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Abstract
Motivation: A recurrent criticism is that certain bioinformatics tools do not account for crucial biology and therefore fail 
answering the targeted biological question. We posit that the single most important reason for such shortcomings is an inac-
curate formulation of the computational problem.

Results: Our paper describes how to defi ne a bioinformatics problem so that it captures both the underlying biology and 
the computational constraints for a particular problem. The proposed model delineates comprehensively the biological 
problem and conducts an item-by-item bioinformatics transformation resulting in a germane computational problem. This 
methodology not only facilitates interdisciplinary information fl ow but also accommodates emerging knowledge and 
technologies.
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Introduction
A number of recent papers have identifi ed ‘open’ problems in bioinformatics. From a computer science 
perspective, these problems have been classifi ed broadly into those (i) related to the ‘central dogma’ 
(i.e. DNA to RNA to protein), (ii) related to data in general and (iii) simulating biological processes 
(Backofen and Gilbert, 2001). From a life science perspective, open bioinformatics questions are con-
crete questions, such as, ‘which structural RNAs are encoded in a genome?’ (Eisenberg et al. 2006; 
Goodman, 2002; Yu et al. 2004). Yet, there is a fundamental difference between the bioinformatics 
problems described above and the aim of this paper, which proposes a systematic procedure for con-
structing defi nitions of such problems.

For the most part, ‘how-to’ practices in bioinformatics address the application of software engineer-
ing and database management principles to computational issues. For example, Parker et al. (2003) 
proposed comprehensive management of information fl ow for large-scale genome projects through 
system-wide management of metadata and data dependencies across both biological and computational 
processes. This led to implementation of numerous integrated systems, commonly referred to as pipe-
lines or workfl ows (e.g. Garcia Castro et al. 2005). Indeed, these efforts made signifi cant contribution 
to bioinformatics ‘in-the-large’. Still lacking, however, are how-to-practices for bioinformatics problems 
‘in-the-small’.

We propose a methodology for formulating bioinformatics problems by defi ning the cognate life and 
computational problems in an explicit and integrated fashion. The goal of this methodology is to guide 
development of bioinformatics tools that account for critical biology. Our work is much different from 
what is typically published in the fi eld of bioinformatics. We focus on methods for formulating a prob-
lem rather then for solving an already formulated problem.

Methodology
Our procedure has three components: a biological model, a bioinformatics transformation and a com-
putational model (Table 1). The biological model specifi es a question of interest and defi nes the bio-
logical problem in a way that captures the breadth of the phenomenon. The bioinformatics 
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transformation translates biological features and 
criteria into a set of computational rules, which, as 
a whole, circumscribe the biological problem. 
Finally, the computational model reformulates the 
problem mathematically by incorporating rules 
derived in the transformation and describes a 
computational approach to the initial biological 
question.

As an example of our methodology, we pose 
the biological question ‘which tRNAs are encoded 
in a genome?’ Information on tRNAs is available 
in the supplemental materials and in the literature 
(e.g. Marck and Grosjean, 2002; Paule and White, 
2000; Sprinzl et al. 1998).

Biological model
A biological model consists of a concise ‘biologi-
cal question’ and a comprehensive description of 
the ‘biological knowledge.’ Both portions are 
critical to the entire bioinformatics model. The 
biological question is usually straightforward; for 

instance, the case example used here seeks to detect 
tRNA genes (i.e. a known phenomenon) in genomic 
sequences. In contrast, formulating the knowledge 
portion is more diffi cult requiring a comprehensive, 
taxonomically broad review of the life science 
literature and other available resources. As we 
detail below, the knowledge portion has three ele-
ments: (i) an abstract, ‘global’ defi nition of the 
phenomenon together with a textual exposé of 
observed scenarios, (ii) a comprehensive dataset 
of observed instances, and (iii) a description of yet 
unobserved, conceivable scenarios. Obviously, the 
state of knowledge about a particular biological 
problem determines how the question is formulated 
and how the biological phenomenon is described 
(see for example the early work on tRNA sequence 
and structure (Holley et al. 1965; Levitt, 1969)).

A sample biological model for tRNA gene iden-
tifi cation is available in the supplemental Table S1. 
For the sake of simplicity, the model does not 
include more advanced criteria such as minimum 
free energy.

Table 1. Methodology for formulating a bioinformatics model.

