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Abstract: Gene copy number changes are common characteristics of many genetic disorders. A new technology, array 
comparative genomic hybridization (a-CGH), is widely used today to screen for gains and losses in cancers and other genetic 
diseases with high resolution at the genome level or for specifi c chromosomal region. Statistical methods for analyzing such 
a-CGH data have been developed. However, most of the existing methods are for unrelated individual data and the results 
from them provide explanation for horizontal variations in copy number changes. It is potentially meaningful to develop a 
statistical method that will allow for the analysis of family data to investigate the vertical kinship effects as well. Here we 
consider a semiparametric model based on clustering method in which the marginal distributions are estimated nonpara-
metrically, and the familial dependence structure is modeled by copula. The model is illustrated and evaluated using simu-
lated data. Our results show that the proposed method is more robust than the commonly used multivariate normal model. 
Finally, we demonstrated the utility of our method using a real dataset.
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Introduction
The gene copy number (also called “copy number variants”—CNV) is the number of copies of a 
particular gene in the genome of an organism. Recent evidences show that gene copy number (GCN) 
amplifi cations and deletions are common characteristics of many genetic diseases. For example, GCN 
can be elevated in cancer cells as demonstrated in the epidermal growth factor receptor (EGFR) gene 
in patients with non-small cell lung cancer (Cappuzzo et al. 2005) and also higher copy number of 
CCL3L1 has been associated with susceptibility to human HIV infection (Gonzalez et al. 2005). Thus 
identifying these genetic gains and losses provides useful information about specifi c disease suscepti-
bility or resistance. GCN analysis among normal people within the human genome is also of interest. 
However, these genetic characteristics are usually not directly observable. Recent technological devel-
opment in array comparative genomic hybridization (a-CGH) provides scientists with an effi cient tool 
to conduct whole genome and high-density region specifi c investigation of GCN (Solinas et al. 1997; 
Pinkel et al. 1998; Snijders et al. 2001).

Briefl y, a-CGH technique involves the labeling of genomic DNA from disease tissues (e.g. cancer) 
and normal control tissue (reference) with different colors (fl uorochrome). These samples are then 
co-hybridize to a metaphase spread from a normal reference cell. After hybridization, emission from 
each of the two fl uorescent dyes is measured, and the signal intensity ratios are indicative of the relative 
copy number of the two samples. The ratio of the two fl uorochrome intensities is then calculated and 
regions where the disease DNA are amplifi ed or deleted are readily detected on the metaphase spread. 
The resulting data are in the form of microarrays. This technique not only gives us information about 
copy number gains and losses in the disease genomic DNA but also allows the identifi cation of the 
specifi c chromosomes and the regions of the chromosomes where these changes occurred.

However, the a-CGH data does not provide direct measurements of the GCN changes. Hence, several 
statistical approaches for analyzing and describing results from these experiments have been developed. 
Differences exist in these approaches and newer approaches addressing some of the limitations of existing 
method are needed. For example, some of these methods do not take into account the spatial dependence 
within the chromosome (Hodgson et al. 2001; Pollack et al. 2002; Cheng et al. 2003; Wang et al. 2004) 
while others have implemented such dependence structure into their models to enhance the inference 
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(Jong et al. 2004; Picard et al. 2004; Fridlyand 
et al. 2004; Eilers et al. 2004). With the exception 
of a few that are Bayesian (Barash and Friedman, 
2002; Daruwala et al. 2004; Broet and Richardson, 
2005), most of the existing methods are frequen-
tist’s. All of the existing methods are designed for 
analyzing data from unrelated persons and are 
therefore effective in explaining horizontal changes 
in GCN. However and when available, family data 
present wonderful opportunity to investigate the 
vertical kinship effects of GCN as well as the 
horizontal changes. For this type of data, the main 
challenge is to model the high dimensional familial 
dependence structure, and no such approach was 
found following a careful review of the literature. 
In this paper, we present such a method in which 
we used the nonparametric approach to model the 
marginal distributions and then linked the joint 
distribution by a copula structure.

Typically, GCN changes observed from a-CGH 
experiments are classified into three groups 
corresponding to the three statuses of copy number 
changes—amplification, deletion and normal; 
Thus, allowing the microarray responses to have 
similar features. The practical challenge in the 
problem that we describe here is that of high 
dimensionality due to familial dependence among 
pedigree members. As we indicated above, several 
of the statistical tools for microarry data clustering 
deal with low dimensional data (usually one 
dimensional) and do not take into account the 
familial dependence among the pedigree members. 
Such methods can be divided into two main 
groups, the model based and non-model based 
(semiparametric). The former assumes specifi c 
probability models for the sub-distributions of 
response in each cluster and is effi cient when the 
specifi cations are correct but may be seriously 
biased if implemented specifi cations deviate from 
the true unknown models. The semiparametric does 
not make any assumption about the models except 
that of a mixing structure, in which the unknown 
sub-distributions are estimated nonparametrically 
from the data themselves, and the inference is 
robust. This method is adequate when the data size 
is large so that the sub-distributions can be 
estimated accurately. Yuan and He (2008) proposed 
such a method for low dimensional microarray 
clustering for independent data generated from 
unrelated persons. For data with high dimensionality, 
the commonly used multivariate normal model 
rarely fi ts the actual data, and the nonparametric 

method is not directly applicable in cluster analysis, 
so neither of the above models based or non-model 
based methods are suitable for analyzing the depen-
dence and high dimensionality of family data.

