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Abstract: Meta-analysis of high-throughput gene expression data is often used for the interpretation of proprietary gene 
expression data sets. We have recently shown that co-occurrence patterns of gene expression in published cancer-related 
gene expression signatures are reminiscent of several cancer signaling pathways. Indeed, signifi cant co-occurrence of up to 
ten genes in published gene expression signatures can be exploited to build a co-occurrence network from the sets of co-
occurring genes (“co-occurrence modules”). Such co-occurrence network is represented by an undirected graph, where 
single genes are assigned to vertices and edges indicate that two genes are signifi cantly co-occurring. Thus, graph-cut 
methods can be used to identify groups of highly interconnected vertices (“network communities”) that correspond to sets 
of genes that are signifi cantly co-regulated in human cancer. Here, we investigate the topological properties of co-occurrence 
networks derived from published gene expression signatures and show that co-occurrence networks are characterized by 
scale-free topology and hierarchical modularity. Furthermore, we report that genes with a “promiscuous” or a “faithful” 
co-occurrence pattern can be distinguished. This behavior is reminiscent of date and party hubs that have been identifi ed in 
protein-protein interaction networks.

Keywords: co-occurrence network, PubLiME, scale-free network, hierarchical modularity, date hub, party hub

Introduction
Current biological research is characterized by the application of high-throughput technologies which 
allow highly parallel studies of DNA, RNA, and protein functions to be carried out on an unprecedented 
scale. A major bottleneck in turning the large amounts of data accumulated into practically useful 
knowledge is the interpretation of the results. Comparative analyses of microarray-based gene expres-
sion studies can provide valuable insights, by helping in the interpretation of individual studies and 
pointing out unexpected parallels between studies (Larsson et al. 2006; Rhodes and Chinnaiyan, 2005). 
However, a number of technical hurdles, such as differences in the experimental procedures for sample 
collection, RNA extraction and labeling (Draghici et al. 2006) or differences in the microarray platforms 
used (Kuo et al. 2006) as well as the variety of statistical approaches employed during data analysis 
(Shi et al. 2005) make this type of analysis cumbersome.

We and others have recently proposed the use of gene list comparison approaches (Cahan et al. 2005; 
Finocchiaro et al. 2005; Newman and Weiner, 2005) to partially overcome these limitations, showing 
that meaningful conclusions can be drawn from published gene expression data in the absence of any 
numerical detail (Finocchiaro et al. 2007). Our approach is based on co-occurrence analysis. The under-
lying hypothesis assumes that genes regulated by similar pathways should co-occur more frequently 
that expected in published gene expression signatures. Thus, in order to systematically study co-occurrence 
patterns in gene expression signatures, we have generated a repository of published gene expression 
signatures, PubLiME (published lists of microarray experiments, available at http://bio.ifom-ieo-campus.
it/publime) (Finocchiaro et al. 2007). We also proposed the Poisson-binomial distribution (which 
accounts for largely varying numbers of genes in reported gene lists) as an appropriate statistic to test 
the signifi cance of co-occurrence of up to ten genes in published gene lists.

From the set of signifi cantly co-occurring genes, a co-occurrence network is subsequently constructed 
as an undirected graph, with genes represented as vertices and edges indicating that two genes are 
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significantly co-occurring (Finocchiaro et al. 
2007). By this approach, we have shown that a 
co-occurrence network derived from cancer related 
gene expression signatures is characterized by the 
presence of highly interconnected communities, 
which can be identifi ed using graph-cut approaches 
such as edge-betweenness clustering (Newman and 
Girvan, 2004).

Gene communities in the co-occurrence net-
work are assumed to represent the consequence of 
coordinated differential regulation of the commu-
nity genes in diverse conditions, which might be 
due to common regulatory inputs. Indeed, the 
promoters of community genes are characterized 
by over-represented transcription factor binding 
motifs, whose presence is compatible with bio-
logical intuition (Finocchiaro et al. 2007).

