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Abstract: Recent studies of mammalian transcriptomes have identifi ed numerous RNA transcripts that do not code for pro-
teins; their identity, however, is largely unknown. Here we explore an approach based on sequence randomness patterns to 
discern different RNA classes. The relative z-score we use helps identify the known ncRNA class from the genome, intergene 
and intron classes. This leads us to a fractional ncRNA measure of putative ncRNA datasets which we model as a mixture of 
genuine ncRNAs and other transcripts derived from genomic, intergenic and intronic sequences. We use this model to analyze 
six representative datasets identifi ed by the FANTOM3 project and two computational approaches based on comparative 
analysis (RNAz and EvoFold). Our analysis suggests fewer ncRNAs than estimated by DNA sequencing and comparative 
analysis, but the verity of our approach and its prediction requires more extensive experimental RNA data.
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Introduction
The rapid progress in large-scale screening of cellular transcriptional output (termed the transcriptome) 
has dramatically increased the repertoire of transcripts expressed in mammalian cells (Bertone et al. 2004; 
Carninci et al. 2003; Carninci et al. 2005; Cheng et al. 2005; Kampa et al. 2004; Kapranov et al. 2002; 
Numata et al. 2003; Ota et al. 2004). Full-length sequencing data (Carninci et al. 2005; Ota et al. 2004) 
indicate that about 50% of the transcripts are likely to be non-coding RNAs (ncRNAs). Known ncRNAs 
are involved in a variety of cellular functions, such as gene regulation, rRNA modifi cation, splicing, 
RNA editing, mRNA degradation. The currently-identifi ed ncRNAs are far less abundant than protein-
coding RNAs in mammalian transcriptomes. The large number of putative ncRNAs, however, leads us 
to speculate that the number of ncRNAs will continue to grow. For those putative ncRNAs, although 
experimental techniques, such as Northern blot, microarray analysis, and RT-PCR, are providing expres-
sion data (Carninci et al. 2005; Cheng et al. 2005; Kampa et al. 2004; Ota et al. 2004; Ravasi et al. 
2006), most biological functions remain unknown. Determining the identity of these putative ncRNAs 
is important: Do these transcripts correspond to genuine ncRNAs with biological functions, or to other 
RNAs that may be biological or experimental artifacts, non-functional transcripts, or transcriptional 
noise (Huttenhofer et al. 2005; Johnson et al. 2005; Soares and Valcarcel, 2006).

The FANTOM (Functional Annotation of Mouse) database, which aims to generate the transcriptional 
landscape of the mouse genome, has identifi ed 34,030 manually annotated putative ncRNAs in the 
FANTOM3 release, among which 2886 sequences are annotated by the most stringent criteria (Carninci 
et al. 2005). Only a small population of the putative ncRNAs is known ncRNAs, such as miRNAs and 
snoRNAs, and others are unknown RNA transcripts.

Computational approaches such as RNAz (Washietl et al. 2005b; Washietl et al. 2005a) and EvoFold 
(Pedersen et al. 2006) have employed evolutionary conservation of secondary structures, thermodynamic 
stabilities, and phylogenetic sequence analysis to predict tens of thousands of conserved RNA second-
ary structural elements in the human genome. The largest dataset predicted by RNAz contains 91,676 
RNA structures conserved at least in four mammals (human, mouse, rat, and dog) in non-coding regions 
(coding exons are removed). The EvoFold program predicts 48,479 RNA structures from various 
genomic locations (coding, UTR, intronic, and intergenic), of which 517 sequences are classifi ed as 
ncRNA candidates by the program. However, less than 1% of the predictions by RNAz and EvoFold 
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are known ncRNAs (Pedersen et al. 2006; Washietl 
et al. 2005a) and others are new RNA folds.

Despite various predictions concerning the 
biological functions of putative ncRNAs (Huttenhofer 
et al. 2005; Johnson et al. 2005; Mattick and 
Makunin I.V. 2006; Soares and Valcarcel, 2006), 
progress has been slow in identifying associated 
biological roles in cells. An exhaustive functional 
characterization of unknown RNA transcripts by 
experiments is prohibitive. However, determining 
the fraction of genuine non-coding RNAs in those 
putative ncRNAs from either experimental or 
computational data will advance our understanding 
of the composition of mammalian transcriptomes 
and the general importance of ncRNAs for cellular 
function. An approach we explore here is a 
systematic assessment based on statistical features 
for the known ncRNA sequences.

Because biological sequences are not purely 
random, statistical tests might help screen 
sequences of interest. Previous works on statistical 
properties of nucleotide sequences have been 
geared toward characterization of coding/non-
coding regions (Almirantis, 1999; Herzel and 
Grosse, 1997; Kugiumtzis and Provata, 2004; Peng 
et al. 1992), sequence complexity (Abel and Trev-
ors, 2005; Adami and Cerf, 2000), and evolution-
ary patterns (Dehnert et al. 2005b; Dehnert et al. 
2005a). Moreover, it was found that ribosomal 
RNAs could be discriminated from random 
sequences by using statistical measures (Almiran-
tis, 1999). Thus, quantifying sequence character-
istics may reveal some aspects of functional 
features (such as general class type) based on 
sequence properties.

Here, we use relative z-scores of missing motifs 
to analyze characteristic global features for specifi c 
nucleotide sequence classes. We find that the 
relative z-score, derived from the monkey test 

(Marsaglia and Zaman, 1993) for assessing random 
number generators (RNGs), helps classify six 
nucleotide sequence classes into three clusters in 
decreasing degree of randomness: (1) genome/
intergene/intron, (2) mRNA/ncRNA, and (3) 
repeat. We use this characteristic relative z-score 
of the ncRNA class to predict the ncRNA fraction 
in putative ncRNAs as determined in the FAN-
TOM3 database and by computational programs 
RNAz and EvoFold.

Materials and Methods

Nucleotide sequence classes
We compare the degree of randomness of the fol-
lowing nucleotide sequence classes: genome, 
intergene, intron, mRNA (or coding sequence), and 
ncRNA. The genome, intergene, intron, and mRNA 
classes are generated from RefSeqs (Pruitt et al. 
2005) in Supplementary Table S1. The ncRNA 
class contains 7,698 representative ncRNA genes 
from Noncode (Liu et al. 2005), RNAdb (Pang 
et al. 2005), Rfam (Griffi ths-Jones et al. 2005), and 
European ribosomal RNA database (Wuyts et al. 
2004) (Table 1). Noncode and RNAdb have low 
redundancy, while the remaining three sources 
have multiple copies. In order to determine the 
effect of multiple copies in randomness analysis, 
we create two other versions that have fewer or no 
rRNAs, tRNAs, or spliceosomal RNAs. We also 
create an additional class, the repeat sequence 
class, as a control: a long concatenated “sequence” 
is generated by repeating a 1,024-nt random 
sequence 2,048 times to form a 2,097,152-nt 
repetitive sequence.