In statistics, the copula is a widely used tool for 
modeling the dependence structure of high dimen-
sional data (Sklar, 1959; Joe, 1997), and is 
particularly suitable for pedigree data modeling. 
Here we propose and implement a semiparametric 
copula model to address this problem. Specifi -
cally, the marginal distributions are estimated 
nonparametrically, the within pedigree dependence 
structure is modeled by copula with parameters 
specifi ed by the kinship coeffi cients. A penalty term 
is used against non-unimodality of the sub-
distributions. The optimal partition is performed 
using a classifi cation-estimation (of densities)-
maximization-estimation (of parameters) algo-
rithm. The algorithm shares the property of 
ascending the penalized semiparametric likelihood, 
just like the well known EM algorithm for ascend-
ing the parametric likelihood, and thus, under fair 
conditions, converges to the optimal partition of 
the microarray.

The Method
In a-CGH data, the fl uorescence ratios between 
two samples, case and control, are measured across 
a genomic region. For loci with different copy 
number changes, the corresponding log-ratio 
measurement tend to be different. Thus in a-CGH 
data analysis, often a three-state mixture model is 
used: deletion state, normal state and amplifi cation 
state, and we arbitrarily lable them as state 1, 2 
and 3. Genes with copy number deletion tend to 
have smaller log-ratio measurements, those with 
normal status tend to have moderate measurements, 
and those with amplifi cation tend to have larger 
measurements.

We focus on the case of a given chromosome. 
When there are more than one chromosome under 
consideration, the method is similar by modeling 
the chromosomes one by one. Suppose there are n 
loci of interest and r pedigrees of individuals. The 
measurement at each locus for each individual is 
observed. The j-th pedigree has sj individuals 
( j = 1, ..., r), at locus k, the l-th individual of 
the j-th pedigree has microarray measure-
ment yjkl. Denote y y yjk jk jks j

= … ′( , , )1  be the 
measurements of the j-th pedigree at locus k, for 
each fixed pair (  j, k) the yjkl’s are familiarly 
dependent due to kinship.
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Generally this question is formulated as a cluster 
problem, in which each of the gene locus in classifi ed 
into one of the clusters B1, B2 and B3 represent the 
three states deletion, normal and amplifi cation. Let 
y be a general random vector of the observation yjk’s, 
a mixture model on y is specifi ed as

 f y f y Bi
i

i( ) ( | ),=
=
∑α

1

3

 (1)

Where f (⋅|Bi) is the sub-density of the responses in 
the i-th cluster, and the αi’s are the mixing 
proportions satisfying 0 � αi � 1, Σi

k
= =1 1α .  In 

the literature usually the f(⋅|Bi)’s are specifi ed as 
multi dimensional normal density functions with 
cluster specifi c mean vectors and variance matri-
ces. Typically for this type of pedigree data the 
dimension is around 10 to 15.

In practice, such high dimensional dependent 
data hardly conforms to a multivariate normal 
distribution. A commonly used statistical tool to deal 
with high dimensional dependence structure is the 
copula. In this method, it is only necessary to 
specify each of the marginal densities, and then 
use a link (copula) to compose all the marginal 
densities into a joint multivariate density with 
desired dependence structure. There are large 
number of copulas to be used, and some optimality 
criteria to select the best copula for a given problem 
and data. When the copula is selected, we can 
incorporate the kinship coeffi cients among the 
pedigree members into its dependence structure. 
Also, there is the question of how to specify the 
marginal densities. There are various parametric 
densities to choose from, but if the wrong one is 
used the results may be seriously biased. On the 
other hand, for data with large sample size, the 
nonparametric density can adapt to any distribu-
tional feature. Since we do not know the true sub-
densities we model each of the marginal densities 
by nonparametric method for robustness. Finally, 
a modified BIC criterion is used to select the 
optimal number of clusters. We describe each of 
the above steps in different sub-sections below.

