) 
and CXCL10 (interferon-inducible protein 10) are 
expressed and secreted by OBs.5–7

Inhibitors of  3-hydroxy-3-methylglutaryl coenzyme A 
(HMG CoA) reductase inhibitors (statins) are widely 
used for lowering serum cholesterol concentrations, 
and provide an important and effective approach to 
the treatment of hyperlipidemia and arteriosclerosis.8 
In addition, several recent studies have shown 
that statins such as simvastatin (SS) also affect 
inflammation and immune function by modulating the 
expression and function of inflammatory molecules, 
including cytokines and metaloproteinase expressed 
by endothelial cells and macrophages.9–11 Furthermore, 
it was recently reported that statins modulate the 
inflammatory process in bone tissues and osteogenic 
cells, thereby inhibiting bone resorption, stimulating 
bone formation, and modulating angiogenic factor 
synthesis.12–15 Since osteoblast-derived chemokines 
have important roles in during bone remodeling 
under both normal and pathological conditions, in 
the present study we examined the expression and 
secretion of CXCL10 and CX3CL1 by OBs and their 
modulation by SS.

Materials and Methods
reagents
Complete medium consisted of Dulbecco’s modified 
Eagle’s medium (DMEM; Nissui Pharmaceutical Co., 
Tokyo, Japan) supplemented with 2 mM L-glutamine, 
100 U/ml penicillin, 100 µg/ml streptomycin and 
10% heat-inactivated fetal bovine serum (FBS; Gibco 
Laboratories, Grand Island, NY). Tumor necrosis factor 
alpha (TNF-α) and interferon gamma (IFN-γ) were 
purchased from Genzyme/Techne (Cambridge, MA). 
SS was kindly provided by Merck & Co., Inc, 
Whitehouse Station, NJ. For experimentation, SS 
was dissolved in ethanol and converted to the open 

acid form. To test whether inhibition of isoprenoid 
intermediates of cholesterol biosynthesis is involved 
in the effect of SS, chemokine secretion was also 
examined in the presence of mevalonate (MEV; 
100 µM, Sigma Aldrich, St. Louis, MO), geranylgeranyl 
pyrophosphate (GGPP; 10 µM; Sigma-Aldrich) and 
farnesyl pyrophosphate (FPP; 10 µM; Sigma-Aldrich).

Preparation of human osteoblasts
Human OBs were purified from metaphyseal 
trabecular bones collected from proximal femora 
of post-traumatic patients (n = 3) during total hip 
arthroplasty, as described previously.16 Briefly, after 
removing pieces of cortical bone, articular cartilage 
and soft connective tissue, the fragments were cut into 
small pieces and incubated with DMEM containing 
1% collagenase for 30 min at 37 °C, after which they 
were extensively washed. The resultant bone explants 
were plated in tissue culture plates and allowed to 
grow in DMEM containing 10% FBS. Once cell 
outgrowths from bone explants were confluent (after 
3–5 weeks of culture), the explants were removed, 
and the cells were trypsinized, and replated into new 
48-well (experiments for protein secretion) or 6-well 
(for mRNA expression) culture plates at a density of 
1 × 105/ml. The obtained cells exhibited a flattened 
polygonal shape with multiple spindlelegs as well 
as features of the OB-like phenotype, including 
osteocalcin expression, bone alkaline phosphatase 
expression, and mineralization as determined by 
von Kossa staining (data not shown). The cells were 
incubated for 3 days with medium alone, thereafter 
the indicated cytokines were added, with or without 
SS, and the conditioned culture medium was collected 
after 24 hours incubation for protein assays and after 
4 hours incubation for mRNA experiments. All human 
experiments were performed in accordance with 
protocols approved by the Human Subjects Research 
Committee at our institution, and informed consent 
was obtained from all patients.