To generate the fraction model, we use the 
ncRNA class and mouse genomic, intergenic, and 
intronic sequences (Supplementary Table S2). 

Table 1. The composition of the training ncRNA class and other two constructs.

Group Training set Version 2 Version 3 Source
Noncode ncRNA 4251 4251 4251 Noncode
RNAdb ncRNA 2204 2204 2204 RNAdb
rRNA 129 0 10 EIDa

tRNA 78 0 10 Rfam
spliceosomal RNA 28 0 10 Rfam

Total sequence number 6690 6455 6485
Relative z-score (mean) 6.93 6.77 7.33
Relative z-score (std) 0.33 0.11 0.17
aEID: European ribosomal RNA database.
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Mouse genomic and intergenic sequences have 
lengths of 108 nt or more, so we cut them into 
2000-nt segments which can conveniently be 
manipulated and shuffl ed.

Putative ncRNA datasets
We analyze six putative ncRNA datasets identifi ed 
by experimental and computational methods 
(Table 2). The two experimental datasets come 
from the FANTOM3 database of full-length 
cDNAs that do not code for proteins (Carninci et al. 
2005). The computational datasets are formed by 
predictions from programs RNAz (Washietl et al. 
2005b) and EvoFold (Pedersen et al. 2006). The 
sequences predicted by RNAz are grouped into 
three datasets based on different number of con-
served organisms and p-values: (1) the set1.P0.5 
dataset is predicted with sequences conserved at 
least in human, mouse, rat, and dog at p � 0.5; (2) 
the set1.P0.9 dataset is predicted at p � 0.9; (3) 
the set2.P0.5 dataset is predicted with sequences 
conserved at least in human, mouse, rat, dog, and 
chicken at p � 0.5. The sequences predicted by 
EvoFold are conserved in eight species (human, 
chimpanzee, mouse, rat, dog, chicken, pufferfi sh, 
and zebrafi sh).

The randomness (monkey) test
The monkey test assesses sequence randomness 
based on a χ2 distribution of goodness-of-fi t mea-
sure (∑(OBS−EXP)2⁄EXP) for the overlapping 
k- and k-1-letter words (Marsaglia, 2005; Marsaglia 
and Zaman, 1993). This test can assess both uni-
formity and independence of random sequences. 
We employ an applied version of the monkey test, 
the DNA test (Marsaglia and Zaman, 1993), in our 
study. In the DNA test, the number of missing 
k-letter words in a long sequence approximately 
follows a normal distribution whose mean and 
variance depend on the word and alphabet sizes. 

Thus, the z-score can quantify the degree of 
randomness:

 
missing meanz

std
−=  (1)

where the number of missing words is an observed 
value, mean is the theoretical average number 
of missing words, and std is the standard 
deviation.

In our analysis, we use the default parameters 
of the DNA test: it counts 10-letter words for a 
2,097,152 letter sequence; the expected number of 
missing words behaves like a normal distribution 
with mean 141,909 and standard deviation 339. 
Figure 1 illustrates the conversion from nucleotide 
sequences to numeric sequences. Different word 
size and sequence length can also be applied to the 
DNA test.

Applying the monkey test to DNA 
sequences
The DNA test requires long input sequences on the 
order of 106 nt (2,097,152 nt) (Marsaglia and 
Zaman, 1993). We adopt the following procedure 
to analyze sequences whose lengths are shorter 
than 2,097,152 nt (Fig. 2): (1) we randomly shuf-
fl e original nucleotide sequences in a group by the 
Mersenne Twister RNG (Matsumoto and Nishimura, 
1998); (2) we concatenate shuffl ed sequences into 
one sequence, our “concatenated sequence; ” (3) 
we cut that concatenated sequence into segments 
in the length of 2,097,152 nt; (4) we generate a 
random sequence with the same dinucleotide com-
position as the corresponding concatenated bio-
logical sequence; (5) we submit both biological 
and random sequences to the DNA test. Following 
this procedure, we generate at least 100 concate-
nated sequences and corresponding random 
sequences for a given sequence group and submit 

Table 2. The six putative ncRNA datasets.

Dataset Sequences Total length (nt) Ave length (nt)
FANTOM3 putative ncRNA 34,030 67,856,244 1,994
FANTOM3 stringent putative ncRNA 2,886 4,535,792 1,572
RNAz set1.P0.5 91,676 12,474,689 136
RNAz set1.P0.9 35,985 5,475,570 152
RNAz set2.P0.5 20,391 2,798,941 137
EvoFold 48,479 1,869,205 39
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them to the DNA test. These pairs of z-scores result 
in relative z-scores which will be described in detail 
in Results. The distribution of the relative z-score 
of a given sequence group is summarized by mean, 
standard deviation, and range.

Thermodynamic analysis
In addition to randomness test, we use a comple-
mentary thermodynamic analysis (the melting 
temperature and energy landscape analyses) to 
screen short putative ncRNAs in the FANTOM3 
dataset. The melting temperature, defi ned by the 
peak of the heat capacity, is predicted by RNAheat 
(Hofacker et al. 1994; Mccaskill, 1990) from the 
Vienna RNA folding Package (Hofacker et al. 
1994) (Version 1.6). The energy landscape, defi ned 
by the base pair dissimilarity “distance” between 
the minimum energy structure and each suboptimal 
structure, is measured by the “Valley Index” 
(Kitagawa et al. 2003). We use a 90% confi dence 
ellipse in 2D plots of free energy vs. melting tem-
perature and of free energy vs. Valley Index to 

determine stability of test structures as described 
in our previous work (Laserson et al. 2005). This 
method implies an error rate of 10%, i.e. random 
sequences pass the test in 10% of cases. The ther-
modynamic tests are applied to ten ncRNA fami-
lies, namely tRNA, 5S rRNA, 5.8S rRNA, 6S 
RNA, SRP RNA, SL1 RNA, U6 RNA, UnaL2, 
snoRNA, and His3 in Rfam (Griffi ths-Jones et al. 
2005) and 151 putative ncRNAs (�400 nt) in 
FANTOM3 (Carninci et al. 2005).