The marginal distributions
Since commonly available pedigree data usually 
consist of three generations and to account for 
the age and gender difference, the distributions 
of the measurements are divided into six groups in 
the following order: fi rst generation male, fi rst 
generation female, second generation male, second 
generation female, third generation male and third 

generation female. We use Gs to denote the s-th 
group. For example if an individual with observation 
yjkl is a second generation female in any given 
pedigree, she is in group 4, we simply denote 
yjkl ∈ G4, and so on. Denote fs(⋅|Bi) be the sub-
density of array cluster i of group s.

Since the fs(⋅|Bi)s are unknown, they can be 
estimated by the well known nonparametric 
estimator (Rosenblatt, 1969)

ˆ ( | ) ,f y B
n h

K
y y

hs jkl i
is n

uvw jkl

ny C Gis isuvw i s

=
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∈ ∩

∑1  (2)

where nis is the sample size (number of individuals) 
of group s in cluster i, K(⋅) is arbitrary given kernel 
density, and hnis

 is a given bandwidth to be specifi ed 
below.

In the density estimation literature, the choice 
of kernel is not of particular importance (Diggle, 
1983; Silverman, 1986). Studies suggest that most 
unimodal densities perform about the same as the 
other when used as a kernel, and the choice 
between kernels can be made on other grounds 
such as computational effi ciency. However, there 
are some popular options in practice for different 
reasons. For some general introduction for the 
choice of kernels,we refer to Silverman (1986) and 
Scott and Wand (1991). The normal kernel (i.e. 
K(⋅) is the density function of the standard normal 
distribution) is widely used in practice for 
convenience and other nice features.

In contrast, the choice of bandwidth is crucial in 
density estimation (Silverman, 1986). Interesting 
proposals which address this problem can be found 
in Fan and Gijbels (1992). There is literature on 
automatic methods that attempt to minimize a lack-
of-fi t criterion, such as integrated squared error. From 
Silverman (1986), we choose to use the bandwidth

 
h nn is isis

= −0.9 ( )ˆ /σ 1 5

 
(3)

where σ̂ 2
is

 is the empirical variance of the yjkl’s in 
the s-th group and the i-th cluster.

In the copula formulation we also need the cor-
responding marginal distribution functions. Let 
Fs(⋅|Bi) denote the marginal distribution functions 
for cluster i and group s, ˆ ( )F Bs i⋅ |  for its empirical 
estimate,

 
ˆ ( ) ,F y B

n
y ys jkl i

is
uvw jkl

y C Guvw i s

| = ≤( )
∈ ∩
∑1 χ

 
(4)

where χ(⋅) is the indicator function.
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The joint distribution
The copula is a commonly used statistical tool to 
model multivariate joint distribution, it appeared 
in the early work of Hoeffding, Fréchet and others 
and formally introduced by Sklar (1959). We fi rst 
give a very brief account of it and we refer to 
Hunchinson and Lai (1990); Joe (1997) and Nelson 
(1999) for detailed review.

A function C defi ned on [0, 1]d is a d-variate 
copula if C(F1(x1), ..., Fd (xd)) is a joint distribution 
function for any marginal distribution functions 
F1(x1), ..., Fd (xd). The marginal distributions of 
C(F1(x1), ..., Fd (xd)) itself are just F1(x1), ..., Fd (xd). 
This property provides a convenient way to con-
struct a joint distribution with given marginal ones. 
On the other hand, given a set of marginal distribution 
functions F1(x1), ..., Fd (xd), there is a unique cop-
ula C such that C(F1(x1), ..., Fd (xd)) is the true joint 
distribution of them (Sklar, 1959). Also, for any joint 
d-dimensional distribution function F(…), let Fi

− ⋅1( ) 
be the quantile functions of the i-th margin, then the 
function C x x F F x F xd d d( , , ) ( ( ), , ( ))1 1

1
1

1… = …− −  is 
a d-variate copula. Let c (…) be the density function 
(the total derivative) of C(…) when exists. Let fi (⋅) 
be the density function of Fi(⋅), the density function 
f (x1, ..., xd) of the copula distribution function 
C(F1(x1), ..., Fd (xd)) is given by

f x x c F x F x f xd d d i i
i

d

( , , ) ( ( ), , ( )) ( ).1 1 1
1

… = …
=

∏  (5)

Given a copula, the dependence structure can 
be characterized in several ways, including Pear-
son’s correlation, Kendall’s tau, Spearman’s rho, 
tail dependence, etc. Kendall’s tau is generally 
easier to compute for copulas, so we use this 
dependence measure. For a two-dimensional 
copula, Kendall’s tau is given by

 
τ υ υ υ= −

= − − > −
∫∫4 1

2 0 1
0

1

0

1

1 1

C u c u dud

P X X Y Y

( , ) ( , )

(( )( ) ) ,
 

where (X1, Y1) and (X, Y ) are independent with the 
same distribution. −1 � τ � 1, τ = 0 for indepen-
dence, −1 and 1 for perfect negative and positive 
dependence. Genest et al. (1995) suggested a 
pseudo-likelihood approach to estimate the depen-
dence parameters, in which the observed data is 
transformed via the empirical marginal distributions 
to obtain pseudo-data that are used in the estimation. 
Using the special relationships among relative 

pairs, we can implement the dependence 
parameters in the copula via the relationships among 
kinship coeffi cients, Kendall’s tau and the copula 
dependence parameters without estimation.