One of the most significant achievements 
obtained in recent years has been the realization 
that complex networks of biological entities are 
characterized by basic features that are also found 
in non-biological networks (Barabasi and Oltvai, 
2004). Thus, physical insight derived from the 
study of non-biological complex systems may be 
used as a guide in the analysis of biological net-
work function. Many naturally occurring networks 
possess the small-world property (Watts and 
Strogatz, 1998). Small-world networks are char-
acterized by the contemporaneous presence of 
strong local clustering and short average path 
length between vertices. Such strong local cluster-
ing of the small-world model is consistent with the 
modularity observed in naturally occurring net-
works, where modules (i.e. communities of 
strongly interconnected vertices) are often observed 
(Ravasz and Barabasi, 2003). However, the small-
world model cannot explain the vertex degree 
distribution of naturally occurring networks, which 
in the majority of cases follows a power law or an 
exponential law. On the other hand, the scale-free 
network model (Barabasi and Albert, 1999) 
explains the vertex degree distribution and still 
possesses the small-world property. However, local 
clustering in scale-free networks is much weaker 
than in naturally occurring networks. Therefore, 
the hierarchical network model has been proposed 
(Ravasz et al. 2002), which combines strong local 
clustering with small average path length (small-
world property) and naturally observed vertex 
degree distribution (power law, i.e. scale-free 
property). Scale-free network topology has impor-
tant implications for the robustness of complex 

systems (Albert et al. 2000). Since in scale-free 
networks most vertices have only a few edges, the 
accidental failure of vertices is likely to affect 
mainly the vertices themselves, without key roles 
for the function of the system. By contrast, the 
presence of hubs (vertices with many edges) makes 
scale-free networks particularly vulnerable because 
targeted removal of hub vertices quickly leads to 
disconnected subnetworks (Albert et al. 2000). 
These features are of obvious benefi t in the search 
for new drug targets.

We were wondering whether co-occurrence 
networks derived from cancer related gene expres-
sion signatures share topological features common 
to other naturally occurring networks. If this would 
be the case, those features could be used in the 
identifi cation of key regulators of the oncogenic 
process. We show here that co-occurrence net-
works are characterized by scale-free topology 
and hierarchical modularity. Furthermore, we 
identifi ed two different co-occurrence patterns. 
Specifi cally, we found that some genes are dif-
ferentially regulated in a wide variety of condi-
tions and co-occur with many different genes. 
Paradoxically, this behavior leads to low vertex 
degrees in the co-occurrence network, since many 
co-occurrences never reached signifi cance. Among 
those genes, we found well-known oncogenes 
playing a critical role in cancer, such as Cyclin D1 
(CCND1) and FOS. On the other hand, we found 
genes that were less prone to differential regula-
tion, but each time their expression level changed 
it did so in a coordinated fashion with a similar 
set of genes in different conditions. These genes 
represent the most connected hubs of the 
co-occurrence network. Examples of those genes 
are CDC2, CDKN3, and TK1. The signifi cance of 
these fi ndings in interpreting gene expression data 
and in identifying potential target genes for 
follow-up studies is discussed.

Materials and Methods

Generation of a repository of 
published cancer gene signatures
The generation of the PubLiME repository has been 
previously described (Finocchiaro et al. 2007). 
Briefl y, 499 published cancer related gene expres-
sion microarray studies were scrutinized for: 1) aim 
of the study; 2) microarray platforms employed; 
3) organism being investigated; and 4) feasibility of 
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cross-platform annotation of published gene expres-
sion signatures. Among the 499 studies, 273 (233 
human and 40 mouse) were selected for manual 
extraction of gene expression signatures from tables, 
figures, and supplementary material as lists of 
regulated genes. Cross-platform annotation was then 
performed as described (Finocchiaro et al. 2007). 
Data regarding publications and gene expression 
signatures were imported into a relational MySQL 
database that is accessible via a web-interface 
(http://bio.ifom-ieo-campus.it/publime/).

Co-occurrence analysis of genes 
in gene expression signatures
Lists of regulated genes were represented in a 
bipartite graph format, where gene names and 
publication IDs represent the two vertex sets and 
an edge between them indicates differential regu-
lation observed in a particular study. An edge-
swapping procedure was applied in 1000 separate 
runs to determine the occurrence probability of a 
gene in a given publication. Given the occurrence 
probabilities for each gene in each publication, the 
probability of co-occurrences of arbitrary gene 
combinations (also called co-occurrence modules) 
in a publication could be calculated by multiplying 
the respective occurrence probabilities. The 
expected number of publications in which a gene 
combination is found follows a Poisson-binomial 
distribution (a binomial distribution with trial 
specifi c probabilities). Mean µ and variance σ of 
this distribution can be calculated as:

 µ σ= = −
= ==
∑ ∑∑p p pi
i

N

i i
i

N

i

N

1

2

11

2and  

where pi designates the co-occurrence probability 
of a given gene combination in publication i. N is 
the total number of publications.