Results

The relative z-score measures 
the degree of randomness
We employ the DNA test to generate a randomness 
measure, the z-score (Eq. 1) (Marsaglia and Zaman, 
1993). Biological sequences often fail the DNA 
test because the number of missing motifs for 
biological sequences is often greater than the 
theoretical mean value (Eq. 1). Random sequences 

Figure 1.  Application of the DNA monkey test to biological sequence analysis. The DNA test counts 10-letter missing words from a 4-letter 
alphabet (A, C, G, T/U). Three overlapping 10-letter words are shown in blue, green, and red, respectively.

Figure 2. Sequence manipulation scheme for randomness analysis.

GCCGGTCTGAGGTAGGAGGTTGTATGAGGAGG......CTTTCCCCA
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generated with nonuniform nucleotide compositions 
also fail the DNA test. Since dinucleotide compo-
sition has become standard to measure the back-
ground effect (Goni et al. 2004; Workman and 
Krogh, 1999), we use the random dinucleotide 
sequence as a control to the corresponding bio-
logical sequence. Thus, we defi ne the relative z-
score for the degree of randomness to be:

 
zbioseqz = ,relative zdi-random

 (2)

where zbioseq is the z-score for a biological sequence 
and zdi-random is the z-score for the random dinucleotide 
control sequence. Higher-order background 
information (e.g. tri-nucleotide, tetra-nucleotide) can 
be considered in the future for model improvement. 
We also name the z-score (e.g. zbioseq and zdi-random) 
the absolute z-score to differentiate it from the 
relative z-score. A relative z-score close to 1 indicates 
that the dinucleotide composition is the major 
contributor to non-randomness; a value larger than 
1 indicates that other sequence factors affect the 
non-randomness; a value near zero means that single-
nucleotide composition rather than dinucleotide 
more likely causes the non-randomness. Below, we 
show that the relative z-score can distinguish various 
classes of biological sequences.

The relative z-score classifi es nucleo-
tide sequence classes into three 
clusters
We then use the relative z-score to assess the degree 
of randomness of six nucleotide sequence classes: 
genome, intergene, intron, mRNA, ncRNA, and 
artifi cial repeat. The relative z-scores are obtained 
by running the DNA test on one hundred 
2,097,152-nt concatenated sequences for each class 
from the three phylogenetic domains.

In the three-domain collection (Fig. 3a), the 
genome class displays the broadest distribution in 
sequence randomness (Table 3): 86% of relative 
z-scores fall into the region of 0.9–5.0. The inter-
gene and intron classes have narrow relative 
z-score distributions overlapping with the peak of 
the genome distribution. The mRNA and ncRNA 
classes overlap with one another and have a lower 
degree of randomness than the previous three 
classes. The artifi cial repeat class spans a wide 
range and has the lowest degree of randomness 

among the six nucleotide sequence classes 
(Fig. 3e). As expected, regular motif patterns of 
the repeat class lead to a low degree of randomness. 
Thus, we fi nd that the relative z-score partitions 
the six nucleotide sequences from the three 
domains into three clusters: (1) genome, intergene, 
and intron; (2) mRNA and ncRNA; and (3) repeat 
sequences.

After examining the randomness trends in all 
three domains, we analyze that in the three domains 
of life separately. In Eukarya, the six nucleotide 
sequence classes still form three clusters as they 
do in the three-domain collection (Fig. 3d). How-
ever, the genome/intergene/intron cluster has a 
narrower range than the one in the three-domain 
collection and the mRNA/ncRNA cluster is not as 
compact as that one in the three-domain collection. 
In Archaea, the genome, intergene, and mRNA 
classes form a cluster, with the mRNA class being 
less random than the intergene class (the intron and 
ncRNA classes are not available) (Fig. 3b). In 
Bacteria, the genome, intergene, and mRNA 
classes form a cluster, and the ncRNA class forms 
another one (Fig. 3c). The limited ncRNA dataset 
for bacteria, containing only a small number of 
available ncRNAs except for tRNAs and rRNAs, 
produces a relative z-score distribution mostly 
refl ecting the randomness features of tRNA and 
rRNA families. Therefore, the clustering pattern 
among the six nucleotide sequence classes is main-
tained in Eukarya but changed in Archaea and 
Bacteria due to sequence bias in datasets. It also 
shows that the ncRNA class is less random than 
the other biological sequence classes in the three-
domain collection and separate domains.

Overall, the relative z-score can partition two 
sequence clusters―genome/intergene/intron (more 
random) and mRNA/ncRNA―in the three-domain 
collection and Eukarya. For the ncRNA class, it is 
characterized by a distinct relative z-score in the 
three-domain collection, Bacteria and Eukarya. Its 
lower randomness than the genome/intergene/
intron cluster may be explained by low motif 
diversity of the ncRNA class likely caused by the 
sequence conservation within some ncRNA fami-
lies and RNA’s preference for specifi c recurrent 
motifs.

Putative ncRNAs are not all functional
We now assess the six putative ncRNA datasets 
listed in Table 2 using the relative z-score. The total 
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Figure 3. The degree of randomness (relative z-scores) for different sequence classes in the three phylogenetic domains by the DNA test: 
(a) the three-domain collection; (The intron class corresponds only to eukaryotes). (b) Archaeal dataset; (c) Bacterial dataset; (d) Eukaryotic 
dataset; (e) the repeat (control) dataset. The distribution of the relative z-score of each sequence class is estimated by the density function 
in R (R Development Core Team 2006). The color legend in the inset of (a) applies to (b), (c), and (d).
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length of the EvoFold dataset is 1,869,205 nt which 
is shorter than the required length (2,097,152 nt) of 
the DNA test (Marsaglia and Zaman, 1993), so 
randomly selected ncRNAs are added to reach the 
length requirement. The relative z-score (1.437) of 
this “pseudo” EvoFold dataset is an estimate of the 
true value. Another “pseudo” EvoFold dataset cre-
ated with additional genomic sequences has almost 
the same relative z-score (1.436). The DNA test 
result shows that none of the six datasets have a 
relative z-score close to the ncRNA class (Fig. 4). 
Instead, the six datasets form non-overlapping 
relative z-score distributions which fall in the 
genome/intergene/intron cluster. In order of 
decreasing degree of randomness, we have EvoFold, 

RNAz set2.P0.5, FANTOM3 putative, RNAz set1.
P0.5, FANTOM3 stringent, and RNAz set1.P0.9.