For pedigree data, the dependence relationships 
among familial members (i, j) are best described 
by the kinship coeffcients, γij = Δ7ij/2 + Δ8ij/4, where 
Δ7ij, Δ8ij, Δ9ij are the condensed kinship coeffi cient 
(Jacquard, 1974) between relative pair i and j. The 
Δkijs (k = 1, ..., 9) are the probabilities for the nine 
possible condensed identical by descent (IBD) 
status as in Jacquard (1974), in which Δ7ij, Δ8ij and 
Δ9ij are commonly used in practice. They are 
the population probabilities of sharing 2, 1 and 0 
genes IBD for relative pair (i, j), without regard 
to their particular genotypes, but only (i, j)’s kin-
ship relationships, under the Mendelian inheri-
tance. Also, 2γ

ij
 is the expected proportion of gene 

IBD for relative pair (i, j) at this locus. For conve-
nience we list the values of these coeffi cients for 
some common relative pairs (Lange, 1997), and 
we compute corresponding Kendall’s tau in the last 
column after the computations below.

For trait underlined by single locus or multi-
ple loci, Pearson’s correlation for relative pair (i, j) 
is 2γ

ij
 (Lange, 1997). Assume that gene copy num-

ber change statuses are determined only by the 
underlying genetic sources, and that the amounts 
of dependence among them are additive with 
respect to their shared genetic sources. Then at any 
fi xed locus, Kendall’s tau between a fi xed type of 
relative pair (i, j) is (Appendix)

 τ ij ij ij ij= + + −2 3 2 17 8 9Δ Δ Δ( / ) .  (6)

As is true for Pearson’s correlation, we postulate 
that Kendall’s tau remain the same, or approxi-
mately so, when the trait is infl uenced by multiple 
loci. As the kinship coeffi cients are already known 
as in Table 1, we get Kendall’s tau by the above 
relationships and in turn, the dependence param-
eters in the copula model is obtained from the 
relationship among the dependence parameters and 
kendal’s tau for specifi ed copula. Thus we can 
easily implement the dependence kinship coeffi -
cients in the copula in terms of Kendall’s tau 
without estimating them. For this, we fi rst need to 
review several commonly used copulas. Note, for 
family data the dependence are not constant among 
different relative types, hence copulas with constant 
dependence parameters, such as Clayton’s copula 
or Frank’s copula can not be used here.
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Multivariate normal copula
Let Φd (⋅, Θ) be the d-variate normal distribution 
function with mean vector 0 and correlation matrix 
Θ = (θij), φd (⋅, Θ) be its density function. Φ(⋅) be 
the one-dimensional standard normal distribution 
function, and Φ−1(⋅) be its quantile (inverse) func-
tion. The multivariate normal copula is defi ned as

 
C u u u u

u u

d d d

d
d

( , , ; ) ( ( ), , ( ); ),

( , , ) [ , ]

1
1

1
1

1 0 1

… = …

… ∈

− −Θ Φ Φ Φ Θ
 

with density

 

c u u

u

d

d

j
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( / ( )).

1

1

… …Θ Φ ( Φ ( Θ)

(Φ

−1 −1

−1

=

∏

φ

φ

d d

j=

u u( ), );1

1  
Thus for given marginal distribution functions 
F1(⋅), ..., Fd (⋅) and their densities f1(⋅), ..., fd (⋅), the 
joint distribution function for the multivariate 
normal copula with these given margins is

 

F x x C F x F x

F x

F x
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For the distribution in (6), any lower dimen-
sional joint distributions have the same form. 

For example the (i, j)-th joint distribution function 
is F(xi, xj) = Φ2(Φ−1(Fi(xi)), Φ−1(Fi(xj)); Θij), where 
Θij is the (i, j) sub-block of the matrix Θ. From 
Table 1 and in this case, Spearman’s and Kendall’s 
tau are the same. For this copula, Spearman’s rho 
(Kendall’s tau) and the dependence parameters θij’s 
in normal copula are related by (Lindskog, 2000)

τ
π

θ
θ τ πij

ij
ij ijor= =6

2
2 6arcsin , sin( / ).  (7)

By relationships (6) and (7), the dependence param-
eters θij’s in the multivariate normal copula are 
easily obtained given the τij’s, which are computed 
via the known kinship coeffi cients Δkij’s, as long as 
we know the kin type of relative pair (i, j).