Biological model
 Biological question
 Biological knowledge
  Describe biological phenomenon based on observed occurrences
   Basic ‘textbook’ defi nition and typical scenario
   Extent and frequency of biological diversity
  Construct dataset of observed instances
   Occurrences representative of the full range of deviations
   Sample of frequent occurrences
   All rare and unique instances
  Unobserved yet conceivable occurrences
   Biological structures and mechanisms
   Knowledge from other systems and other disciplines

Bioinformatics transformation
 Biological criteria (BCs)
  Convert description of biological knowledge
   Concise, verbal statements for each characteristic
   Explicit link from each BC into the biological knowledge description
  Remove ambiguity
   Addition or enhancement of BCs
 Computational rules (CRs)
  Formulate rules based on BCs
   Mathematical formulas
   Explicit links to contributing BCs
  Identify key rules
   CRs crucial to the biological phenomenon, the biological question and the computational analysis

Computational model
 Global computational problem restating the biological question
 General computational approach
  Detail approach through a set of smaller problem defi nitions
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Defi nition and observed variation 
of a biological phenomenon
One first provides a brief, abstract ‘textbook’ 
defi nition that views the phenomenon in a larger 
biological context, together with a typical scenario. 
Then, one should describe the extent and frequency 
of biological diversity, both within an organism 
and across taxa indicating both signifi cant and 
minor differences. For tRNA gene identifi cation, 
this may read as follows:

Transfer RNA molecules have two signifi cantly different 
types of secondary structures, the cloverleaf and the two-
arm. The more common structure consists of four stems (or 
three-arm) in the form of a cloverleaf (Fig. S1). Yet, an 
unusual three-stem (or two-arm) type is common in certain 
animal lineages (Okimoto and Wolstenholme, 1990, 
Fig. S2). Notably, both types of tRNAs fold into a similar 
L-shaped tertiary structure (Fig. S3).… A minor difference 
observed is the size of the D-arm loop (D-loop), which 
typically is 8 nt long but can be up to 10 nt long.

The description of the phenomenon should be 
comprehensive yet constrained to relevant features. 
For example, if the question involves identifi cation 
of tRNA genes in genomic sequences, introns are 
relevant, but not so if the question solely addresses 
tRNA secondary structure. Similarly, mapping of 
a codon to an amino acid (the genetic code) is 
irrelevant for defi ning tRNA secondary structures, 
but relevant for identifying tRNA function.

Compilation of a comprehensive dataset
Concrete instances of a phenomenon make a 
description explicit and tangible. A compilation 
should span the breadth of taxonomic diversity and 
should contain a sampling of frequent occurrences 
as well as all known instances of rare and unique 
ones. As we discuss later, such a collection will be 
crucial for benchmarking bioinformatics tools.

Description of conceivable scenarios
Life scientists continually uncover novel occur-
rences of a given biological phenomenon, and not 
infrequently, these novelties fall within the 
expected range of diversity. To accommodate 
future discoveries within the framework of the 
biological model, one may include knowledge 
about biological structures and mechanisms that 
enable extrapolation of unobserved scenarios. 
Knowledge may be inferred from the same system, 
or from other systems or even other disciplines. 

For example, we know that a discontiguous mol-
ecule can assume the same structure or function as 
one that is contiguous. Thus, we can extrapolate 
that a tRNA gene could be encoded by multiple 
pieces, which are transcribed independently and 
join post-transcriptionally to form a functional 
structure. In fact, RNA ‘in pieces’ have been 
documented for ribosomal RNA (rRNA) of mito-
chondria from several eukaryotic groups and 
bacteria (Evguenieva-Hackenberg, 2005 and refer-
ences therein) and rare examples for discontiguous 
tRNA genes have been reported as well (Randau 
et al. 2005; Soma et al. 2007).

A comprehensive biological model, as illus-
trated above, leads directly into the biological 
criteria of the next component, the bioinformatics 
transformation phase.

Bioinformatics transformation
This component converts a biological description 
into a set of mathematical formulas. The transla-
tion process involves conversion of the biological 
knowledge description into biological criteria and 
transformation of these criteria into computational 
rules. A sample bioinformatics transformation for 
tRNA gene searches is available in the supplemen-
tal Table S2; note that all sample criteria below 
are excerpts from this table.

Biological criteria
This fi rst step converts the biological description 
into simple, concise verbal statements, termed 
biological criteria (BCs). A separate criterion is 
formulated for each characteristic of a feature, such 
as the length variation allowed for the stem of the 
D-arm (D-stem) of a tRNA, e.g.

The D-stem length is 3 or 4 nt.

