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Abstract: A large number of CMV strains has been reported to circulate in the human population, and the biological 
signifi cance of these strains is currently an active area of research. The analysis of complex genetic information may be 
limited using conventional phylogenetic techniques.

We constructed artifi cial neural networks to determine their feasibility in predicting the outcome of congenital CMV 
disease (defi ned as presence of CMV symptoms at birth) based on two data sets: 54 sequences of CMV gene UL144 obtained 
from 54 amniotic fl uids of women who contracted acute CMV infection during their pregnancy, and 80 sequences of 4 genes 
(US28, UL144, UL146 and UL147) obtained from urine, saliva or blood of 20 congenitally infected infants that displayed 
different outcomes at birth. When data from all four genes was used in the 20-infants’ set, the artifi cial neural network model 
accurately identifi ed outcome in 90% of cases. While US28 and UL147 had low yield in predicting outcome, UL144 and 
UL146 predicted outcome in 80% and 85% respectively when used separately. The model identifi ed specifi c nucleotide 
positions that were highly relevant to prediction of outcome. The artifi cial neural network classifi ed genotypes in agreement 
with classic phylogenetic analysis. We suggest that artifi cial neural networks can accurately and effi ciently analyze sequences 
obtained from larger cohorts to determine specifi c outcomes.\
The ANN training and analysis code is commercially available from Optimal Neural Informatics (Pikesville, MD).

Introduction
CMV is a ubiquitous virus that infects the majority of humans by adulthood.1 CMV infection is also 
the most common congenital infection in the U.S., affecting around 1% of infants.2 While most CMV-
infected infants have no symptoms at birth, approximately 10% are severely symptomatic and have 
major central nervous system complications including hearing loss, seizures and mental retardation.3,4 
Hearing loss develops in the majority of symptomatic infants but also in some previously-asymptomatic 
ones. These variable outcomes involve viral and host determinants. The role of specifi c CMV strains 
and/or infection with multiple CMV strains in the outcome of congenital CMV infection is unclear.5,6

Most of the 165 genes present in the 236 kbp human CMV genome are highly conserved among 
strains. However, at least 12 genetic loci are unusually variable (4–15 subsets in each) and sequencing 
at multiple genetic loci reveals that a large but fi nite number of strains is in circulation.7 The number 
of strains continues to increase because of the lack of intra- and inter-genic linkage.8

The most popular approach for analyzing sequence variation and genetic clustering is the phyloge-
netic analysis. Several studies have reported associations between specifi c CMV strains and disease 
outcome, defi ned as presence of CMV symptoms at birth.6,9 However, considering the hypervariability 
of several genes, phylogenetic analysis may be limited in determining associations between polymor-
phisms and outcomes, as well as in identifying genetic substitutions across multiple loci. The genetic 
information obtained from studies of strain variation in different populations can be extensive because 
of the number of subjects and the number of genetic loci that are sequenced. Therefore, more tools are 
in need to analyze complex and multiple genetic factors. The ability to predict the outcome of con-
genital CMV infection based on virus heterogeneity may have major clinical signifi cance.

Artifi cial neural networks (ANNs) have been successfully applied in different fi elds to address 
complex problems. ANNs learn by an iterative process that adjusts the weights of the connections 
between the artifi cial neurons, such that the system outputs an appropriate result. Data processing by 



282

Arav-Boger et al

Bioinformatics and Biology Insights 2008:2 

these systems does not require assumptions of how 
outputs relate to inputs. Similarly successful learn-
ing does not require independent inputs. As such, 
ANN analysis is sometimes able to confi rm causal 
input-to-output relationships that were discovered 
using traditional means, as well as uncover addi-
tional insight and knowledge.

Because of the high sequence variability in 
several CMV genes (e.g. 70% divergence at amino 
acid level for UL146),10 and the many different 
genetic strains that were observed, we decided to 
construct an ANN model, to determine whether we 
could enhance prediction accuracy of congenital 
CMV disease outcome based on sequence data 
from four CMV-encoded genes: UL144, UL146 
and UL147 and US28. In addition, we determined 
the ability of the ANN model to identify specifi c 
nucleotide positions that were particularly related 
to outcome.