A Z-score transformation of the observed num-
ber k of co-occurrences of a given combination of 
genes can then be applied to assess the signifi cance 
of co-occurrence.

 Z
k= − µ

σ
.  

To limit noise effects, we required a co-occurrence 
module to be observed in at least fi ve publications 
and the Z-score to be at least 5. A more detailed 
description of the analysis procedure can be found 
in Finocchiaro et al. 2007.

Co-occurrence network construction
From the set of signifi cant co-occurrence modules, 
a co-occurrence network was constructed in the 
following fashion: For each module, the gene 
names are represented by vertices and an edge is 
drawn between all pair-wise combinations of genes 
present in the module. This procedure is repeated 
for all signifi cant co-occurrence modules.

Regression analysis
Regression analysis was applied to estimate the 
scaling factors for the scale-free and exponential 
network models, as well as to investigate the rela-
tionship between the clustering coeffi cient C(k) 
and the vertex degree k.

In a scale-free network, the vertex degrees are 
distributed according to a power law:

 P k k( ) ~ −γ  

where P(k) describes the probability of observing 
a vertex of degree k. γ is the scaling factor. After 
log transformation, this relationship becomes:

 ln( ( )) ~ * ln( )P k k−γ  

Thus, the relationship between ln(P(k)) and ln(k) 
is given by a line with slope –γ. To estimate γ , the 
observed data where plotted with ln(P(k)) on the 
y-axis and ln(k) on the x-axis and Mathematica 
software (“Fit” function) was used to fi nd the equa-
tion of the line that best fi ts the data according to the 
least squares criterion. The slope of the regression 
line provides an estimate for the scaling factor γ. 
Regression analysis for the exponential network 
model was carried out similarly. However, since 
in an exponential network the vertex degrees 
follow an exponential law:

 P k e k( ) ~ − γ  

which after log transformation becomes:

 ln( ( )) ~P k k− γ  

the data where plotted with ln(P(k)) on the y-axis 
and k (instead of ln(k)) on the x-axis before apply-
ing the Mathematica “Fit” function.
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The clustering coeffi cient C(k) measures the 
fraction of observed edges divided by the number 
of theoretically possible edges linking direct vertex 
neighbors and thus offers a measure to detect 
modularity in networks. In hierarchical networks, 
the average clustering coeffi cient scales with C(k) ~ 
k−1 and is independent of network size (Ravasz and 
Barabasi, 2003; Ravasz et al. 2002). Regression 
analysis was applied to verify this relationship in 
the PubLiME co-occurrence network, by plotting 
ln(C(k)) on the y-axis and ln(k) on the x-axis fol-
lowed by applying the Mathematica “Fit” function 
to the data. The resulting regression line should have 
a slope close to −1 if the network is hierarchical.

R-square value
The R-square value is calculated as:
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yi—ith observed data value
fi – ith regression value
µ – data mean
N – number of data points

R-square assumes values between 0 and 1 and 
shows how much of the variability in the data is 
explained by the regression model. A value of 1 
indicates a perfect fi t.

Functional gene category 
enrichment analysis
The DAVID database (Dennis et al. 2003) was used 
for functional category enrichment analysis, fol-
lowing the instructions given at http://niaid.abcc.
ncifcrf.gov. The gene lists analyzed correspond to 
direct vertex neighbors of the genes studied. The 
multiple testing corrected P-values (Benjamini 
correction) are reported.

Software
Custom Java based software was used for determin-
ing occurrence probabilities, co-occurrence probabil-
ities and the identifi cation of signifi cant co-occurrence 
modules from PubLiME data. JUNG (http://jung.
sourceforge.net/index.html) and Netsight (http://jung.
sourceforge.net/netsight/) software were used for 
graph visualization. Mathematica software (Fit func-
tion) was used for linear regression analyses.