Multivariate T-copula
Let Θ be the correlation matrix given in the mul-
tivariate normal distribution, x = (x1, ..., xd)’ The 
density function d-dimensional T-distribution with 
r degrees of freedom is

 

q x x
r d

r r

r
x x

r d d

r

( , , )
(( ) / )

( ) ( / )/ /

(

1 2 1 2

1

2

2

1
1

… = +

+ ′⎛
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⎞
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−
−
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The corresponding copula density is

 

c u u q Q u Q u

q Q u

d r r r d

r
j

d

r j

( , , ) ( ( ), , ( ))

( / ( ( ))),

1
1

1
1

1

11

… …= − −

=

−∏  
where Qr(⋅) is the distribution function of the 
T-distribution with r degrees of freedom, and qr(⋅) 

Table 1. Kinship coeffcient for selected relative pairs.

Relationship Δ7 Δ8 Δ9 γ τ
Grand parent-offspring 0 1/2 1/2 1/8 1/4
Parent-Offspring 0 1 0 1/4 1/2
Half Siblings 0 1/2 1/2 1/8 1/4
Full Siblings 1/4 1/2 1/4 1/4 1/2
First Cousins 0 1/4 3/4 1/16 1/8
Double First Cousins 1/16 6/16 9/16 1/8 1/4
Second Cousins 0 1/16 15/16 1/64 1/32
Uncle-Nephew 0 1/2 1/2 1/8 1/4
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is its density function. Given marginal distribution 
functions F1(⋅), ..., Fd(⋅) and their densities f1(⋅), ..., 
fd(⋅), the joint density with the copula defi ned by 
this multivariate T-distribution is

 

f x x q Q F x Q F x

f x

q Q F

d r r r d d

j i

r r j

( , , ) ( ( ( )), , ( ( )))

( )

( (

1
1

1 1
1

1

… …= − −

− (( )))
.

x jj

d

=
∏

1

 

For this copula, the relationships between the θij’s 
and the τij’s are the same as for the multivariate 
normal copula.

Selection of copula
Given several candidate copulas C1, ..., Ch with den-
sities c1, ..., ch, a natural question is how to select the 
optimal copula for the data. Let ˆ ( )Fjl ⋅  be the estimated 
marginal distribution for  individual l in pedigree j 
(although there are only six different versions of 
them). For example, if individual ( j, l) is in group s, 
then ˆ ( ) ˆ ( ).F Fjl s⋅ = ⋅  The ˆ ( ) ’Fs ⋅ s are defi ned as

 
ˆ ( ) ( ),F y

n
y ys jkl

s yu w G
uvw jkl

s

= ≤
∈

∑1 χ
υ

 

where ns is the number of observations in group s.
When there are parameters to be estimated in 

the copula, the optimal copula can be selected by 
AIC criteria (Oakes, 1989; Dias and Embrechts, 
2003). Here, our copula has no parameters to be 
estimated, by the likelihood principle and (5), an 
intuitive way is to select the C with

 
= =
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1 1
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or equivalently, to avoid computation overfl ow or 
underfl ow,
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This is equivalent to choosing the copula with 
the largest likelihood.

Now for given copula, the joint density for the 
data y = {yjkl} is modeled by

 ˆ ( ) ˆ ( )f y f y Bi
ik

n

j

r

jk i=
===
∑∏∏ α

1

3

11

|  (9)
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We point out that although we used the same 
notation c, for different families, the number of 
individuals may differ and so are the dimension-
alities of the c’s.

However, under the semi-parametric mixture 
model assumption, the sub-distributions can take 
any shape, even the shape of the entire distribution, 
and as a result any cluster partition will give about 
the same likelihood value via (9). So optimizing (9) 
over all possible cluster partitions will not be able 
to identify the desired clusters. Thus we put some 
constraints on the selection of clusters such that 
the sub-distribution is approximately unimodal and 
optimizing model (9) will give the desired clusters, 
as in Yuan and He (2008). The reference Yuan and 
He will be refered to as YH in subsequent citations. 
However there are two major differences between 
the method we are proposing and that of YH. Our 
method can handle high-dimensional data and the 
link among the marginal densities in copula.