Materials and Methods

Samples
We obtained samples from two cohorts: 54 amni-
otic fl uids from Italian women and 23 cultured 
samples (urine, saliva or blood) from the US-born 
neonates diagnosed with congenital CMV. Thirteen 
viral isolates (8 urine samples, 4 saliva samples 
and one blood sample) were cultured from symp-
tomatic neonates, ten other isolates (all saliva 
samples) were cultured from asymptomatic, CMV-
infected neonates. Our previous work indicated 
that there is no geographically-related difference 
in the genotype distribution between the United 
States and Europe.11 Additionally, our experience 
shows that, in a specifi c CMV-infected infant, the 
same DNA sequences are detected from different 
body fl uids.

DNA extraction and genotyping
Total genomic cell and viral DNA was extracted 
from infected cells and original amniotic fl uids 
using a capture-column kit (Gentra systems, Min-
neapolis, Minnesota). PCR amplifi cation of US28, 
UL144, UL146 and UL147 was described else-
where.6,10 Out of 23 samples obtained from US 
born neonates, DNA amplification for US28, 
UL144, UL146 and UL147 was successful in 20 
samples (7 asymptomatic, 13 symptomatic infants) 
and provided 80 sequences total. PCR products 

obtained from both cohorts were sequenced 
directly with the BigDye Terminator Cycle 
Sequencing Kit (Perkin-Elmer Applied Biosys-
tems, Foster City, California) and the sequencing 
products were analyzed on an ABI 310 automated 
sequencer. Sequence alignment and phylogenetic 
analyses were described elsewhere.6 Multiple 
alignment of coding DNA from aligned amino acid 
sequences was done using RevTrans.12

Design of ANN models
An ANN model (also called ‘Multilayer Percep-
tron’) was constructed from three layers of math-
ematical “neurons”: input layer, a single hidden 
layer, and output layer. The output of each neuron 
is a function of the values of the inputs to it mul-
tiplied by calculated weights of each input. ANN 
models are trained by learning from known exam-
ples, and adjusting the weights between the neu-
rons so that the errors between the ANN outputs 
and the known data are minimized. After training 
of the ANN, additional information is obtained by 
analyzing the individual weights that connect the 
input layer into the hidden layer, and the hidden 
layer into the output layer,13 and inputs with the 
greatest impact on outputs can be determined. 
Starting non-random weights were calculated using 
published algorithm.14 Five hidden neurons were 
used. Once the ANN was trained, we tested the 
sensitivity and accuracy of the model to identify 
specifi c outcomes based on sequences presented 
as validation samples that were not used in the 
training process. The outcome of the patients was 
already known to us but the ANN network per-
formed “blinded” analysis after its training was 
completed. Furthermore, the training and valida-
tion samples were randomly selected from the 
entire data set, and selection was not based on 
outcome.

Construction of inputs to the ANN
We combined the sequence data of UL144, UL146, 
UL147, and the N-terminus region of US28 into 
one vector for each of the samples. Each vector 
had 1631 nucleotide positions: 531 positions for 
UL144, 377 for UL146 (after alignment), 483 
for UL147 and 240 for US28. These 20 vectors 
were then transformed into 20 binary vectors, by 
expanding each nucleotide position into four 
binary positions. “A”, “C”, “G”, and “T” were 
coded as [1 0 0 0], [0 1 0 0], [0 0 1 0] and [0 0 0 1] 
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respectively. Positions with nucleotide deletions 
were coded as [0 0 0 0]. This binary coding 
resulted in binary vectors with 1,631 × 4 = 6,524 
positions. Binary positions that were identical 
among all 20 samples were removed, resulting in 
a set of 1451-long binary vectors comprised of 
301 inputs for UL144, 827 for UL146, 268 for 
UL147 and 55 for US28. The higher position count 
for UL146 is indicative of the hypervariability of 
this gene. For the 54-sample group that only had 
UL144 data, a similar process was repeated, 
resulting in a 301-long binary vector for each 
sample.

ANN output
The ANN was constructed with a single output, 
designating outcome at birth (severe congenital 
CMV disease or asymptomatic CMV infection with 
no sequelae at birth). Samples from symptomatic 
infants were denoted as an output value of 0.9 
whereas asymptomatic samples were denoted as 
an output value of 0.1. Both hidden and output 
neurons used the sigmoid function.

  

Where y is the sum of individual input values 
xj times the individual weights connecting the 
inputs to the neuron:

  

Training was done on a notebook computer with 
a 1.66 GHz Intel Core Duo processor (IBM Think-
Pad 2623D4U) using Matlab numerical analysis 
software (Mathworks, Natick, MA) with ANN 
training and analysis code from Optimal Neural 
Informatics (Pikesville, MD). The training is 
stopped when the sum of all squared errors of each 
output neurons for the training examples (not the 
validation examples) does not decrease by at least 
5% for 9 consecutive iterations (including itera-
tions where the local minima escape algorithm was 
invoked).