Results

Co-occurrence network vertex 
degrees are distributed non-randomly
Previously, we have reported co-occurrence analy-
sis of published gene expression signatures collected 
in the PubLiME repository (Finocchiaro et al. 2005; 
Finocchiaro et al. 2007). From the set of signifi -
cantly co-occurring genes, a co-occurrence network 
was constructed as described in Materials and Meth-
ods. A representation of the PubLiME co-occurrence 
network is shown in Figure 1. To investigate the 
topological properties of this network, we performed 
a vertex degree ranking analysis of the network as 
a fi rst step (Fig. 1). The vertex diameter represents 
vertex degree (larger diameter indicates larger 
degree) and from this analysis the gene displaying 
the highest vertex degree is CDKN3 (77 edges), 
which is shown by an arrow. CDKN3 is a dual-
specificity phosphatase that binds to cyclin-
dependent kinases and inhibits cell cycle progression 
(Hannon et al. 1994). The next most connected 
genes are CDC2 (58 edges), CCNB1 (49 edges), 
LGALS1 (48 edges), and MYBL2 (42 edges). For 
these genes, the vertex degree is indicated in white 
letters in Figure 1. Without assuming a particular 
distribution of vertex degrees, a Z-score transforma-
tion of vertex degrees could be used to evaluate 
whether the vertex degrees of the above mentioned 
genes are compatible with a random distribution. 
Such Z-score transformation of vertex degrees was 
carried out by subtracting the mean vertex degree 
form the observed vertex degree, followed by divid-
ing the result by the standard deviation of vertex 
degrees. The mean vertex degree of the network 
shown in Figure 1 was found to be 7.73, with a 
standard deviation of 9.42. Using these values, we 
obtained the Z-scores for the vertex degree of every 
gene. According to Tchebyshev’s theorem, the prob-
ability of observing these values by chance is at most 
the inverse of the square of Z-scores. These values 
are reported in Table 1.

This fi rst analysis thus shows that the vertex 
degrees are not distributed in a random fashion.

Analysis of co-occurrence 
network topology
Analysis of the PubLiME co-occurrence network’s 
topology produced the results shown in Figure 2. 
Figure 2A shows the distribution of the probability 
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of observing a vertex with a given vertex degree 
P(k) as a function of the vertex degree k. The natu-
ral logarithm of both values is displayed and since 
P(k) �= 1, the values on the y-axis are negative. 
The data illustrate a linear relationship between the 
two variables (black squares) and show that high 
vertex degrees are less probable. Scale-free net-
works are characterized by the relationship P(k) ~ 
k−γ (γ = scaling coeffi cient), or ln(P(k)) ~ −γ ln(k), 
i.e. an inverse linear relationship between ln(P(k)) 
and ln(k), as observed in the data. The slope of the 
line fi tted to the data (grey triangles) using the least 

squares method (see Materials and Methods) 
evaluates to −2.19, which is typical for naturally 
occurring networks (Albert and Barabasi, 2002).

However, while many naturally occurring 
networks were found to be scale-free, some net-
works (e.g. transcription regulatory networks) 
turned out to be exponential (Barabasi and Oltvai, 
2004). In exponential networks, the vertex degree 
distribution is described by the relationship 
P(k) ~ e−γk. This function implies a linear relation-
ship between ln(P(k)) and k, with slope –γ. In 
order to test whether the PubLiME co-occurrence 

Figure 1. The PubLiME co-occurrence network. A representation of the PubLiME co-occurrence network is shown. The Z-score cutoff 
during co-occurrence analysis was set to 5 and co-occurrence modules of size 3 were required to be present in at least 5 publications. Larger 
vertex degrees are visualized by larger vertex diameter. The gene with the largest vertex degree (CDKN3) is indicated by an arrow and 
vertex degrees of the fi ve most connected genes are shown in white letters.
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network was better described by an exponential 
model, we fi tted a line to the observed degree 
distribution in [k, ln(P(k))] space (see Materials 
and Methods) and visualized the result in [ln(k), 
ln(P(k)] space in Figure 2A (grey squares), in 
order to obtain a direct visual representation of 
the quality of fi t for both the scale-free and expo-
nential models. Visual inspection of the data 
showed that both the linear scale-free and the 
slightly curved exponential models fi tted the data 
quite closely. In order to decide which model fi ts 
the data better, the results were then displayed in 
[k, P(k)] space (Fig. 2B) and the R-square value 
was calculated for both models. The R-square 
value indicates how much of the variation in the 
data is explained by the model. For the exponen-
tial model we obtained an R-square value of 0.68, 
while for the scale-free model the R-square value 
was 0.87. If R-square values are calculated in 
[ln(k), ln(P(k))] space, the corresponding values 
are 0.89 (exponential) and 0.96 (scale-free). 
Thus, the scale-free model explained the data 
much better than the exponential model and we 
concluded that the PubLiME co-occurrence net-
work represented more likely a scale-free net-
work than an exponential network.