Specifi cally, let g(⋅|Bi) be the multivariate nor-
mal density with mean given by the sample mean 
for data in Bi, and covariance matrix Θ, for obser-
vations in Bi (i = 1, ..., 3), and denote g = ( g1, g2, 
g3 ), where gi = g(⋅|Bi). g is used as shape constraints 
for the ˆ ( )f B si⋅ | . Intuitively, for each fi xed i, when 
the ‘correct’ partitions are specifi ed, the differences 
between the ˆ ( )f B si⋅ |  and g(⋅|Bi)s will be relatively 
small.  The Kullback-Leibler divergence 

ˆ( ( ), ( )i iD f B g B  is be used to quantify this differ-
ence between the two densities ˆ ( )f Bi⋅|  and g Bi( )⋅|  
w i t h = ∫ˆ ˆ ˆ( ( ), ( )) ( ) log[ ( ) /

ii i B i iD f B g B f y B f y B
g y B dyi( )] .|  Note that ˆ( ( ), ( )i iD f B g B  is non-
negative and is zero only if ˆ ( ) ( ).f B g Bi i⋅ ≡ ⋅| |  An 
empirical version of it is given by
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Let 0
ˆ( | , , )L y f Bα  be the log-likelihood of (9). 

Now, instead of optimizing (9), we optimize over 
all possible partitions of clusters, the penalized 
log-likelihood,

λ λ

α α λ

α −

= = =

= −

⎛ ⎞
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3
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f y B g y B

 

(10)

for some 0 � λ � 1 to be specifi ed. This model can 
be viewed as an extension of the traditional mixture 
model. When λ = 0, it corresponds to a nonpara-
metric specifi cation of sub-distributions, when λ = 1 
it is a full parametric model given by the g(⋅|Bi)s, 
and when 0 � λ � 1 it corresponds to an interme-
diate model. By doing this, we are forcing the 
distributions to be close to normal, more than what 
is needed for unimodal. The tunning parameter 
λ is chosen according to simulation for the given 
type of data. The choice of a multi-variate normal 
here is for convenience as other choices could be 
made but may result in additional complication.

The CEME algorithm
However, directly optimizing the mixture model 
(10) is usually not easy. A common practice of 
estimating the cluster membership of each observa-
tion in the data while evaluating the maximum 
likelihood estimate α̂  of α in (10) is the EM algo-
rithm (Dempster et al. 1977). The EM algorithm is 
a much easier (though much slower) endeavor 
computationally than the direct optimization.

For fi xed k, let uij = 1 if the i-th locus belongs 
to the j-th cluster, ui = (ui1, ui2, ui3) be its member-
ship vector, and u = {uij}. Treating u as missing 
data, (y, u) is referred to as the “complete” data. 
Then the likelihood for the “complete” data is
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Although we used the same notation ˆ ( )f y Bjk s|  
for each fi xed Bs, the dimension of the data yjk may 
vary for different pedigree j, as well as the density 
ˆ ( )f y Bjk s| . The corresponding log-likelihood is
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)

3

0
1 1 1

ˆ( | , , , ) log

ˆlog ( | ) .

r n

ks s
j k s

jk s

L y f u B u

f y B

α α
= = =

=

+

∑∑∑  

By the same reason as (10), we optimize the 
penalized “complete data” log-likelihood
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where g(yjk | Bs) is the analogue of ˆ ( )f y Bjk s| . The 
above log-likelihood is optimized iteratively, with the 
clusters Bs’s are classifi ed along each iteration. We 
specify the starting values at iteration zero as below.

Starting values
Set α s

( ) / ,0 1 3=  ( , , ); / ,( )s uks= =1 2 3 1 30  ( , , );s =1 2 3  
k n=1, , ).… Divide the n loci into 3 region of 
roughly equal sizes, and lable them as the Bs

( ) .0 ’s  
Let ˆ ( )( ) ( )f Bs

0 0⋅ |  be the nonparametric estimate of  
fj(⋅) using only the measure responses in Bs

( )0 . Denote 
( ,( )B Bt t( ) = 1  B Bt t

2 3
( ) ( ), ) be the estimate of  B = (B1, B2, B3) 

at the t-th iteration of the algorithm.
Given the current t-th iteration estimates 
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t
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s
t( ) ( )( ) ’⋅ | s from the t-th iteration, we update 

them in the (t + 1)-th iteration according to the 
following CEME steps.

1. Classifi cation-step: Each response locus k, is 
classifi ed into a candidate cluster �Bs , if
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This is the optimal classifi cation rule in the 
sense of minimizing the expected loss (Anderson, 
1984), and it is also the so-called Bayesian 
assignment. In the cases of ties, we use uniform 
random assignment among the tied clusters. Let 
� � � �B B B B= ( , , )1 2 3  be a candidate classifi cation of the 

clusters after this step.
2. Expectation-step: Let Uks’s be the associated 

random variables of the uks’s, and g Bt
s

t( ) ( )( )⋅ |  
be the multi-dimensional normal density with 
mean and covariance matrix empirically 
estimated from the data in B ss

t( ) ( , , )=1 2 3 .
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where the expectation is taken with respect 
to the constrained log-likelihood L. Denote 
u ut

ks
t( ) ( ) .+ += { }1 1

3. Maximization-step: Compute the MLE α (t + 1) 
of a given u(t + 1) as in YH
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4. Estimation-step: To update the estimation of the 
density f  (t)(⋅) of current iteration t to f  (t+1)(⋅) for 
the next iteration t + 1, we fi rst compute candi-
date sub-marginal density � �f jl sB(⋅| )  for individual 
l in pedigree j at locus k and cluster s. If this 
individual is in group v, then
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where �nsυ  is the number of responses for group v 
in cluster �Bs , and �σ υs

2  is sample variance of this 
group. Similarly, the candidate sub-marginal 
distribution functions are
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Then use (5) to get the candidate sub-joint den-
sity for the j-th pedigree at locus k, as follows
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and that for all the pedigree at locus k is
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Let �g  be the reference densities corresponding 
to �B .