Three explanations to the much smaller relative 
z-scores of these sequences compared to the 
ncRNA class are possible. First, these putative 
ncRNAs may consist of a mixture of real ncRNAs 
and other types of RNA transcripts (i.e. “RNA 
noise”). Second, while most of these putative 
ncRNAs may indeed have biological functions like 
known ncRNAs, the relative z-score is a poor 
indicator (e.g. ncRNAs are group I intron-like with 
a low relative z-score). Third, most of these puta-
tive ncRNAs may not have biological functions. 
Below, we develop a model to probe each possibil-
ity in turn.

Table 3. Relative z-scores of the six nucleotide sequence classes in the three domains.

Class Collection Archaea Bacteria Eukarya
Range Mean (std) Range Mean (std) Range Mean (std) Range Mean (std)

Genome 0.9–11.7 2.9 (2.2) 1.2–11.5 3.6 (2.5) 1.2–15.2 3.0 (2.3) 1.0–5.8 2.2 (1.0)
Intergene 1.3–2.2 1.6 (0.2) 1.2–1.3 1.2 (0.02) 4.1–5.1 4.6 (0.2) 1.4–2.2 1.7 (0.2)
Intron 1.6–2.0 1.8 (0.1) / / / / 1.6–2.0 1.8 (0.1)
mRNA 5.7–7.3 6.3 (0.2) 2.8–3.5 3.1 (0.2) 4.0–5.1 4.6 (0.3) 3.7–5.1 4.4 (0.3)
ncRNA 6.3–7.7 6.9 (0.3) / / 8.7–9.5 9.1 (0.1) 6.1–6.5 6.2 (0.1)
Repeat 24.5–230.8 58.0 (32.9) 24.5–230.8 58.0 (32.9) 24.5–230.8 58.0 (32.9) 24.5–230.8 58.0 (32.9)

Figure 4. The degree of randomness of the six putative ncRNA datasets measured by the DNA test. The relative z-score distribution of the 
six datasets is denoted as follows: (a) EvoFold, (b) RNAz set2.P0.5, (c) FANTOM3 putative, (d) RNAz set1.P0.5, (e) FANTOM3 stringent 
and (f) RNAz set1.P0.9.
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The fraction model for estimating 
the proportion of ncRNAs in test 
datasets
Whatever the fraction of true ncRNAs in these 
datasets, we attempt to formulate an approximate 
fraction model based on the assumption that the 
Fantom3 and computational datasets are mixtures 
of true ncRNAs and “RNA noise”. We thus con-
struct a fraction model with various ncRNA to 
RNA noise ratios to match the relative z-scores of 
the test datasets.

In our fraction model, the ncRNAs are sampled 
from the training ncRNA dataset defined in 
Methods which represents diverse RNA families 
in Noncode, RNAdb and several prominent 
families from Rfam and European ribosomal RNA 
database (Table 1). This choice of training dataset 
is reasonable because the Fantom3 dataset is highly 
heterogenous (broad length distribution, multiple 
experimental data sources (Carninci et al. 2005)) 
and the computational datasets represent whole 
genome scans. We thus assume the ncRNAs in the 
test datasets to be as diverse as those in the training 
dataset. Further analysis shows that the sequence 
properties of the training and test datasets are quite 
similar (Supplementary Figs. S1–S4). On the other 
hand, we may miss a part of new ncRNAs whose 
relative z-scores are different from the representative 
score of the training dataset.

To model RNA noise or background sequences, 
we use mouse intronic, intergenic, and genomic 
sequences. RNA noise may include biological and 
experimental artifacts, non-functional transcrip-
tion, and transcriptional noise (Huttenhofer et al. 
2005; Johnson et al. 2005; Soares and Valcarcel, 
2006). Because our analysis shows that the putative 
ncRNAs fall in the cluster of genome/intergene/
intron (Fig. 4), such RNA noise may come from 
genomic, intergenic, and/or intronic sources. 
Though RNA noise could also originate from 
mRNAs, this possibility is less likely because 
existing protein-coding sequences have been fi l-
tered (Carninci et al. 2005) or removed (Washietl 
et al. 2005a) a priori. Thus, we use mouse genomic, 
intergenic, and intronic sequences (Supplementary 
Table S2) to model RNA noise in mammalian 
transcriptomes under various ratios.

We consider three submodels based on the 
ncRNA/noise partitioning: (1) ncRNA/intron; (2) 
ncRNA/intergene; (3) ncRNA/genomic sequence. 
In each submodel, eleven ncRNA/noise ratios 

(0:10, 1:9, 2:8,…, 10:0) are applied to create 
concatenated sequences whose relative z-scores 
correspond to specifi c ncRNA fractions (from 0% 
to 100% with a resolution of 10%). The data points 
for the ncRNA fraction vs. the relative z-score 
defi nes a function f  (z) where z is the mean of 
relative z-scores for a given ncRNA fraction. As 
expected, the three functions generated from the 
three submodels are monotonically increasing and 
converging to 1 as the fraction of ncRNAs increases 
(Fig. 5). The two functions f2(z) and f3(z) almost 
overlap with one another because the intergenic 
sequences cover about 68% of the genomic 
sequences (Supplementary Table S2). The ncRNA/
intron submodel predicts lower ncRNA fractions 
than the other two submodels because the intron 
class has a larger average relative z-score than the 
genome and intergene classes.

Among the three submodels considered above, 
the third (ncRNA/genome) appears to simulate the 
putative ncRNA datasets most accurately. This 
expectation is supported by the following evi-
dences: transcription of the mammalian genomes 
is wide (e.g. over 60% of the mouse genome is 
transcribed (Carninci et al. 2005)); and putative 
ncRNAs are transcribed from diverse genomic 
locations including coding regions, 5'- and 3'-
UTRs, introns, and intergenic regions (Carninci 
et al. 2005; Cheng et al. 2005; Pedersen et al. 2006; 
Washietl et al. 2005a). Therefore, based on given 
relative z-scores of putative ncRNA datasets, we 
can use the fraction model (the ncRNA/genome 
submodel preferred) to predict the ncRNA fractions 
in mammalian transcriptomes.