In addition to this list of criteria, it is useful to group 
related statements (e.g. particular features or major 
variants) in order to add meaning and to aid orga-
nization. See Table S2 (section BC) for criteria for 
searching tRNA genes in genomic sequences.

After conversion to BCs, check statements for 
ambiguity. For instance, the criterion above indicates 
that the D-stem in tRNAs can vary in length. Yet, 
this statement is ambiguous since it is uncertain what 
kind of pairings make up a stem—only Watson-
Crick pairings or also interactions such as G-U and 
G-G. To clarify this ambiguity, a new criterion that 
defi nes permissible pairings must be added:
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Allowable nucleotide pairs: A-U, C-G and G-U.

More generally, clarifi cation of the intended bio-
logical meaning may involve adding new or 
enhancing already formulated criteria.

Computational rules
This step is the most crucial one of the bioinformat-
ics transformation. Here, the BCs described above 
are converted into mathematical formulas, called 
computational rules (CRs). Generally, a single BC 
leads directly to a single CR, such as the one-to-one 
mappings exemplifi ed by nucleotide pairings:

Valid nucleotide pairs (DNA) = {A-T, T-A, C-G, G-C, 
G-T, T-G}

and D-stem length variation:

3 �= | D-stem | �= 4

However, occasionally it may be necessary to com-
bine several BCs to form a single CR (a many-to-one 
mapping). For example, a CR describing the length 
of a D-arm combines the following fi ve BCs:

The D-arm forms a hairpin closed by a stem (pos. 10 to 25).

The D-stem length is 3 or 4 nt.

The D-stem pairing positions: 10–25, 11–24, 12–23 and 
13–22. Note: if 13–22 do not pair, the numbering remains 
as though they are in the stem.

The D-loop length is 8 to 10 nt. If positions 13 and 22 do 
not pair, it increases to 7 to 11 nt.

The D-loop positions: 14, 15, 16, 17, 17a, 18, 19, 20, 20a, 
20b, 21. Optional positions: 17a, 20a and 20b.

into a single CR:
16 �= | D-arm | �= 18.

Alternatively, a single BC may be utilized by several 
CR (a one-to-many mapping), such as permissibility 
of stem bulges used by each of the four stems (see 
Table S2; BC 3.1 is used by CRs 1.5, 1.6 and 1.9).

An important feature of the conversion step is 
the explicit mapping of BC to CR, which acts as a 
conduit that shuttles knowledge through the model. 
As laid out in the discussion, this mapping facilitates 
two important tasks: updating a bioinformatics 
model to accommodate new biological discoveries 
and assessing the biological capabilities of tools.

Some of the CRs represent the core of the prob-
lem, whereas others represent peripheral details. 
It is important to identify and mark as ‘key’ those 
features that are essential for the bioinformatics 

model. For the tRNA example, the basic cloverleaf 
and two-arm structures are critical features of the 
biological phenomenon. The search for intron-less 
tRNA genes may be central to a particular 
biological question. Finally, the T-arm and D-arm 
consensus sequences are essential for effective 
computational analysis. Rules marked as crucial 
receive special attention, not only during construc-
tion of the computational model but also later, 
during software development when infeasibility 
causes modifi cation of the problem and removal 
of required rules (requirements).

Computational model
The third phase of defi ning bioinformatics problems 
consists of reformulating the biological problem into 
a pure computational one. Unlike the two previous 
components, this phase does not devise a specifi c 
procedure, as techniques for defi ning a computa-
tional problem (model) are well established. Instead, 
we focus on what to include in such a defi nition.

First, a global problem defi nition should re-state 
the biological question as a computational problem. 
For example,

Problem: Given a DNA sequence, S, locate all genes, G, 
capable of forming a functional tRNA structure.

Second, we define a set of smaller problems 
(problem-set) that together describe a general 
approach satisfying the global problem. Each 
(smaller) problem should defi ne a specifi c task 
and should state explicitly the CRs that apply to 
this particular problem. In addition, even the most 
trivial assumptions required by a problem should 
be stated explicitly in the defi nition. For example, 
assuming a four-nucleotide alphabet (for RNA 
sequences) lends itself to a highly effi cient, bit-
based computational approach. If the alphabet size 
would increase, this approach would be less effec-
tive and the problem itself may require revision. 
Third, each CR must be stated as a requirement 
for at least one (smaller) problem within a set. 
More challenging is determining all problems that 
rely on a given CR.