To evaluate the modularity of the network, we 
also analyzed the scaling properties of the cluster-
ing coeffi cient C(k). In hierarchical networks, the 
average clustering coeffi cient scales with C(k) ~ 
k−1 (Ravasz and Barabasi, 2003; Ravasz et al. 
2002). Therefore, we tested whether the average 
clustering coeffi cient of the PubLiME co-occurrence 
network had this property. The results are shown 
in Figure 2C, which illustrates a linear relationship 
between ln(C(k)) and ln(k) (black squares). 
Although there are some outlier values, we observed 
that in the PubLiME co-occurrence network the 
clustering coeffi cient seemed to obey the C(k) ~ 
k−1 rule. Regression analysis (grey triangles) was 
thus applied to estimate the scaling coeffi cient 

(see Materials and Methods) and we obtained a 
value of −1.06 (Fig. 2C) that was close to the theo-
retically expected scaling coeffi cient of −1.

As a further characteristic of hierarchical net-
works, it has been shown that the average clustering 
coeffi cient is usually much larger than in Barabasi-
Albert networks having with similar degree distri-
bution and is also largely independent of network 
size (Ravasz and Barabasi, 2003; Ravasz et al. 
2002). In order to test whether these properties are 
present in the PubLiME co-occurrence network, 
we constructed co-occurrence networks from the 
PubLiME dataset, using different cutoff values 
for the support parameter S which requires a 
co-occurrence module to be observed in at least S 
publications. As a result, we obtained networks of 
different sizes and thus compared them to Barabasi-
Albert networks with similar degree distribution 
and size generated by the JUNG random graph 
generator function. As can be seen in Figure 2D, 
the average clustering coeffi cient was largely inde-
pendent of network size for the PubLiME co-occur-
rence networks, while it dropped rapidly in 
Barabasi-Albert networks. Thus, PubLiME net-
works apparently possess a scale-free topology with 
clear signs of hierarchical modularity.

Hubs in the PubLiME co-occurrence 
network
We next asked whether differences in the co-
occurrence patterns of genes can be identifi ed. 
Previous analysis of the PubLiME dataset revealed 
that several genes display profound differences in 
their propensity of being detected as differentially 
regulated in a gene expression microarray experi-
ment (Finocchiaro et al. 2007). Indeed, whereas 
the expression levels of some genes change in 
response to a wide variety of different biological 
conditions, most genes were found to display 
stable expression levels. For example, CCND1 was 
found to be differentially regulated in 15% of 
published studies, whereas two thirds of all human 
genes were never reported as differentially regu-
lated. Thus, the question to be addressed is 
whether the genes that are most connected in the 
co-occurrence network are identical to the genes 
with the highest propensity to being differentially 
regulated in diverse conditions.

To investigate this question, the PubLiME 
dataset’s genes were sorted in descending order, 
according to both the total number of occurrences 

Table 1. Z-score and Tchebyshev limit of P-values for 
observing these vertex degrees by chance.