In all three submodels, each ncRNA fraction 
has a relative z-score distribution represented by 
error bars which quantify the uncertainty of our 
prediction of ncRNA fractions (Fig. 5). At each 
data point, the error of f  (z) is estimated by the 
standard deviation of zmean. Based on the eleven 
data points for each submodel, the average error 
of ncRNA fraction is about ±5%. Given this reso-
lution of our model, we predict that less than 5% 
ncRNAs exist in a dataset with the mean relative 
z-scores below 2.

Predicting the ncRNA fraction 
in the six representative datasets
We collect six putative ncRNA datasets from the 
three sources: the FANTOM3 database, and the 
predictions of RNAz and EvoFold. The overlap 
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between one another is quite small: the RNAz 
program only found 781 conserved RNA folds out 
of more than 15,000 putative ncRNAs in the FAN-
TOM2 database (Washietl et al. 2005a); about 6000 
folds have at least partial overlaps between the 
predictions of RNAz and EvoFold.

We use the mean relative z-score of the two 
FANTOM3 putative ncRNA datasets to interpolate 
the ncRNA fraction with functions f1–3(z) (see Fig. 5 
and Table 4). The relative z-score of the FANTOM3 
dataset (dashed line c in Fig. 5) is out of the pre-
dicting region of f1(z), which suggests that its 
ncRNA fraction may be too small to be detected 
by the ncRNA/intron submodel, so the ncRNA 
fraction is estimated to be less than 5%. The pre-
ferred model suggests that the FANTOM3 stringent 
dataset with higher confi dence for ncRNA annotation 
may contain a much higher fraction of genuine 
ncRNAs (47%) than the FANTOM3 dataset (18%).

We also predict the ncRNA fraction of the four 
computationally-identifi ed datasets predicted by 
RNAz (the set1.P0.5, set1.P0.9, and set2.P0.5 
datasets) and EvoFold (the EvoFold dataset) (Table 
4). Our preferred model predicts that set1.P0.5 and 
set1.P0.9 contain 39% and 52% genuine ncRNAs, 
respectively. The other two datasets (RNAz set2.

P0.5 and EvoFold) have high sequence randomness 
(i.e. small relative z-scores); they locate out of the 
predicting region of all three submodels. We thus 
propose that these two datasets contain less than 
5% genuine ncRNAs. The four computationally-
predicted datasets, although all based on com-
parative analysis, contain different ncRNA 
fractions.

The corresponding number of genuine ncRNAs 
in the six datasets also varies greatly: 6,125 for 
FANTOM3, 1,356 for FANTOM3 stringent, 
35,754 for RNAz set1.P0.5, 18,712 for RNAz set1.
P0.9, �1,020 for RNAz set2.P0.5, and �2,424 for 
EvoFold. Since some conserved RNA folds form 
clusters and share common RNA transcripts 
(Pedersen et al. 2006), the actual number of genu-
ine ncRNAs in the computational predictions may 
be smaller than the above numbers.

Thermodynamic analysis 
of the FANTOM3 putative ncRNAs
In addition to developing the fraction model to 
assess putative ncRNAs, we also employ thermo-
dynamic tests (involving free energy, melting 
temperature and energy landscape) to analyze 151 

Figure 5. The model used to assess the ncRNA fraction in the FANTOM3, RNAz and EvoFold datasets. The mean relative z-score of the 
six datasets is shown in dashed lines in the same order as Fig. 4. Error bars show standard deviations of relative z-scores. The four predic-
tions for the FANTOM3, the FANTOM3 stringent, the RNAz set1.P0.5 and the RNAz set1.P0.9 datasets by f3(z) are highlighted in bullets.

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

1 2 3 4 5 6 7
z-mean

RNAz set1.P0.9

RNAz set1.P0.5
FANTOM3 stringent

FANTOM3 putative

f1:ncRNA/intron
f2:ncRNA/intergene
f3:ncRNA/genome

a b c d e f

nc
R

N
A 

fra
ct

io
n



84

Xin et al

Bioinformatics and Biology Insights 2008:2 

short (�400 nt) putative ncRNAs in FANTOM3; 
only short RNAs are used for this analysis to reduce 
errors in secondary folding algorithms. Among 
these short putative ncRNAs, 23% are thermody-
namically stable (Fig. 6). We also analyze known 
ncRNA families: tRNA, 5S rRNA, 5.8S rRNA, 6S 
RNA, SRP RNA, SL1 RNA, U6 RNA, UnaL2, 
snoRNA, and His3. Except for the non-structural 
snoRNA family, the other nine ncRNA families 
have higher passing rates than the FANTOM3 
subset. The average passing rate of the ten ncRNA 
families is 60%. This analysis shows that ncRNAs 
are more stable than both the random sequences 
and the FANTOM3 subset. It also suggests that 
23% of short putative ncRNAs in FANTOM3 may 
have biological function, in agreement with the 
relative z-score analysis (18%).

Systematic errors in the fraction 
model
Since the FANTOM3 data are assembled from 
diverse sources (tissues, experimental conditions, 
various laboratories, etc), the simplest and reason-
able model for the FANTOM3 data is a collection 
of diverse RNA families similar to the composition 
of our training dataset. Still, systematic errors of the 
fraction model can arise due to possible differences 
in the composition of ncRNAs in training and test 
datasets. For example, the test datasets could be 
enriched with specifically low or high relative 

z-score ncRNAs. To simulate such datasets, we 
generate four biased fraction models containing 10% 
and 25% of group I intron (low relative z-score, data 
not shown) and rRNA (high relative z-score, data 
not shown) sequences in the ncRNA partition of the 
ncRNA/genome model, labeled f4, f5, f6 and f7, 
respectively. Figure 7 shows that the four biased 
models have different error ranges. For example, 
the predicted ncRNA fraction in the FANTOM3 
stringent dataset increases from 47% to 56% and 
72% for f4 and f5 (10% and 25% group I intron), but 
decreases to 42% and 34% for f6 and f7 (10% and 
25% rRNA) (Supplementary Table S4). Thus, for 
datasets with enriched 10% random-like (e.g. group 
I intron) or structural ncRNAs (e.g. rRNA), the error 
would be ~10%. The two enriched 25% models are 
less likely due to the high diversity of our test data-
sets (Supplementary Figs. S2–S4). These four biased 
models can partially simulate scenarios where the 
test datasets have compositions different from that 
of the training ncRNA dataset. Expected increase 
of experimentally characterized ncRNAs in the near 
future will help improve these fraction models.