Obviously, more than one computational 
approach can address the same global problem; 
hence, alternative problem-sets can be formulated. 
For example, identifying tRNA genes using a 
machine learning approach may subdivide the 
problem in a manner that differs greatly from a 
purely deterministic, algorithmic approach. We 
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recommend specifi cation of all these alternatives 
as they facilitate development and comparison of 
software that use alternative computational 
techniques, be it hidden Markov models (Rabiner, 
1989), Bayesian networks (Pearl, 1988), or rule-
based systems (e.g. (Snyder and Stormo, 1993)).

Discussion
A bioinformatics model that is constructed accord-
ing to the proposed methodology captures a prob-
lem in its entirety. This is achieved by specifying 
three separate yet inter-connected modules: a com-
prehensive biological description of the problem, 
a computational defi nition of the problem and an 
explicit transformation from one to the other.

Models constructed with our procedure provide 
a solid foundation for development, testing and 
comparison of analytical bioinformatics tools. 
Software development can focus fully on effi ciency 
because the model ensures correct translation of 
the biology into a computational problem. Tools 
can be tested more easily, since comprehensive 
positive test data are readily available in the bio-
logical model. Once tools are available based on 
the same model, they can be compared to determine 
adherence to the model, performance against a 
benchmark dataset as well as time and space effi -
ciency; all of these facilitate selection of the ‘best’ 
tool for a given analytical task.

Information management
and software engineering
Systematic procedures and information manage-
ment principles are not new in bioinformatics. 
Informatics-leaning bioinformaticians have been 
applying these strategies for many years through 
explicit management of rules (‘requirements’), 
tracking of relationships between rules as well as 
data (‘dependencies’) and clear defi nitions of the 
extent of the problem (‘scope’). Currently though, 
such principles are applied predominantly to the 
informatics realm of bioinformatics rather than to 
bioinformatics as a whole, spanning both the infor-
matics and biology realms.

Interdisciplinary communication
For any interdisciplinary science, effective commu-
nication is a challenge. Bioinformatics has to deal 
with differences inherent to the life and computa-
tional sciences in terms of basic notions, ways of 

reasoning and scientifi c language. These differences 
present a substantial barrier to both comprehending 
and explaining ideas. Less obvious is a fundamental 
difference in conveying information. For instance, 
life science aims at extracting common patterns from 
the full breadth of natural diversity. In contrast, 
computer science aims at bounding a problem by 
defi ning assumptions, rules and constraints. Conse-
quently, each side reduces the breadth of the problem 
through either generalizations or bounds. These 
reductions must be communicated.

The advantage of our methodology is that it 
facilitates interdisciplinary communication. First, 
the scientifi c language of a particular discipline is 
used to ensure accurate biological and computa-
tional models while translation from one model 
into the other occurs in a separate step. This pro-
vides explicit connections between the two models, 
connections that link specifi c biological criteria 
with specifi c computational constraints. As a con-
sequence, tracing back a criterion/constraint from 
one model to the other becomes an easy task.

Changes in knowledge
and technology
Biological sciences are about discovering new 
features of Life. Therefore, bioinformatics tools 
and resources need to incorporate new knowledge 
continually. For example, an early defi nition of 
gene regards it as a contiguous region on a chromo-
some that specifi es an RNA or protein product. The 
subsequent discovery of alternative splicing and 
trans-splicing impacted fundamentally the assump-
tions underlying gene-fi nding tools.

Our methodology anticipates both incorporation 
of new knowledge and application of new technology. 
Advances in the life sciences can be accommodated 
because the model records relevant biological facts 
in a systematic fashion and specifi es how they are 
interconnected with computational rules. Similarly, 
new computational technology can be accommodated 
because the model defi nes the scope and requirements 
for tool development. At most, a new problem-set 
needs to be added to the computational model. Con-
struction of this new problem-set is simplifi ed sub-
stantially by the computational rules contained in the 
transformation module.

Putting this proposal into practice
To allow cooperative model formulation and tool 
development, models should be openly available 
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(pref. web-accessible). To accommodate new 
science, they should be easily expandable (e.g. 
managed in a database). Finally, new models need 
to reuse components of existing models (e.g. the 
description and the translated rules for nucleotide 
pairing). This not only reduces scientifi c effort and 
improves speed of model construction but also 
retains a consistent scientifi c representation across 
different bioinformatics models.