evaluation of cytotoxicity
The effect of SS on cell viability was evaluated 
based on trypan blue exclusion and release of lactate 
dehydrogenase (LDH). For trypan blue assays, the 
indicated concentrations of SS were added to OBs, 
after which the cells were then incubated for up to 
24 h, detached using trypsin, and resuspended in 1 ml 
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of  DMEM. Trypan blue solution (Gibco, Grand Island, 
NY, USA) was then added to a final concentration of 
0.2% and incubated for 1 min. Cells positive for trypan 
blue were counted using a hemocytometer under a 
light microscope (Nikon) and were considered dead. 
In addition, the amount of LDH released into the 
culture medium was determined using an automatic 
autoanalyzer system (Hitachi, Tokyo, Japan).

enzyme-linked immunosorbent assays
CXCL10 and CX3CL1 were quantified using 
double ligand enzyme-linked immunosorbent assays 
(ELISAs) that were modifications of an assay described 
previously.17,18 Monoclonal murine anti-human CXCL10 
(1 µg/ml; Genzyme/Techne, Cambridge, MA) or 
CX3CL1 (4 µg/ml; Genzyme/Techne) served as the 
primary Ab, and biotinylated polyclonal goat anti-
CXCL10 (0.1 µg/ml; Genzyme/Techne) and anti-
CX3CL1 (0.25 µg/ml; Genzyme/Techne) served as 
the respective secondary Abs. The sensitivity limit for 
the CXCL10 and CX3CL1 ELISAs were ∼50 pg/ml 
and ∼150 pg/ml, respectively.

Isolation of total rnA and real-time 
polymerase chain reaction (PCr)
Total RNA was extracted from human OBs using 
TRIzol reagent (Invitrogen, Carlsbad, CA), after which 
1-µg samples were reverse transcribed into cDNA 
by incubation with TaqMan RT reagents (Applied 
Biosystems, Foster City, CA), first for 120 min at 
37 °C and then for 10 min at 25 °C. Real-time PCR 
was carried out using an ABI Prism® 7900 sequence 
detection system (Applied Biosystems). The PCR 
mixture included 40 ng of cDNA, which was amplified 
using AmpliTaq Gold DNA polymerase (Applied 
Biosystems) as described previously.16 Appropriate 
Assays-on-Demand™ primers and probes (Applied 
Biosystems) were used for detection of CXCL10, 
CX3CL1 and ribosomal RNA (rRNA) expression. 
For quantification, the number of target mRNA 
copies per rRNA copy was calculated, and values 
were expressed as fold increases over control (culture 
medium alone).

statistical analysis
Data are expressed as means ± SEM. Groups were 
compared using analysis of variance, after which the 
means of groups whose variances were determined 

to significantly differ were compared using Student’s 
t-test for comparison of means of multiple groups. 
Values of p  0.05 were considered significant.

Results
effects of ss on cell viability
We, first, carried out trypan blue dye exclusion assays 
and measured LDH activity in culture supernatants to 
determine the degree to which cytotoxicity contributed to 
the inhibitory effects of  higher concentrations of  SS. After 
stimulating OBs with IFN-γ (1000 IU/ml) + TNF-α 
(20 ng/ml), treatment with SS at concentrations ranging 
from 0.1–10 µM elicited no significant changes in the 
numbers of viable (trypan blue negative) cells or LDH 
activity, though small increases and decreases were noted 
(Table 1). At a concentration of 100 µM, however, SS 
significantly reduced the numbers of viable cells and 
increased release of LDH.

effects of simvastatin on expression 
and secretion of OB-derived CXCL10 
and CX3CL1
We next determined whether secretion of CXCL10 
and CX3CL1 from OBs could be induced by the 
inflammatory cytokines TNF-α and IFN-γ. We found 
that high-dose (1000 IU/ml) of  IFN-γ induced secretion 
of small amounts of CXCL10 or CX3CL1 from OBs, 
as compared with medium alone, but TNF-α had no 
effect. On the other hand, when applied together, the 
two cytokines appeared to act synergistically to induce 
significant secretion of both CXCL10 and CX3CL1 
from OBs (Figs. 1 and 2), which is consistent with 
earlier findings by us and others.7,19