We have also estimated the uncertainties arising 
from changing the composition of training dataset 
when some ncRNA families are removed. Table 1 
shows two additional training datasets (versions 2 
and 3) with low and no representation of rRNA, 
tRNA and spliceosome families. These datasets 
lead to only 0.5–1.5 standard deviations from the 
mean relative z-score of the original training 

Table 4. The ncRNA fractions predicted by the model. Relative z-scores are shown in mean values and standard 
deviations.

Dataset Relative z f1(z) f2(z) f3(z)
% Sequence # % Sequence # % Sequence #

Fantom 
putative

2.63 (0.05) �5% �1,701 22% 7,487 18% 6,125

Fantom 
stringent

3.32 (0.06) 9.7% 280 50% 1,443 47% 1,356

RNAz set1.
P0.5

3.08 (0.04) �5% �4,584 42% 38,503 39% 35,754

RNAz set1.
P0.9

3.49 (0.04) 21% 7,557 53% 19,072 52% 18,712

RNAz set2.
P0.5

2.21 (0.01) �5% �1,020 �5% �1,020 �5% �1,020

EvoFolda ~1.44 (0.02) �5% �2,424 �5% �2,424 �5% �2,424
aThe relative z-score of the EvoFold dataset is estimated by concatenated sequences mixed with EvoFold predictions and known ncRNAs 
because the total length of the EvoFold dataset is shorter than the required length of the DNA test.
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Figure 6. Thermodynamic analysis of selected sequences of the FANTOM3 putative ncRNA dataset (�400 nt) and ten known ncRNA 
families. The passing rate, tested sequence number and dataset name are shown above the passing rate bar.
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dataset, implying errors of less than 5% in predicted 
ncRNA fraction.

Discussion
We have proposed here a fraction model for assess-
ing ncRNA content of sequence datasets based on 
a sensitive relative z-score for measuring the degree 
of sequence randomness. Our fraction model relies 
on the relative z-score to help distinguish the 
genome/intergene/intron cluster from the mRNA/
ncRNA cluster. It assumes that the relative z-score 
can discriminate the ncRNA class and the genome/
intergene/intron cluster (Fig. 3a), and that the train-
ing and test datasets have similar sequence conser-
vation patterns (Figs. S1-S4). These are reasonable 
fi rst-order approximations but only with much more 
data can these assumptions be validated.

Clearly, sequence randomness refl ects some 
functional features. For example, ncRNAs likely 
contain recurrent motifs (e.g. GNRA, UNCG) 
underlying RNA’s modular architecture (Hendrix 
et al. 2005; Leontis et al. 2006). Of course, there 
are numerous other aspects that must be consid-
ered. Moreover, all statistical features analyzed 
here rely on currently available datasets. Though 
many more RNAs await discovery, the modularity 
of RNA and reliance on a few recurring motifs 
suggest that our approach is worth considering. It 
is interesting to recall that when the ribosome 
structure was solved, only a few new tertiary motifs 
emerged despite expectations to the contrary.

Other computational studies of ncRNA, most 
of which are based on comparative genomic 
analysis, such as QRNA (Rivas and Eddy, 2001), 
RNAz (Washietl et al. 2005b) and EvoFold 
(Pedersen et al. 2006), are limited by the requirement 
of high sequence conservation across species. 
However, many ncRNAs exhibit low sequence 
conservation (Pang et al. 2006). In contrast, the 
relative z-score assesses the randomness degree of 
any sequences whether conserved or not. Neverthe-
less, this approach is not applicable to single 
ncRNA sequences, because those sequences are 
three to four orders of magnitude shorter than the 
required length (2,097,152 nt) for reliable statisti-
cal analysis by the current approach. Though it 
may be possible to reduce the sequence length by 
changing the word size and then recalculating the 
mean value and standard deviation of Eq. 1, longer 
sequence lengths are more reliable for the monkey 
test application.

Our fraction model, if valid, predicts that less 
than 52% of putative ncRNAs predicted by FAN-
TOM3 and computational approaches are functional. 
This is not consistent with the speculation that most 
of the putative ncRNAs are functional (Mattick and 
Makunin I.V. 2006) but agrees with other compu-
tational studies. For example, the EvoFold program 
predicted that 517 out of 48,479 conserved RNA 
folds are ncRNA candidates (Pedersen et al. 2006), 
which agrees with our prediction that less than 5% 
(�2,424 folds) are genuine ncRNAs. The RNAz 
program screened the dataset of FANTOM2 putative 
ncRNAs and only identifi ed 781 out of more than 
15,000 putative ncRNAs having conserved RNA 
secondary structures (Washietl et al. 2005a). This 
number is much less than our predicted number 
(6,125) in the FANTOM3 dataset partly because the 
relative z-score assesses both conserved and non-
conserved sequences. In addition, false positives 
from computational predictions can contribute to 
over-counting of genuine ncRNAs. For example, 
the high false positive rate, 28.9% (p = 0.5), for the 
RNAz program suggests that only a part of predic-
tions may be real ncRNAs.

Moreover, our fraction model assumes that 
putative ncRNAs contain genuine ncRNAs and 
background noise. At least three potential errors 
may be introduced into the model: (1) limited 
amount of training data for ncRNAs; (2) limited 
source of background noise; and (3) “contamina-
tion” of mRNAs in a tested dataset. For the fi rst 
type of error, as the number and diversity of ncRNA 
families increase, the verity and precision of our 
fraction model can be assured and improved. The 
second type of error arises from the limited knowl-
edge of transcriptome noise. Available experimen-
tal data indicate that over 60% of the mammalian 
genomes are transcribed (Carninci et al. 2005), but 
annotation is an ongoing process. Finally, as shown 
in our randomness analysis, the mRNA and ncRNA 
classes share a same region of randomness in the 
three-domain collection and Eukarya.

In conclusion, based on a fi rst-level approxima-
tion, we suggest that fewer putative ncRNAs in 
datasets identifi ed by experiments or computational 
approaches may exist. Clearly, our understanding 
of the general importance of ncRNAs in mamma-
lian transcriptomes will advance as the number of 
genuine ncRNAs is better estimated rather than 
speculated. Our fraction model, if validated, might 
also be used to investigate ncRNA fraction of other 
putative ncRNA databases. The relative z-score 
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may also help guide the detection of novel aptam-
ers and ribozymes through design of sequence 
pools, an area of current work (Gevertz et al. 2005; 
Kim et al. 2007).
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Supplementary Material
Table S1. Selected genomic sequences in our randomness analysis of the three phylogenetic domains. Acc. 
No. denotes the accession number in GenBank.