Conclusion
Bioinformatics needs standards and methodologies 
that span its entire breadth from biology to infor-
matics. Establishment of systematic procedures is 
necessary to transform the ‘art’ of defi ning bioin-
formatics problems into a science.
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Methodology for Defi ning Bioinformatics Problems
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Supplemental Materials

Computational model—problematic simplifi cations
Certain computational practices imprecisely simplify bioinformatics problems. For example, an 
algorithm used to solve a previous problem is re-used to address a new problem, or alternatively, a 
problem is well-formulated but does not address known exceptions. More generally, three levels of 
simplifi cation can negatively affect bioinformatics analysis and therefore should be utilized with 
extra caution.

Exclusion of computational rules (CR)
One obvious type of simplifi cation is to disregard certain biological scenarios. For example, when 
searching tRNA genes, one may ignore all rules associated with the two-arm tRNA structure and focus 
only on the cloverleaf shape. Omission of CR for biological exceptions can signifi cantly simplify both 
the global task and individual problems in the problem-set, but it also can signifi cantly change the 
analytical capabilities of the tool.

Partial omission of CR
Certain simplifi cations represent an oversight during construction of the computational model. For 
instance, an individual problem in a problem-set may locate the tRNA anticodon (AC) arm without 
accounting for introns in the stem, while another problem may explicitly look for introns. However, if 
intron search is performed after AC-stem identifi cation, then genes with an intron in the AC-stem will 
not be located. Here, intron analysis occurs in a separate (smaller) problem and yet, the scenario where 
introns occur in the AC-stem is not analyzed correctly. Thus to resolve this case, one would need either 
to conduct intron search prior to stem identifi cation or to add a CR for introns to the stem identifi cation 
step. This example illustrates that some CR may be essential to more than one individual problem and 
one must ensure that each CR serves as a criterion for every relevant problem.

Inaccurate computational assumptions
Inaccurate, implicit assumptions can change the technical nature of a computational problem in the 
same manner as omitting CR. For example, suppose that stem-permissible base pairings were not 
specifi ed as a rule during the bioinformatics transformation phase (i.e. Table S2: BC 3.2). An inaccurate 
assumption could be that only Watson-Crick (WC) nucleotide interactions are valid pairings in a stem. 
Then, fi nding two pairing sequences capable of forming a stem is equivalent to identifying inverted 
repeats since inverted repeats can pair to form stems. Yet, stems containing non-WC interactions will 
not be identifi ed. To uncover such a fundamental error requires a good understanding of both the com-
putational and biological implications.

Impact
Explicit or implicit omission of CR can lead to such a principal change that the biological question is 
no longer addressed appropriately. In the previous example, without explicit allowance of non-WC 
pairs, one assumes that stems contain only WC pairs. This assumption creates a trivial computational 
problem where the sequence on one side of the stem can pair with only one other sequence, a problem 
solved by many existing algorithms (e.g. string matching algorithms). On the other hand, if non-WC 
pairs are permissible then the sequence on one side has numerous potential sequence pairings for the 
other side, F(n). This is stated mathematically as follows.
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Given a sequence S of length n, the number of sequences 
having permissible pairings at every position in S is

F(n) = pw × qx × ry × sz

where w is the number of positions in S having an A, x is 
the number having C, y is the number having G, z is the 
number having T/U and w + x + y + x = n and where p is 
the number of permissible pairing interactions with nucle-
otide A, q is the number with C, r is the number with G, s 
is the number with T/U.

Exclusive use of WC pairs means that p through 
s has a value of one (a one-to-one mapping of A 
with T/U and C with G) and that the number of 
sequences, F(n), pairing to S is one. Further interac-
tions in addition to WC pairs mean that one or more 
of p through s will have a value greater than one. 
For instance, if G can interact with C, G and U then 
r has a value of three and the number of matching 
sequences increases at an exponential rate, ry.

Obviously, a minor simplifi cation can have 
a devastating effect on the analytical results. 

Less obvious, simplifying also can lead to poor 
selection of an algorithm, one which cannot eas-
ily be extended to accommodate omitted CR. 
Thus, details which may seem minor to life sci-
entists are crucial to framing the computational 
problem. This is clearly the case with specifi ca-
tion of stem-permissible base pairings where a 
WC-only assumption not only increases the rate 
of false negatives but also leads to choosing an 
“effi cient” algorithm which is incapable of han-
dling non-WC pairings.

By this example, it may seem that all simpli-
fi cations have an adverse effect, but this is not 
the case. Rather, one should be aware of the 
pitfalls inherent in common computational prac-
tices and take appropriate precautions during 
development and use of the computational 
model. In conclusion, it is important that the 
approach presented in the computational model 
spells out the algorithmic tasks in a manner that 
not only satisfi es the computational requirements 
but also correctly answers the original biological 
question.
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Excerpts from a Bioinformatics Model for tRNA Gene Identifi cation
Table S1. Sample of biological model for tRNA gene identifi cation model.