Training methods
We fi rst analyzed the 54 samples with UL144 data. 
36 samples were randomly selected for training, 
and the remaining 18 samples were selected for 

validation. The ANN was trained, optimizing the 
individual weights connecting input to hidden and 
hidden to output so that the ANN outputs were as 
close as possible to known outcomes. Thereafter, 
the ANN model was tested for its ability to predict 
the outcome of the other 18 samples which were 
not used as part of the training. An ANN output 
of 0.5 or higher, was defi ned “symptomatic”, and 
an ANN of less than or equal to 0.5 was defi ned 
as “asymptomatic”. The quality of the network 
was determined using two measures: 1) the num-
ber of samples which were correctly predicted and 
2) the AUC (area under curve) of the ROC 
(receiver operating curve). In a perfectly-accurate 
model, AUC would be 1. This process was 
repeated 100 times with a different random assign-
ment of samples into the validation and training 
groups in each time.

When considering the 20-sample data set, we 
realized that training the ANN with just 12 samples 
might be difficult. Thus, we employed the 
commonly-used “leave one out” training strategy, 
as follows: we performed 20 “leave one out” train-
ing sessions. In each session, a different sample 
was used as an independent test, while the remain-
ing 19 out of the 20 samples were used as training 
vectors. Once trained, the ANN was tested by 
predicting the outcome of the independent test 
sample which was not used as part of the 
training.

To determine the most signifi cant nucleotides 
in each gene that predict outcome, the “leave one 
out” process was repeated using data from 
only one gene at a time, as well as various combi-
nations of two genes. To verify the validity of the 
“leave one out” method, we also performed it on 
the 54-sample Italian cohort, and compared the 
results with those obtained when taking 36 samples 
for training and 18 for validation.

In the 20-sample cohort we determined the 
specifi c nucleotide positions in each of the four 
tested genes that were most relevant to the network 
in determining outcome. To fi nd these locations, 
we randomly divided the samples into two groups: 
15 samples (5 asymptomatic, 10 symptomatic) for 
training and 5 samples (2 asymptomatic, 3 
symptomatic) for testing. We then ranked the 
inputs based on their relevance to the ANN 
prediction accuracy, calculated using the hidden 
neurons relative variance (HDRV) knowledge 
extraction and dimensionality reduction 
technique.13 This technique is based on the 
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observation that in a trained ANN model, a less 
relevant input contributes only a small proportion 
of the variance in the activities of hidden neurons. 
After each iteration, we removed the least 
signifi cant inputs that contributed a total of 10% 
of the variance of the hidden neuron, according to 
their causal index (CI) as defi ned below, and left 
those inputs that contributed 90% of the variance. 
We then re-trained the network using the same 15 
training samples but with the reduced input set 
and repeated this process of training and input 
removal 20 times.

We calculated the causal index (CI) of each 
input, a semi-quantitative estimate of the direction 
and magnitude of the infl uence of each ANN input 
on the ANN output.15 For any combination of input 
neuron i and output neuron k, the causal index is 
defi ned as

  

Where h is the number of hidden neurons, wkj 
are the connection weights from hidden neuron j 
to output k, and wij are the connection weights 
between input i and hidden neuron j. The CI was 
found to be very useful in relating the infl uence of 
change in each input to the relative magnitude and 
direction change of each output.15 The magnitude 
of the CI estimates the relative contribution of each 
input to the output value. The sign of each coef-
fi cient (positive or negative) estimates in which 
direction does the input affect the output value. 
Large positive CI means that a particular input 
strongly infl uences the outcome towards being 
symptomatic (0.9 output value), whereas large 
negative CI means that a particular input strongly 
infl uences the outcome of the network towards an 
asymptomatic outcome (0.1 output value). 
Although somewhat heuristic, the CI is more reli-
able than local sensitivity analysis as it is based on 
data from the entire ANN using all the available 
states.

Last, we analyzed the output of the hidden 
neurons in network trained with all 20 samples. It 
has been published16 that in a well-trained ANN, 
these outputs tend to be close to 0 or 1. For each 
input sample, we rounded the value of the each 
hidden neuron to 0 or 1 (using a 0.5 threshold) and 
used these “binary” patterns of the hidden layer 
for each set of inputs can be used for clustering of 
input vectors into similar groups.