Domain Organism Acc. No. Length (nt)

Archaea

Archaeoglobus fulgidus DSM 4304 NC_000917 2,178,400
Halobacterium sp. NRC-1 NC_002607 2,014,239
Methanococcus maripaludis S2 NC_005791 1,661,137
Methanopyrus kandleri AV19 NC_003551 1,694,969
Methanosarcina acetivorans C2A NC_003552 5,751,492
Methanosarcina mazei Go1 NC_003901 4,096,345
Methanospirillum hungatei JF-1 NC_007796 3,544,738
Methanothermobacter thermautotrophicus str. Delta H  NC_000916 1,751,377
Natronomonas pharaonis DSM 2160 NC_007426 2,595,2,097,152
Picrophilus torridus DSM 9790 NC_005877 1,545,895
Pyrobaculum aerophilum str. IM2 NC_003364 2,222,430
Pyrococcus abyssi GE5 NC_000868 1,765,118
Pyrococcus furiosus DSM 3638 NC_003413 1,908,256
Sulfolobus acidocaldarius DSM 639 NC_007181 2,225,959
Sulfolobus solfataricus P2 NC_002754 2,992,245
Sulfolobus tokodaii str. 7 NC_003106 2,694,756
Thermococcus kodakarensis KOD1 NC_006624 2,088,737
Thermoplasma acidophilum DSM 1728 NC_002578 1,564,906
Thermoplasma volcanium GSS1 NC_002689 1,584,804

Bacteria

Acinetobacter sp. ADP1 NC_005966 3,598,621
Agrobacterium tumefaciens str. C58 NC_003062 2,841,581
Azoarcus sp. EbN1 NC_006513 4,296,230
Bacillus halodurans C-125 NC_002570 4,202,352
Bordetella bronchiseptica RB50 NC_002927 5,339,179 
Caulobacter crescentus CB15 NC_002696 4,016,947
Corynebacterium effi ciens YS-314 NC_004369 3,147,090
Chlorobium chlorochromatii CaD3  NC_007514 2,572,079
Desulfi tobacterium hafniense Y51 NC_007907 5,727,534
Enterococcus faecalis V583  NC_004668 3,218,031
Escherichia coli K12 NC_000913 4,639,675
Lactobacillus acidophilus NCFM NC_006814 1,993,564
Listeria monocytogenes EGD-e NC_003210 2,944,528
Neisseria gonorrhoeae FA 1090  NC_002946 2,153,922
Prochlorococcus marinus str. MIT 9312  NC_007577 1,709,204
Rhizobium etli CFN 42 NC_007761 4,381,608
Rhodopirellula baltica SH 1  NC_005027 7,145,576
Staphylococcus aureus subsp. aureus MW2 NC_003923 2,820,462
Thermus thermophilus HB27 NC_005835 1,894,877
Xanthomonas campestris pv. Campestris str. 8004 NC_007086 5,148,708

Anopheles gambiae NW_045800.1 6,709,423
Arabidopsis thaliana NC_003071.3 19,705,359
Caenorhabditis elegans NC_003281.4 13,783,316
Danio rerio NW_634459.1 2,669,025
Danio rerio NW_634120.1 2,112,237
Drosophila melanogaster NT_033779.3 22,407,834
Drosophila melanogaster NC_004354.2 22,224,390
Homo sapiens NT_006316.15 22,487,426

(Continued)
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Table S1. (Continued)

Domain Organism Acc. No. Length (nt)
Eukarya Homo sapiens NT_033903.7 14,395,596

Mus musculus NT_039305.5 37,613,096
Mus musculus NT_039474.5 26,734,816
Plasmodium falciparum NC_004316 2,271,477
Rattus norvegicus NW_047692.2 2,154,120
Rattus norvegicus NW_047511.1 2,865,177
Saccharomyces cerevisiae NC_001136.6 1,531,916
Saccharomyces cerevisiae NC_001147.4 1,091,287
Schizosaccharomyces pombe NC_003424.2 5,572,983

Table S2. The datasets used in the fraction model.

Class Relative z Sequences Total length (nt) Source
Genomic sequence (mouse) 2.47 (0.04) 100 1,232,506,963 GenBank (listed in Table S3)
Intergenic region (mouse) 2.36 (0.04) 14,615 840,729,376 GenBank (listed in Table S3)
Intron (mouse) 3.19 (0.10) 85,672 74,985,163 the Exon-Intron database 
Non-coding RNA 6.93 (0.33) 7,698 2,451,312 RNAdb, Noncode, Rfam, 

European ribosomal RNA
database
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Figure S1. The pairwise sequence similarity of the ncRNA class. The ncRNA class is divided into subgroups with the window size of 50 nt. 
The sequence similarity within subgroups is analyzed by the EMBOSS program. The error bar shows the standard deviation of similarity 
scores in a subgroup.

0-
50

50
-1

00
10

0-
15

0
15

0-
20

0
20

0-
25

0
25

0-
30

0
30

0-
35

0
35

0-
40

0
40

0-
45

0
45

0-
50

0
50

0-
55

0
55

0-
60

0
60

0-
65

0
65

0-
70

0
70

0-
75

0
75

0-
80

0
80

0-
85

0
85

0-
90

0
90

0-
95

0
95

0-
10

00
10

00
-1

05
0

10
50

-1
10

0
11

00
-1

15
0

11
50

-1
20

0
12

00
-1

25
0

12
50

-1
30

0
13

00
-1

35
0

13
50

-1
40

0
14

00
-1

45
0

14
50

-1
50

0
15

00
-1

55
0

15
50

-1
60

0
16

00
-1

65
0

16
50

-1
70

0
17

00
-1

75
0

ncRNA
random

S
im

ila
rit

y 
sc

or
e

0 
   

   
   

  2
0 

   
   

   
 4

0 
   

   
   

 6
0 

   
   

   
 8

0 
   

   
  1

00

17
50

-1
80

0
18

00
-1

85
0

18
50

-1
90

0
1 9

00
-1

95
0

19
50

-2
00

0
2 0

00
-2

05
0

20
50

-2
10

0
21

00
-2

15
0

2 1
50

-2
20

0
22

00
-2

25
0

22
50

-2
30

0
23

00
-2

35
0

24
00

-2
45

0
2 4

50
-2

50
0

25
00

-2
55

0
25

50
-2

60
0

2 6
00

-2
65

0
27

00
-2

75
0

27
50

-2
80

0
28

00
-2

85
0

2 8
50

-2
90

0
29

00
-2

95
0

2 9
50

-3
00

0
30

00
-3

05
0

3 0
50

-3
10

0
31

50
-3

20
0

3 2
00

-3
25

0
3 4

00
-3

45
0

34
50

-3
50

0
3 7

00
-3

75
0

3 9
00

-3
95

0
43

00
-4

35
0

47
00

-4
75

0
6 0

50
-6

10
0

63
00

-6
35

0

S
im

ila
rit

y 
sc

or
e

0 
   

   
   