Biological model
 Question: Which tRNAs are encoded in a genome?
 Relevant knowledge on tRNAs (description of gene, gene product and function)
  1. Brief defi nition

“Transfer RNA (tRNA) … is a small RNA molecule (70–90 nucleotides). The tRNAs, by binding at one 
end to a specifi c codon in the mRNA and at their other end to the amino acid specifi ed by that codon, 
enable amino acids to line up according to the sequence of nucleotides in the mRNA. Each tRNA is 
designed to carry only one of the 20 amino acids …. Each of the 20 amino acids has at least one type 
of tRNA assigned to it, and most have several tRNAs. Before an amino acid is incorporated into a 
protein chain, it is attached by its carboxyl end to the 3’end of … a tRNA containing the correct 
anticodon—the sequence of three nucleotides that is complementary to the three-nucleotide codon 
that specifi es that amino acid on an mRNA molecule. Codon-anticodon pairings enable each amino 
acid to be inserted into a growing protein chain according to the dictates of the sequence of nucleo-
tides in the mRNA, thereby allowing the genetic code to be used to translate nucleotide sequences 
into protein sequences.” (Alberts et al. 1994).

  2. Description
  2.1 Observed tRNAs (gene product) and genes
  2.1.1 tRNA structure

“tRNAs can form the loops and base-paired stems of a cloverleaf structure, and all are thought to fold 
further to adopt the L-shaped conformation” (Alberts et al. 1994).
The cloverleaf structure is composed of three arms (D, anticodon (AC) and T), a highly variable (V) 
loop between the AC- and T-arms, enclosed by the aminoacyl (AA) stem (Fig. 1). Generally, the 
D-stem forms four base pairings but a stem of three is possible. Likewise, the D-loop is typically 8 nt 
long but may expand to 9 or 10 nt. Overlapping the D-arm is one of two promoters recognized by 
transcription factor TFIIIC and having a conserved sequence of 5’-GTGGCNNAGT-3’ (Marck and 
Grosjean, 2002; Paule and White, 2000).
A major alternative to the cloverleaf structure is composed of two instead of three arms, lacking either the 
D- or the T-arm (Fig. 2). Often, the V-loop expands and establishes extra stabilizing interactions. Such 
tRNAs lacking entire domains have been documented in certain animal lineages (Sprinzl et al. 1998).
In Archea, the ‘strictly invariant’ nucleotide U at position 8 is replaced by a C (Marck and Grosjean, 2002).
etc.
Available general resource—http://www.uni-bayreuth.de/departments/biochemie/trna.

  2.1.2 tRNA genes
The sequence of the tRNA (gene product) differs from that of its gene. The transcribed sequence of 
the gene is subjected to various processes, which effectively changes the sequence of the gene. Most 
common are post-transcriptional nucleotide modifi cations. For example, the T-loop contains the 
modifi ed base pseudouridine (phi), which is encoded in the gene as T. In addition, the CCA tail at the 
3’ end of tRNAs is added post-transcriptionally. Less common are changes incurred by RNA editing by 
which nucleotides are replaced, inserted or deleted. For example, mis-pairings in the AA-arm portion 
of the gene between 1–72, 2–71, and 3–70 are corrected post-transcriptionally by RNA editing 
(Bullerwell and Gray, 2005, and references therein).

  2.2 Sample instances
Below is a list of sequences representative of tRNA genes. This list is suffi ciently broad to serve as a 
benchmark that measures the effectiveness of tRNA identifi cation software. Journal references are 
provided where appropriate.
GenBank Acc. No. DQ256197, positions 78–145 and references therein.
etc.
A compilation of tRNA genes identifi ed by tRNAscan-SE (Lowe and Eddy, 1997) in complete or nearly 
complete genomes is available at http://lowelab.ucsc.edu/GtRNAdb. Additional tRNA resources are 
available at http://www.uni-bayreuth.de/departments/biochemie/trna.

  2.3 Conceivable genes
The unifying structure is the L-shaped tertiary structure required to perform its translational function 
(Fig. 3). Nucleotides are also important for processing amino-acylation, binding of initiation and 
elongation factors, etc. The constraints on the shape are ….
It is conceivable that the gene is encoded by multiple gene pieces that are transcribed independently, 
similar to ribosomal RNA (Evguenieva-Hackenberg, 2005).
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Table S2. Sample of bioinformatics transformation for tRNA gene identifi cation model.