Gene Z P
CDKN3 7.351 0.019
CDC2 5.334 0.035
CCNB1 4.379 0.052
LGALS1 4.273 0.055
MYBL2 3.636 0.076
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in the literature (Table 2) and the vertex degree in 
the co-occurrence network (Table 3). The top ten 
genes are shown in each case. Strikingly, the major-
ity of genes that occur most frequently in the lit-
erature were not part of the co-occurrence network. 
This was because they did not co-occur consis-
tently with other genes. Among these genes, some 
have known roles in oncogenesis, such as Cyclin 
D1 (CCND1), FOS and p21 (CDKN1A). More-
over, three of these genes co-occurred consistently 

with at least some genes (MYC, TNFAIP3, VEGF). 
However, with the exception of MYC, their vertex 
degrees were not exceptional. On the other hand, 
genes with highest vertex degrees were not ranked 
among the genes that occur most frequently in the 
literature (except for MYC, see Tables 2, 3). These 
results demonstrate that genes with the highest 
vertex degree in the co-occurrence network did not 
represent those which are most susceptible to 
underlie differential regulation. These data can be 

Figure 2. PubLiME co-occurrence network topology.
A) The natural logarithm of the probability of observing a vertex with a given vertex degree category (�=5, 5 �= 10, 10 �= 15, 15 �= 20, 
20 �= 25, 25 �= 30, 30 �= 35, 35 �= 40, 40 �= 45, 45 �= 50, �50) is plotted against the natural logarithm of vertex degrees (black dia-
monds). The slope of the line fi tted to these data (the scaling parameter of the scale-free model (grey triangles)) by the least squares method 
is found to be −2.19. The exponential model (grey squares) has been obtained by fi tting a line to the data in [k, ln(P(k)] linear-log space and 
is visualized here in [ln(k), lnN(P(k))] log-log space. exp-exponential model, sf-scale-free model.
B) Observed vertex degree distribution (black diamonds) in [k, P(k)] linear-linear space along with the predicted vertex degree distributions 
according to the scale-free (grey triangles) and the exponential models (grey squares) are shown.
C) The natural logarithm of the average clustering coeffi cient of vertices with the same degree is plotted against the natural logarithm of 
vertex degrees. Only vertices with degree above 20 were analyzed. The slope of the line fi tted to these data using the least squares method 
(the scaling parameter) is found to be −1.06.
D) The average clustering coeffi cient is shown for PubLiME co-occurrence networks derived for support 8, 7, 6, and 5. The support param-
eter indicates the minimal number of lists a module must be part of. The different support values cause the resulting networks to be of dif-
ferent sizes (number of vertices shown on the X-axis). Barabasi-Albert networks of equal size and degree distribution have been generated 
using the JUNG package random graph generator function for comparison purposes. The average clustering coeffi cient falls rapidly in 
Barabasi-Albert networks as network size grows. In PubLiME networks, the average clustering coeffi cient is stable.
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explained by assuming that the frequently regu-
lated genes display a “promiscuous” behavior and 
co-occur in regulated gene lists with different genes 
in different conditions.

Assuming the correctness of the model 
described above, the vertex neighbors of fre-
quently regulated genes should be characterized 
by heterogeneous functional gene annotations. We 
thus used the DAVID database (Dennis et al. 2003) 
(http://niaid.abcc.ncifcrf.gov/) to interrogate the 
set of vertex neighbors for enrichment of func-
tional categories. The most signifi cant category, 
along with the multiple testing corrected P-value 
as reported by DAVID is shown in Table 2. As 
reported, no coherent functional category could 
be identifi ed for any of the frequently regulated 
genes. Surprisingly, however, nearly all genes with 
high vertex degree (Table 3) showed neighbors 
with consistent functional annotation. These 
results indicate that those genes not only co-occur 

with similar sets of genes in different conditions, 
but they also co-occur with genes playing similar 
roles in cellular physiology. In contrast to the 
promiscuous behavior of frequently regulated 
genes, they are thus “faithful” to a subset of genes 
which might be required for carrying out their 
function in a coordinated fashion.

In conclusion, two types of genes are likely 
distinguished in the PubLiME data set: 1) genes 
that respond to many different conditions by 
showing differential expression, but their expres-
sion is poorly correlated with the behavior of 
other genes, or 2) genes that are differentially 
expressed in fewer conditions, but their differ-
ential expression is often accompanied by dif-
ferential expression of similar sets of genes. 
We can conclude that the PubLiME co-occurrence 
network is mainly dominated by faithful genes, 
whose function can generally be predicted from 
the function of their neighbors. Promiscuous 

Table 2. Genes occurring most frequently in PubLiME.