Results

Italian cohort (54 samples 
with UL144 data)
We randomly selected 36 samples to train an ANN 
and 18 samples to validate it. We then recorded the 
total number of correct classifi cations in the valida-
tion group as well as the total number of correct 
classification in the training group. We then 
repeated this process 100 times, each time perform-
ing a different random selection to the training and 
validation groups. On average, 13.4 samples 
(74.4%) were correctly classifi ed from the valida-
tion group, with a standard deviation of 1.75 
samples (9.7%). Out of the entire 54-sample 
cohort, 48.9 samples (90.5%) were classifi ed cor-
rectly on average, with a standard deviation of 2.3 
samples (4.3%). Mean AUC for validation group 
was 0.88, with a standard deviation of was 0.07.

The “leave one out” analysis correctly predicted 
83% of the samples (11 of 16 symptomatic, 34 of 
38 asymptomatic) with an AUC of 0.88.

3.2 US cohort (20 samples analyzed 
with UL144, UL146, UL147 and US28)
Using all 4 genes, ANNs predicted outcome in 90% 
of the samples (6 out of 7 asymptomatic, 12 out of 
13 symptomatic). Table 1 summarizes the results 
of ANN prediction of outcome. Only two samples 
(A6 and S11) were incorrectly identifi ed. ROC 
analysis revealed an AUC of 0.857.

We determined the relative relevance (HDRV) 
index for each of the nucleotide position (Fig. 1). 
Most of the relevant values are concentrated in the 
UL144 and UL146 regions. Summarizing the 
absolute value of the relevance for each gene shows 
that UL146 contained 48.2% of the total relevance, 
UL144 contains 43.4%, UL147 contains 7.1% and 
US28 contains 1.4%. Thus, UL147 and US28 
appear insignifi cant in determining outcome.

To further test the hypothesis that UL144 and 
UL146 were most relevant to prediction of out-
come, we performed ANN analysis when using 
only one gene or a combination of several genes 
at a time (Table 2). The “leave one out” ANN pre-
diction for various gene combinations revealed that 
the highest prediction accuracy (85%) was achieved 
when using UL146 data alone or UL146 data in 
combination with UL147 or US28 data. Comparing 
UL144-based networks with UL146-based 
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networks revealed that prediction accuracy with 
UL144 is slightly lower (80% vs. 85%), but AUC 
is slightly higher (0.824 vs. 0.791). Thus, predic-
tion based on UL144 is very similar to prediction 
based on UL146, and the differences may be 
reduced with a larger data set. As expected, UL147 
or US28 alone produced inaccurate networks as 
evidenced by both low prediction accuracy and 
low AUC (for US28).

20 iterations of the input count reduction procedure 
were executed (Fig. 2) with a resultant AUC.

The positions chosen from the 9th iteration 
onwards are shown in Table 3. Prediction accuracy 

for the 9th and 11th iteration was 90%, including 
100% of the samples that did not participate in the 
input reduction process. Prediction accuracy for 
the 10th and 12th iteration was 95%, including 
100% of the samples that did not participate in the 
input reduction process. Inputs identifi ed in the 
13th iteration onwards were able to accurately 
predict 100% of the samples.

We performed clustering of input samples by 
training an ANN with UL144 inputs. The network 
identifi ed the following three clusters: Cluster 1: 
samples A1, A4, A5, A6, A8 and A10 (all 
asymptomatic), cluster 2: samples S1, S2, S5, S6, 

Table 1. Prediction of congenital CMV outcome based on an ANN model using sequence data from 4 
CMV-encoded genes. Bold numbers include incorrect classifi cation.

Asymptomatic expected result = 0.1) Symptomatic (expected result = 0.9)
Sample ANN prediction result Sample ANN prediction result
A1 0.21 S1 0.91
A4 0.16 S2 0.93
A5 0.35 S3 0.88
A6 0.91 S4 0.71
A8 0.09 S5 0.53
A9 0.49 S6 0.9
A10 0.2 S7 0.9
  S8 0.93
  S10 0.99
  S11 0.14
  S12 0.92
  S13 0.82
  S14 0.89
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Figure 1. Relevance values for UL144, UL146, UL147 and US28. (Positions that were eliminated in the preprocessing are shown as 0).
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S8, S10, S11, S12, S13 and S14 (all symptomatic), 
cluster 3: samples S3, S4 and S7 (all symptomatic). 
These clusters are comparable to the phylogenetic 
clustering previously published on these samples6. 
Repeating the process using only the UL146 inputs, 
we identifi ed three clusters: cluster 1: samples A1, 
A4, A5, A8 and A10 (all asymptomatic), cluster 2: 
samples A6, S1, S2, S3, S4, S5, S6, S7, S8, S10, 
S12, S13 and S14 (all symptomatic), cluster 3: 
Samples A9 and S11.