Bioinformatics transformation
 Biological criteria (BC)
  1. Cloverleaf variant
   1.1.  This variant is composed of three arms, a stem and a highly variable “bulge” loop: the D-arm 

(positions 10..25), the anticodon (AC) arm (pos. 27..43), the variable (V) loop (pos. 44..48) and the 
T-arm (pos. 49..65) enclosed by the acceptor (AA) stem (pos. 1..7 and 66..72). More details in Fig. 1.

   1.2.  Stems represent the major source of tertiary structure stabilization. Individual nucleotide 
interactions between loop regions provide some additional stabilization.

  2. Two-arm variant
   2.1.  This variant is composed of two arms, a stem and a highly variable “bulge” loop. The order is 

similar to the cloverleaf variant, except either the D-arm or the T-arm is absent. See Fig. 2.
   2.2.  Both stems and individual nucleotide interactions between loops stabilize the tertiary structure. 

Compensation for the missing stem is provided by a larger V-loop and an increase in non-stem, 
nucleotide interactions.

  3. Stems
   3.1. Bulges of one or two nucleotides may occur in a stem
   3.2. Allowable nucleotide pairs: A-U, C-G and G-U
  4. D-arm
   4.1. The D-arm forms a hairpin closed by a stem (pos. 10 to 25).
   4.2. The D-stem length is 3 or 4 nt.
   4.3.  The D-stem pairing positions: 10–25, 11–24, 12–23 and 13–22. Note: if 13–22 do not pair, the 

numbering remains as though they are in the stem.
   4.4. The D-loop length is 8 to 11 nt. If positions 13 and 22 do not pair, it increases to 10 to 13 nt.
   4.5. The D-loop positions: 14,15,16,17,17a,18,19,20,20a,20b,21. Optional positions: 17a, 20a and 20b.
   4.6.  Detailed nucleotide and base-pairing distributions are available (see Tables 1 and 2 in Ref. Marck 

and Grosjean, 2002)
  5. Conserved sequences
   5.1.  In eukaryotes, the conserved sequence, 5’-GTGGCNNAGT-3’, is found at position 8 (Sharp et al. 1981).

 Computational rules (CR)
  1. tRNA genes: grammar (partial)
   1.1. �tRNA gene�::=  �AA-stem begin��ss-loop��three-arm� (BC 1.1, 2.1)

�ss-loop��AA-stem end� | �AA-stem begin�
�ss-loop��two-arm��ss-loop��AA-stem end� 

   1.2. �three-arm�::= �D-arm��ss-loop��AC-arm��V-loop�� T-arm� (BC 1.1)
   1.3. �two-arm�::=  �D-arm��ss-loop��AC-arm��V-loop� | (BC 2.1)

�AC-arm��V-loop�� T-arm� 
   1.4. �D-arm�::= �stem-loop� (BC 4.2)
   1.5. �stem-loop�::= �stem begin� �ss-loop� �stem end� |  (BC 3.1)
      �stem begin� �stem-loop-with-bulge� �stem end�
   1.6. �stem-loop-with-bulge�::= �ss-bulge� �stem-loop� �ss-bulge� |  (BC 3.1)
        �ss-bulge� �stem-loop� | �stem-loop� �ss-bulge� 
   1.7. �ss-loop�::= �sequence� general
   1.8. �sequence�::= �nucleotide�* general
   1.9. �ss-bulge�::= �nucleotide� | �dinucleotide� (BC 3.1)
   1.10. �dinucleotide�::= �nucleotide��nucleotide� general
   1.11. �nucleotide�::= A | C | G | T general
  2. Stems 
   2.1. Valid nucleotide pairs(DNA) = {A-T, T-A, C-G, G-C, G-T, T-G} (BC 3.2)
  3. D-arm
   3.1. 16 �= | D-arm | �= 19 (BC 4.1–4.5)
   3.2. 3 �= | D-stem | �= 4 (BC 4.2)
   3.3. 8 �= | D-loop | �= 13 (BC 4.3, 4.4)
  4. Conserved sequence near D-arm 
   4.1. D conserved sequence pattern: GTGGCNNAGT (BC 5.1)
   4.2. 2 �= | First position of D-stem relative to fi rst position of D-consensus pattern| �= 3 (BC 5.1, 4.2)
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Table S3. Sample of computational model for tRNA gene identifi cation model.