Gene Occurrences Vertex degree Clustering 
coeffi cient

DAVID category Benjamini P-value

CCND1 30 0
MYC 28 39 0.095816464 Cell cycle 0.42
TNFAIP3 26 14 0.142857143 Apoptosis 0.94
VEGF 25 9 0.333333333 Signal tranduction 1
CDKN1A 25 0
FN1 25 0
IL8 25 0
CLU 24 0
FOS 24 0
IGFBP4 23 0

Table 3. Genes with highest co-occurrence network vertex degree.

Gene Occurrences Vertex degree Clustering 
coeffi cient

DAVID category Benjamini P-value

CDKN3 19 77 0.136021873 Cell cycle 1.60E-18
CDC2 16 58 0.24984876 Cell cycle 7.10E-31
CCNB1 17 49 0.237244898 M-phase 3.60E-17
LGALS1 20 48 0.083333333 Immune response 9.60E-03
MYBL2 12 42 0.331010453 Cell cycle 6.10E-14
MYC 28 39 0.095816464 Cell cycle 0.42
TK1 13 39 0.431848853 Cell cycle 5.80E-17
TOP2A 22 38 0.385490754 Cell cycle 2.90E-15
CDC20 14 35 0.482352941 Cell cycle 1.20E-16
TTK 10 35 0.41512605 Cell cycle 5.00E-21
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genes, among which there are key regulators of 
the oncogenic process, are instead under-
represented and their neighbors do not display 
functional consistency.

Discussion
In this work, we investigated the topological prop-
erties of PubLiME co-occurrence networks. Pub-
LiME is a database storing published gene 
expression signatures in a gene lists format 
(Finocchiaro et al. 2005; Finocchiaro et al. 2007). 
Other researchers have previously reported the 
development of similar resources (Cahan et al. 
2005; Newman and Weiner, 2005). Gene expres-
sion studies are widely applied in order to shed 
light on several biological processes. However, 
standardized procedures on how to identify the 
biologically meaningful pieces of data in generally 
quite large datasets are still missing. A common 
procedure is to use gene category enrichment 
analysis on lists of differentially regulated genes 
to identify biological processes that are affected 
by a given biological condition. However, since 
this procedure relies on preassembled gene lists, 
new pathways cannot be identifi ed. An additional 
problem is posed by the annotation quality of 
databases (Khatri et al. 2005). Furthermore, once 
a gene list has been found to be signifi cantly asso-
ciated with a given pathway, it is not clear which 
of the tens or hundreds of genes in the list are 
critically involved in regulating the pathway.

Within this frame, topological analysis of co-
occurrence networks may offer an interesting 
alternative for several reasons. First, pathway target 
genes can be identifi ed using graph-cut approaches, 
without relying on pre-assembled gene lists. Sec-
ond, the hubs in co-occurrence networks suggest 
interesting genes for more detailed analysis.

We have shown that the PubLiME co-occurrence 
network displays a scale-free vertex degree distribu-
tion. While biological networks derived from high-
throughput protein-protein interaction data, 
metabolism, or protein domains have been known 
for some time to possess scale-free topology 
(Barabasi and Oltvai, 2004; Titz et al. 2004), these 
studies have been carried out on networks making 
reference to structural properties of the biological 
entities. On the other hand, the PubLiME co-
occurrence network does not rely on structure-driven 
interactions. It is based instead on co-occurrences of 
genes in published gene expression signatures 

manually extracted from a wide variety of studies 
using model cell lines or patient tissues.

Furthermore, our analysis of the clustering coef-
fi cient suggests that the co-occurrence network 
possesses hierarchical modularity, a conclusion 
that is compatible with previously reported gene 
communities identifi ed in this network (Finocchiaro 
et al. 2007). It is worth noting that sampling qual-
ity can infl uence topology predictions quite sig-
nificantly (Han et al. 2005). The PubLiME 
co-occurrence network has not been sampled, since 
the entire network has been analyzed for its topo-
logical properties. However, the PubLiME 
co-occurrence network is based on published gene 
expression signatures, and the collection of signa-
tures accessible in PubLiME is necessarily 
incomplete, also because new signatures are being 
constantly produced. Therefore, future studies will 
be required to validate our conclusions.