4. Discussion
We report that ANN is a sensitive and effective 
method for the analysis of complex CMV poly-
morphisms, prediction of outcome of CMV 

infection and knowledge extraction. There is an 
ongoing debate whether strain variation plays a 
role in CMV disease outcome in general and con-
genital CMV in particular. Sequencing of several 
gene loci reveals high degree of sequence variation, 
but the biological signifi cance of this fi nding is 
unclear. The comparison between and the defi nition 
of genotype at each locus is largely based on diver-
gence levels and clustering, which are distinct for 
each gene, and give unambiguous results. We have 
reported that polymorphism in the CMV-encoded 
UL144, a truncated TNF receptor gene, was predic-
tive of the outcome of congenital CMV infection 
among 23 US and 56 Italian newborns.6,11 
Polymorphisms in UL146 and UL147, both α-
chemokine genes, were not found to be associated 

Table 2. Prediction performance (accuracy and AUC) of CMV outcomes based on various gene combinations.

Genes analyzed Prediction accuracy Correctly classifi ed AUC
  A: Asymptomatic
  S: Symptomatic
UL144, UL146, UL147, US28 90% A:6/7, S: 12/13 0.857
UL146, UL147 85% A:5/7, A:12/13 0.824
UL146, US28 85% A:5/7, A:12/13 0.824
UL146 85% A: 5/7, S: 12/13 0.791
UL144 80% A: 4/7, S: 12/13 0.824
UL144, UL147 75% A: 5/7, S: 10/13 0.824
UL147 75% A: 3/7, S: 12/13 0.802
UL 144, UL146 70% A: 4/7, S: 10/13 0.802
UL147, US28 70% A:4/7, S:10/13 0.769
UL144, US28 60% A: 3/7, S: 9/13 0.725
US28 55% A:1/7, S: 10/13 0.495
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Figure 2. Number of remaining inputs and area under the curve (AUC) for each iteration of the input-reduction algorithm.
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with disease severity among 23 US newborns.10 
High degree of sequence variation was noted in 
UL146, and therefore segregation of genotypes 
among asymptomatic or symptomatic newborns 
was technically impossible, and especially so given 
the sample size. Analysis of an association between 
gene polymorphisms and disease outcome is 
performed for one gene at a time. Thus, if the 
outcome depends on several genes, than identifying 

correlation between genetic clusters and outcomes 
becomes even more diffi cult.

The ability to predict symptomatic CMV disease 
from DNA sequence data is important, because it 
may allow early diagnosis and therapeutic consid-
erations. Therefore a system that is able to analyze 
concurrently complex and high number of strains 
may advance our ability to predict outcome and 
detect more virulent strains. In fact, the artifi cial 

Table 3. Specifi c important inputs identifi ed by ANN. Causal index (9th iteration) is also reported to show magnitude 
of direction of infl uence for each input. Note: Causal Index for later iterations was identical in direction for each 
input and very similar in relative magnitude.

Input reduction iteration
Gene Nucleotide Value Amino acid Causal index 9 10 11 12 13 14 15–20
UL144 56 A 19 −6.82

66 A 22 −7.08
72 A 24 −6.81
108 C 36 −6.90
115 A 39 −6.94
116 A −6.82
118 C 40 −7.12
119 A −7.01
126 T 42 −6.94
140 A 47 −7.01
180 T 60 −7.23
226 G 76 −6.94
234 T 78 −6.94
298 T 100 −10.27

UL146 9 A 3 −9.25
46 A 16 8.22
46 G −8.37
70 A 24 6.70
96 T 32 −5.60
140 G 47 9.00
140 T −10.6
207 A 69 6.59
227 A 76 −8.13
262 C 88 −5.51
302 G 101 −5.35
303 A 8.10
304 A 102 6.04
355 C 119 5.81