Computational model
 Global problem
   Given a DNA sequence, S, of length n over the alphabet D = {A,C,G,T} and the accompanying list of CR, 

determine the location, L, of all tRNA genes and for each, indicate their putative secondary structure.
 Partial problem-set
  1. Identify conserved sequences
    Given a DNA sequence, S, of length n and a set of conserved sequence patterns, P, fi nd all locations, 

Lp, in S for each conserved pattern, p, in P.
   S, DNA sequence provided by the user
   P, set of conserved sequence patterns:
    Conserved sequence near D-arm, pD: CR 3.4
    Conserved sequence near T-arm, pT: unspecifi ed
  2. Identify candidate arms (form hairpins for stems overlapping conserved patterns)
    Given S, Lp, and for each p in P, both Sp, the stem constraints for the arm that overlaps p and Dps, the 

location of the stem relative to p, form stems for each l in Lp as positioned by Dps, and as constrained 
by Sp. Each valid stem defi nes a candidate arm.

   SA, stem constraints for the arm, A, that overlaps the pattern, p
    D-stem, sD, constraints for D-arm, AD: CR 2.1, 3.1, 3.2
    T-stem, sT, constraints for T-arm, AT: CR 2.1, unspecifi ed
   Dps, position of the stem, s, relative to the pattern, p
    Position of pD relative to D-stem, sD: CR 3.5
    Position of pT relative to T-stem, sT: unspecifi ed
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Table S4. Introns in tRNA genes and the effect on the bioinformatics model.

Bioinformatics model
 Relevant Knowledge
  Addition to tRNA gene description
  Introns …

Bioinformatics transformation
 New biological criteria (NBC)
  6. Introns
   6.1. Infrequent occurrence in tRNA genes
   6.2. Location of introns
    6.2.1. Most frequent in loops
     6.2.1.1. Most prevalent in V-loop between AC-arm and T-arm
    6.2.2. Typically, infrequent in stems
     6.2.2.1. In Archaea, introns are predominately present in stems
   6.3. Group I introns
    6.3.1. Observed occurrences vary from 140 to over 2,000 nt long
   6.4. Group II introns (Bonen and Vogel 2001)
    6.4.1. Intron structure contains six domains: I-IV
    6.4.2. Typical length is 600 to 2,500 nt long. Smallest is 389 nt long. Largest is 3,400 nt long.
    6.4.3. Large introns most often contain an ORF, typically in the loop of domain IV.
    6.4.4. Domain V sequence: 5’-RAGCYNNRURMrNNrAAANNYKYayGYNNRGUUY-3’
 New computational rules (NCR)
  5. tRNA genes: additional grammar for introns
   5.1. �ss-loop�::=  �sequence� | �sequence-or-empty� (NBC 6.2.1, Replaces CR 1.7)

�sequence-with-intron� 
   5.2. �sequence-or-empty�::= �sequence� | ε (empty set) general
   5.3. �sequence-with-intron�::= �intron� | �intron� �ss-loop� (NBC 6.2.1)
   5.4. �ss-bulge�::=  �nucleotide� | �dinucleotide� | (NBC 6.2.2, Replaces CR 1.9)

�intron-in-bulge� 
   5.5. �intron-in-bulge�::=  �intron� �nucleotide� | �intron� �dinucleotide� | (NBC 6.2.2)

�nucleotide��intron� | �dinucleotide� �intron� |
�nucleotide� �intron� �nucleotide� | �intron� 

   5.6. �intron�::= �sequence��domainV��sequence� (NBC 6.3.2)
   5.7. �domainV� ::= RAGCYNNRURMrNNrAAANNYKYayGYNNRGUUY (NBC 6.3.4)
  6. Introns
   6.1. 140 �= | Group I intron | �= 2,500 (NBC 6.3.1)
   6.2. 389 �= | Group II intron | �= 3,400 (NBC 6.4.2)
  7. D-arm (in addition to CompReq 3)
   7.1. 16 �= | D-arm (with intron) | �= 3,519 (CR 3.1, NCR 6.1)

Computational model
 Partial set of problems
  Need to re-work completely the analytical approach as previous approach is no longer feasible.
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Figures for tRNA Case Example
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Figure S1. Canonical schematic of the tRNA cloverleaf secondary 
structure (Marck and Grosjean, 2002).
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Figure S2. The two-arm, tRNA-Arg molecule in Caenorhabditis 
elegans (Okimoto and Wolstenholme, 1990).

Figure S3. The L-shaped tRNA tertiary structure. AA-stem (orange), 
D-arm (green), AC-arm (blue), V-loop (purple), T-arm (red).
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