  2
0 

   
   

   
40

   
   

   
 6

0 
   

   
   

80
   

   
   

10
0



92

Xin et al

Bioinformatics and Biology Insights 2008:2 

0-
50

10
0-

15
0

15
0-

20
0

20
0-

25
0

25
0-

30
0

30
0-

35
0

35
0-

40
0

40
0-

45
0

45
0-

50
0

50
0-

55
0

55
0-

60
0

60
0-

65
0

65
0-

70
0

70
0-

75
0

75
0-

80
0

80
0-

85
0

85
0-

90
0

90
0-

95
0

95
0-

10
00

10
00

-1
05

0
10

50
-1

10
0

11
00

-1
15

0
11

50
-1

20
0

12
00

-1
25

0
12

50
-1

30
0

13
00

-1
35

0
13

50
-1

40
0

14
00

-1
45

0
14

50
-1

50
0

15
00

-1
55

0
15

50
-1

60
0

16
00

-1
65

0
16

50
-1

70
0

17
00

-1
75

0
17

50
-1

80
0

18
00

-1
85

0
18

50
-1

90
0

19
00

-1
95

0
19

50
-2

00
0

20
00

-2
05

0
20

50
-2

10
0

21
00

-2
15

0
21

50
-2

20
0

22
00

-2
25

0
22

50
-2

30
0

stringent
random

S
im

ila
rit

y 
sc

or
e

0 
   

   
   

  2
0 

   
   

   
 4

0 
   

   
   

 6
0 

   
   

   
80

   
   

   
 1

00

23
00

-2
35

0
23

50
-2

40
0

24
00

-2
45

0
24

50
-2

50
0

25
00

-2
55

0
25

50
-2

60
0

26
00

-2
65

0
26

50
-2

70
0

27
00

-2
75

0
27

50
-2

80
0

28
00

-2
85

0
28

50
-2

90
0

29
00

-2
95

0
29

50
-3

00
0

30
00

-3
05

0
30

50
-3

10
0

31
00

-3
15

0
31

50
-3

20
0

32
00

-3
25

0
32

50
-3

30
0

33
00

-3
35

0
33

50
-3

40
0

34
00

-3
45

0
34

50
-3

50
0

35
00

-3
55

0
35

50
-3

60
0

36
00

-3
65

0
36

50
-3

70
0

37
00

-3
75

0
37

50
-3

80
0

38
00

-3
85

0
38

50
-3

90
0

3 9
00

-3
95

0
39

50
-4

00
0

40
00

-4
05

0
40

50
-4

10
0

41
00

-4
15

0
4 2

00
-4

25
0

42
50

-4
30

0
43

50
-4

40
0

4 6
00

-4
65

0
46

50
-4

70
0

47
00

-4
75

0
58

00
-5

85
0

S
im

ila
rit

y 
sc

or
e

0 
   

   
   

  2
0 

   
   

   
40

   
   

   
 6

0 
   

   
   

80
   

   
   

10
0

Figure S2. The pairwise sequence similarity of the FANTOM3 stringent dataset. The dataset is divided into subgroups with the window size 
of 50 nt. The sequence similarity within subgroups is analyzed by the EMBOSS program. The error bar shows the standard deviation of 
similarity scores in a subgroup.
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Figure S3. The pairwise sequence similarity of selected sequences of the RNAz dataset. The dataset is divided into subgroups with the 
window size of 50 nt. The sequence similarity within subgroups is analyzed by the EMBOSS program. The error bar shows the standard 
deviation of similarity scores in a subgroup.
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Table S3. 100 mouse genomic RefSeqs serve as 
sources for the mouse genome and intergene classes 
in our fraction model. Acce No. denotes the accession 
number in GenBank. 

Acce No. Acce No. Acce No. Acce No.
NT_039173 NT_039360 NT_039548 NT_039702
NT_039185 NT_039361 NT_039563 NT_039711
NT_039186 NT_039385 NT_039573 NT_039713
NT_039189 NT_039413 NT_039578 NT_078297
NT_039190 NT_039420 NT_039580 NT_078355
NT_039202 NT_039424 NT_039586 NT_078380
NT_039206 NT_039436 NT_039589 NT_078925
NT_039212 NT_039438 NT_039590 NT_080546
NT_039229 NT_039455 NT_039595 NT_081117
NT_039230 NT_039457 NT_039596 NT_082868
NT_039234 NT_039460 NT_039609 NT_095756
NT_039238 NT_039461 NT_039617 NT_108905
NT_039240 NT_039462 NT_039618 NT_108907
NT_039260 NT_039471 NT_039625 NT_109313
NT_039267 NT_039474 NT_039636 NT_109314
NT_039268 NT_039475 NT_039638 NT_109317
NT_039301 NT_039476 NT_039641 NT_109320
NT_039302 NT_039477 NT_039649 NT_110856
NT_039314 NT_039482 NT_039650 NT_111909
NT_039340 NT_039490 NT_039655 NT_111916
NT_039343 NT_039495 NT_039657 NT_161953
NT_039350 NT_039496 NT_039676 NT_162143
NT_039353 NT_039500 NT_039678 NT_162293
NT_039356 NT_039501 NT_039699 NT_162294
NT_039359 NT_039515 NT_039700 NT_163365

Table S4. The systematic errors caused by biased 
ncRNA training datasets. Four submodels f4–f7 are 
created to simulated biased training data using 10% 
and 25% group I intron and rRNA sequences, repec-
tively. The submodel labels are same as Fig. 7.

Dataset f5(z) f4(z) f3(z) f6(z) f7(z)
Fantom putative 31% 22% 18% 16% 12%
Fantom stringent 72% 56% 47% 42% 34%
RNAz set1.P0.5 60% 47% 39% 35% 28%
RNAz set1.P0.9 78% 61% 52% 47% 38%
RNAz set2.P0.5 �5% �5% �5% �5% �5%
EvoFold* �5% �5% �5% �5% �5%
*Same dataset as described in Table 4.
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