UL147 51 T 17 4.88
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neural network approach has been applied to 
predicting CMV disease after renal transplantation, 
and revealed that the predictions were a considerable 
improvement on current prediction methods avail-
able at that time, although viral loads have not been 
used as parameters in this model.17

An ANN analyzes data when the relationships 
between cause and affect are complex and unclear. 
ANN modeling has been successfully used in many 
different fi elds, including medicine and biology.18 
Specifi cally, ANN has been used in bio-modeling,19 
and in molecular sequence analysis.20 Researchers 
have used ANN modeling for analysis of gene 
expression arrays of cancer cells16,21,22,23 identify-
ing several genes that can correctly classify cancer 
types. In addition, ANN modeling has been used 
to enhance prediction of Lopinavir resistance from 
HIV genotype.24

The ANN method does not pre-suppose any 
knowledge about the relationship between inputs 
and outputs. In principal, we can use any combina-
tions of genes as a possible predictor of disease 
outcome, and use insights derived from ANN 
analysis as triggers for more detailed studies using 
standard molecular laboratory techniques.

Even without prior knowledge, the ANN model 
generated results that are in agreement with our 
previously-published fi ndings obtained using phy-
logenetic analysis and clustalW methods. The ANN 
modeling accurately predicted outcome of con-
genital CMV disease based on UL144 sequences. 
However, using the conventional phylogeny, we 
were unable to find a significant association 
between UL146 polymorphisms and outcome of 
congenital CMV, largely due to extreme hypervari-
ability and a small sample size. When applying 
ANN modeling for prediction of congenital CMV 
outcome based on UL146 sequences, UL146 
genotypes were predictive of outcome, while in 
UL147 and US28 no positions were found that 
correlated with disease outcome. In addition, a 
combination of four genetic loci was 90% sensitive 
in predicting outcome of congenital CMV.

Our analysis on the larger Italian cohort showed 
that the “leave-one-out” methods correlates with 
results obtained using the traditional ANN approach 
(2/3 of samples for training, 1/3 of samples for 
validation). This correlation further supports the 
use of the “leave-one-out” approach for the smaller 
US cohort. We attribute the somewhat better results 
obtained with the “leave-one-out” method to 
the larger sample size available for training: 

53 samples in the leave-one-out method vs. 
36 samples in the traditional approach. Both 
approaches generated very similar AUC values.

Using an ANN modeling also allowed us to 
determine the inputs (nucleotide positions) that 
have the most signifi cant effect on the output (dis-
ease outcome). The model extracted the minimum 
number of nucleotide changes that resulted in the 
best prediction. While the ANN did not need more 
than 5 inputs to make a perfect prediction 
for the sample, we decided to provide additional 
inputs that were still present in late-stage iterations 
as they may lead to more focused questions related 
to biological mechanisms.

Clustering using ANN modeling was also ana-
lyzed. The fact that automatic ANN clustering 
based on UL144 matched our previous fi ndings 
using more conventional techniques helped vali-
date the automatic method. Since clustering for 
UL146 data was very diffi cult with conventional 
techniques (because of high degree of variability), 
we found it interesting that clustering could be 
performed with the ANN. Similarly, if samples 
need to be clustered based on more than one gene, 
an ANN is capable of producing relevant results 
whereas conventional distance-based methods face 
greater diffi culties.

In summary, we have shown the potential use 
of analyzing large sequence information using 
ANNs modeling in addition to conventional phy-
logentic techniques. The ANN seems to have 
several advantages over regular phylogenetic 
analysis including concurrent analysis of multiple 
genetic loci, clustering into subtypes and identify-
ing the most signifi cant positions that affect the 
output. We recognize that the analysis was per-
formed on a small sample size and a limited num-
ber of hypervariable genes, yet results are 
intriguing. At this time, we do not have sequence 
information on other hypervariable CMV genes 
such as gN and gB. Future studies should include 
a larger cohort of samples and sequence data of 
other hypervariable CMV genes. This will allow 
us to determine the role of different CMV strains 
in outcome of congenital CMV. We may also be 
able to create a prediction model that links differ-
ent inputs (such as nucleotide sequences, multiple 
CMV strains, race, age, and family history) to 
outputs (such as symptomatic or asymptomatic 
disease, hearing loss etc). The successful develop-
ment of such a model will allow identifi cation of 
groups at higher risk for disease sequelae.
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ANN – artificial neural network; CMV- 
cytomegalovirus; PCR- polymerase chain reaction.
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