We update the quadruple (B (t + 1), f  (t + 1), F (t + 1), 
g (t + 1)) as
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The estimate of f (⋅) at the (t + 1)-th iteration 
is then
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Note that at each iteration t, α(t), B(t), and the  
uij

t( )s  are updated, but not necessarily so for f  (t) 
and g (t).

The above four steps are iterated until conver-
gence of (α (t), f  (t), B (t)). (Note by the following 
Proposition, we may check the stability of the α (t) 
as a simple criterion for the convergence of the 
triple). We may use the relative error criterion for 
the convergence of the (α (t)’s, that is, for some pre-
specified δ � 0, we stop the iteration when 
Σs s

t
s
t

s
t

=
+ − ≤1

3 1( ) /( ) ( ) ( )α α α δ . Typically, δ � 0.01.
As in YH, we have
Proposition. For each fi xed k, the sequence 

{L(α(t)|y, f  (t), g(t), B(t))} is increasing in t, and there 
is a stationary point (α*, f  *, B*) satisfying
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As in YH, for k = 1, ..., n; s = 1, 2, 3, we have
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When (α*, f  *, B*) is the unique stationary point, 
we have, as t → ∞,

 (α (t), f  (t), B (t)) → (a*, f  *, B*). 

Application

Simulation study
We simulate r = 10 pedigrees, each has four indi-
viduals, father, mother and two sibs, and we assume 
there are n = 200 loci of interest, which are divided 
into 3 clusters as B1 = (1, 80), B2 = (81, 150) and 
B3 = (151, 200), with cluster means μ1 = (4.9, 4.2), 
μ 2 = (9.9, 9.2) and μ3 = (14.9, 14.2) for male and 
female individuals. We generated two datasets by 
simulation using the normal copula and multi-
normal models. Each of the datasets were analyzed 
using both normal copula and multi-normal 
models.

To simulate data from the Multivariate normal 
copula model, let A be the Cholesky decomposition 
of Θ. To sample from this copula distribution: for 
k = 1, ..., n and i = 1, ..., 5
1. generate r independent samples Z1k, ..., Zrk from 

N (0, I4).
2. Let ulk = AZlk (l = 1, ..., r).
3. For k∈Bi, if j is for male, set xljk = Φ(ul1k) + μk1; 

if j is for female, set xljk = Φ(ul1k) + μk2, and xlk 
= (xl1k, ..., xl4k ), where Φ(⋅) is the distribution 
function of the standard normal. Then x1k, ..., 
xrk is a sample from the 4-variate normal copula 
model with correlation matrix Θ. The results 
are displayed in Table 2 below, with tuning 
parameter λ of values 0.25, 0.5, 0.75 and 1.
In the above, λ = 1 corresponds to a normal 

model, and 0 � λ � 1 correspond to a mixed 
model. For this type of data, the model has 

difficulty in parameter convergence for small 
values of λ, refl ecting the fact that the multivariate 
data distribution is too noisy for nonparametric 
part of the model to work alone; thus a parametric 
unimodal component is needed to help cluster the 
data. The normal copula model has larger likeli-
hood value in all these cases. This means the nor-
mal copula model is more robust than the 
multivariate normal model. For the data from 
multi-normal model, when λ = 0.5, 38 loci from 
cluster three are classifi ed to cluster two. Over all, 
λ = 0.75 performs well for all the data set, and so 
we recommend this value of λ in this analysis.

To assess the robustness of the method, we 
simulated larger data sets with family sizes of 4 and 
5, each with 100 families and 200 candidate loci. 
The simulated clusters and means for male and 
female are: cluster one, 1–70, (4.9, 4.2); cluster 
two, 81–150, (8.9,8.2) and cluster three, 171–200, 
(12.9,12.2) respectively. To refl ect some complex-
ity we added minor clusters to some of the clusters. 
The means for male and female for the minor clus-
ters are 71–80, (5.4, 4.7) and 151–170, (12.4,11.7). 
The results are summarized in Table 3.