Next, OBs stimulated with IFN-γ+TNF-α were 
incubated with various concentrations of SS, and 
CXCL10 and CX3CL1 in the culture supernatants were 
assayed. As shown in Figure 1A, a low concentration 
of SS (0.1 µM) significantly enhanced secretion of 
CXCL10 from OBs stimulated with IFN-γ + TNF-α. 
At a higher SS concentration (100 µM), however, 
the cytokine-induced secretion of CXCL10 was 
significantly inhibited. In addition, similar induction 
(0.1µM SS) and inhibition (10 and 100 µM SS) 
of CXCL10 were seen in IFN-γ-stimulated OBs 
(Fig. 1B). SS also exerted this biphasic effect on 
CX3CL1 secretion from OBs stimulated by IFN-γ + 
TNF-α (Fig. 2A) or IFN-γ alone (Fig. 2B), though 
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only the inhibitory effect of 100 µM IFN-γ was 
statistically significant.

To test whether the inhibitory effects of SS on 
secreted CXCL10 and CX3CL1 antigen levels were 
accompanied by corresponding changes in the levels 
of CXCL10 and CX3CL1 mRNA in OBs, we used 
real-time PCR to assess levels of chemokine mRNA. 
As shown in Figure 3, the expression of  both CXCL10 
and CX3CL1 mRNA was enhanced in OBs by lower 
concentrations of  SS (0.1–1 µM), though only the 
effect on CXCL10 was significant. Higher concentrations 
of SS (10–100 µM) significantly inhibited expression 
of CXCL10 and CX3CL1 mRNA.

effects of MeV, ggPP and FPP 
on the regulation of chemokine expression
To assess the extent to which intermediates created 
during cholesterol biosynthesis were involved in 
the observed effects of SS, chemokine expression 
and secretion were also examined in the presence 
of MEV (100 µM), GGPP (10 µM) or FPP (10 µM), 
three inhibitors of different steps in the cholesterol 
biosynthetic pathway. MEV abolished the inhibitory 
effect of high-dose (100 µM) SS and the stimulatory 
effect of  low-dose (0.1 µM) SS on cytokine (TNF-α + 
IFN-γ)-evoked expression and secretion of CXCL10 
(Figs. 4A and B). MEV had similar effects on the 
expression and secretion of CX3CL1, though some of 
the changes were not statistically significant (Figs. 5A 
and B). Notably, GGPP had no significant effect on 
the stimulation of CXCL10 expression secretion by 
low-dose SS; however, it abolished the inhibitory 
effect of high-dose SS (Figs. 4A and B). In contrast 
to MEV or GGPP, FPP had no effects on chemokine 
expression or secretion at any dose. Finally, the 
reduction in cell viability induced by high-dose SS 
was abolished by MEV and GGPP, but not by FPP 
(Table 1).

Discussion
The results of the present study suggest that OBs 
are prominent cellular sources of both CXCL10 and 
CX3CL1, which are secreted in response to stimulation 
by TNF-αand/or IFN-γ. Furthermore, SS exerted a 
biphasic effect on OB-derived CXCL10 and CX3CL1 
synthesis: at higher concentrations, SS inhibited 
the expression and secretion of the chemokines and 
exerting a cytotoxic effect.
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In particular, the negative effect of 100 µM SS on 
the mRNA expression of both chemokines seemed 
to be related to the inhibition of chemokine gene 
specific regulation, although the decreased secretion 
of both chemokines was, in part, dependent upon the 
drug’s cytotoxicity at this high-dose of SS (100 µM). 

While at lower concentrations it stimulated both the 
expression and secretion of the chemokines.