It should also be recognized that the data col-
lection in PubLiME is by design biased towards 
cancer-related gene expression signatures and may 
also be further biased in unknown ways, due to the 
experimental choices made by the researches 
whose signatures have been archived. Thus, the 
conclusions drawn about specifi c hub genes should 
be considered with caution and validated by future 
research. Nevertheless, we believe that the general 
conclusions about the hierarchical topology of co-
occurrence networks of published gene expression 
signatures are not affected by these biases, since 
we have previously shown that gene communities 
correspond to different cancer signaling pathways 
and that the promoters of community genes are 
usually enriched for transcription factor binding 
motifs that are in line with biological intuition and 
experimentation (Finocchiaro et al. 2007). More-
over, we have shown that communities identifi ed 
in humans correspond to communities identifi ed 
in murine model systems (Finocchiaro et al. 2007). 
In other words, the hierarchical nature of the net-
work seems to refl ect biological reality. Thus, while 
the number and composition of communities will 
certainly be subject to changes as new signatures 
are being analyzed, the general topology is 
expected to remain hierarchical.

How could topological information of co-
occurrence networks be used to identify interesting 
target genes for more detailed investigation? The 
scale-free nature of the co-occurrence network with 
a scaling parameter of 2.19 suggests that there are 
some hub genes having connections to a large part 
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of the total of genes constituting the network. 
Indeed, CDKN3, a dual specifi city phosphatase of 
cyclin dependent kinases that was discovered in 
the early 90’s (Hannon et al. 1994), is linked to 77 
of the 306 genes (25%) in the network. These data 
suggest that CDKN3 plays a key role in regulating 
cell division. Interestingly, CDKN3 displayed more 
connections than CDC2 (58 edges), a bona fi de 
key regulator of cell cycle progression. In general, 
hubs of the co-occurrence network represent genes 
with consistent co-occurrence behavior over a set 
of conditions. They co-occur with similar sets of 
genes and represent the core of subnetworks or 
modules, whose function can be predicted from 
the functional annotations of the genes constituting 
the community. As such, they represent excellent 
candidates for follow-up studies. However, detailed 
investigation of hub genes in the co-occurrence 
network has revealed that they differ in their pro-
pensity to co-occur with similar sets of genes. We 
noticed that the genes that were most frequently 
reported as differentially regulated in the literature 
were not among the genes that are most connected 
in the co-occurrence network. This observation 
suggests a “promiscuous” co-occurrence pattern 
for those genes. Interestingly, among them we fi nd 
some known oncogenes such as CCND1 and FOS. 
It should be noted that most of these genes (with 
the exception of MYC) are not hubs in the co-
occurrence network. They are referred to as hubs 
here simply because they are the most frequently 
occurring genes in the PubLiME dataset. In other 
words, they are occurrence hubs rather than co-
occurrence hubs.

On the other hand, the genes with most edges 
in the co-occurrence network are not among the 
genes that are most often reported in lists of dif-
ferentially regulated genes. However, when they 
are found differentially regulated, similar sets of 
genes are often found co-regulated. Thus, they are 
“faithful” to a subset of differentially regulated 
genes. Furthermore, the co-regulated genes are 
often characterized by similar functional annota-
tions as the hub itself.

Taken together, these data suggest the presence 
of occurrence hubs and co-occurrence hubs in the 
PubLiME dataset, which often do not represent the 
same genes. Such a behavior is reminiscent of date 
and party hubs (Han et al. 2004). Party hubs tend to 
associate with similar sets of vertices in various 
conditions and are thought to represent structural 
organizers of semi-autonomous network modules. 

Date hubs, on the other hand, associate with different 
vertices in different conditions and might represent 
key regulators that orchestrate the activity of net-
work modules according to the needs of a cell in 
specifi c circumstances. In a fi rst approximation, 
promiscuous genes appear similar to date hubs while 
faithful genes behave more like party hubs. Given 
the observation that known oncogenes seem to 
behave as date hubs, it may be highly informative 
to study the behavior of other date hubs in cancer 
cells, in order to achieve interesting insight into the 
signaling pathways operating in cancer cells and the 
regulators infl uencing their function. The analysis 
of party hubs, on the other hand, may lead to the 
identifi cation of novel drug targets whose inactiva-
tion might cause functional debilitation of down-
stream targets of deregulated signaling pathways, 
which in the co-occurrence network are forming 
communities of highly interconnected genes, or 
modules, with party hubs as central organizers.
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