Consistent with our present results, it was recently 
reported that statins exert a dose-dependent, biphasic 
effect on cultured ECs and angiogenesis.20,21 In addition, 
10 µM SS significantly increased the secretion of  IL-1β 
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Figure 1. Effects of SS on secretion of CXCL10 from OBs stimulated with TNF-α and/or IFN-γ. OBs were incubated for 24 h with TnF-α 
(20 ng/ml) + IFn-γ (1000 IU/ml) (A) or IFn-γ alone (B), with or without the indicated concentrations (0.01–100 µM) of ss. CXCL10 levels in the culture 
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vs. cytokine-stimulated OBs.

http://www.la-press.com


Kasama et al

34 Immunology and Immunogenetics Insights 2009:1

from macrophages,22 while 0.1–10 µM SS increased 
expression of vascular endothelial growth factor 
(VEGF) by osteoblastic cells (MC3T3-E1 cells) and 
induced osteoblastic differentiation of untransformed 
MC3T3-E1 osteoblasts.14,23 On the other hand, 
1 µM SS inhibited secretion of IL-6 and IL-8 from 

IL-1α-stimulated epithelial cells,24 5–50 µM SS 
inhibited secretion of matrix metalloproteinases 
from IL-1β-stimulated human chondrocytes,11 and 
0.1–10 µM SS inhibited secretion of  IL-6 or IL-8 from 
TNF-α-stimulated fibroblast-like synoviocytes.25 These 
inhibitory effects of statins appear to be dependent on 
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cytotoxic effects of  high-dose SS,26 which is consistent 
with our finding that high-dose SS reduces synthesis 
of OB-derived chemokines by exerting a cytotoxic 
effect.

The OB cytotoxity, and thus the inhibitory effects, 
of high-dose SS was reversed by MEV or GGPP, 
but not FPP, while the stimulatory effects of low-
dose SS were reversed by MEV, but not by GGPP 
or FPP. That MEV reversed the biphasic effect of 
SS on chemokine expression in OBs confirms the 
involvement of the cholesterol synthesis pathway in 
the modulation of chemokine expression. Moreover, 
our finding that GGPP reversed the inhibitory effect 
of high-dose SS on chemokine synthesis, but not 
the stimulatory effect of low-dose SS, suggests the 
latter is not dependent on the membrane anchorage 
of small G proteins (e.g. Rho) or the Gγ subunit of 
heterotrimeric G proteins, as both are regulated by 
GGPP prenylation.27 In addition, our finding that FPP 
had no effects indicates the biphasic response to SS 
is not mediated via farnesylation. It has been shown 
elsewhere that geranylgeranylated and farnesylated 
Rho family GTPases are involved in regulating 
cellular functions, including the synthesis of some 
cytokines and chemokines.28,29 It would be interesting 
to explore the signal transduction pathway via which 
SS modulates the induction of inflammatory proteins 
in OBs.

There is also a discrepancy between our findings 
and those of Wu et al, who reported that alkaline 
phosphatase activity and calcific nodule formation 
were stimulated by 0.1–0.4 µM SS in an osteoblast cell 
line (M2–10B4 cells), although these concentrations 
of SS inhibited both calcific nodule formation 
and alkaline phosphatase activity in aortic valve 
myofibroblasts.30 The lowest concentration of SS 
(0.1 µM) used in the present study is similar to the 
serum levels measured in patients’ receiving regular 
doses of SS for therapy (usually less than 90 nM).31,32 
Given our present results and the earlier findings 
of others, one might expect a clinical dose of SS 
to increase chemokine secretion from OBs at sites 
of bone inflammation, though it remains unclear 
whether higher doses of SS are cytotoxic to bone 
tissues in vivo.

In conclusion, several recent investigations, as 
well as our present study, have noted that statins 
such as SS modulate the inflammatory process in 
bone tissues, thereby inhibiting bone resorption, 
stimulating bone formation, and biphasically modulating 
chemokine synthesis. A more complete understanding 
of the mechanisms by which statins affect OB-derived 
chemokine (e.g. CXCL10 and CX3CL1) synthesis under 
pathological conditions such as rheumatoid arthritis, as 
well as under normal conditions, should provide new 
strategies for clinical intervention.
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