Overall, the results are consistent: the smaller the 
value of λ, the better the model fi tness, as indicated 
by larger likelihood value. This means that the non-
parametric model component capture the data distri-
bution in fine details. But in many cases, the 
computation breaks down for λ = 0 as pointed out 
earlier. It is seen that for either the data generated 
from multi-normal or normal copula distributions, 
the overall performances of the semiparametric model 
is robust for a range of the tuning parameter λ.

Real data analysis
We use the proposed method to analyze the 
Genetics Analysis Workshop 15 (GAW15) data 

Table 2. Cluster results for normal copula and multi-normal models for 10 pedigrees and 200 loci.

Data λ Cluster 1 Cluster 2 Cluster 3 Log-likelihood
Normal Copula 0.25 1–80 81–150 151–200 −11438825.76

0.50 1–80 81–150 151–200 −22088970.51
0.75 1–80 81–150 151–200 −32749199.84
1.00 1–80 81–150 151–200 −43412062.82

Multi-normal Model 0.50 1–80 81–150(+38) 151–200(−38) −3117275.81
0.75 1–80 81–150 151–200 −3644388.69
1.00 1–80 81–150 151–200 −4652713.94



352

Yuan et al

Bioinformatics and Biology Insights 2008:2

set with 14 pedigrees of CEPH Utah families, 
each with three generations and about a dozen 
normal individuals. Expression level of genes 
in lymphoblastoid cells of the above subjects 
were obtained using the Affymetrix Human 
Focus Arrays that contain probes for 8,500 tran-
scripts. Gene copy number variations in normal 
people within human genome has been the sub-
ject of study (Freeman et al. 2006; Pugh et al. 
2008). For 3,554 of the 8,500 SNPs tested, 
Morley et al. (2004) found greater variation 
among individuals than between replicate deter-
minations on the same individual. These 3,554 
expression phenotypes (expressed genes) were 
chosen for copy number change analysis. The 
first step is to find out the best copula model for 
the data. We considered three different models, 
the multi-normal model, the semi-parametric 
multivariate normal-copula model, and the 
semi-parametric multivariate T-copula model. 
Then the criterion in (8) is used to select the 
optimal model. The average copula likelihood 
values for the three models are −3217389.15, 
−2094272.97, −2296408.96 respectively. Thus 
the semi-parametric multivariate normal-copula 

model is the best of the three and was used for 
clustering. The outcome of the analysis of the 
GAW15 data is displayed in the figure below. 
The horizontal axis represents the sequential 
numbering of genes from 1 to 3550, and the 
vertical axis indicates the classified states of the 
genes with 1, 2 and 3 representing deletion, 
normal and amplification.

As shown in the fi gure, most of the SNPs are 
in clusters 1 and 3, this observation is consistent 
with the large variation of the expression levels. 
The SNPs with deletion status are more likely 
to be contained in cluster 1, and those with 
amplifi cation status are more likely to be in 
cluster 3.

Concluding Remarks
We proposed, studied and demonstrated a semipa-
rametric copula method for microarray-SNP 
genomewide association analysis using pedigree 
data. We successfully implemented the kinship 
relationship into the model for more robust analysis 
of family data than the commonly used multivariate 
normal model.

Table 3. Summary cluster results from normal copula and multi-normal data sets for 100 pedigrees with 4 or 5 
Family Members.

Pedigree size Data λ Cluster 1 Cluster 2 Cluster 3 Log-likelihood
4 Normal 

Copula
0.25 1–80 81–150 151–200 −5503651.81
0.50 1–80 81–150 151–200 −10207757.93
0.75 1–80 81–150 151–200 −14924762.04
1.00 1–80 81–150 151–200 −19645406.52

4 Multi-normal 
Model

0.50 1–80 81–150(+9) 151–200(−9) −1716690.87
0.75 1–80 81–150 151–200 −2213287.79
1.00 1–80 81–150 151–200 −2726810.52

5 Normal 
Copula

0.25 1–80(−7) 81–150(+7) 151–200 −7841636.12
0.50 1–80(−7) 81–150(+7) 151–200 −15364258.65
0.75 1–80(−7) 81–150(+7) 151–200 −22940970.23
1.00 1–80(−6) 81–150(+6) 151–200 −28643031.41

5 Multi-normal 
Model

0.25 1–80 81–150 151–200 −1639830.86
0.50 1–80 81–150 151–200 −2250676.24
0.75 1–80 81–150 151–200 −2874104.71
1.00 1–80 81–150 151–200 −3503763.43
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Appendix
Proof of (6): Let (X1, Y1) be the traits of relative 
pair (i, j); (X, Y) be an independent copy of (X1, Y1); 
and Al be the event that a relative pair share l alleles 
IBD (l = 0, 1, 2). Given a relative pair (i, j), 
by definition P(A2) = ∆7ij, P(A1) = ∆8ij, and 
P(A0) = ∆9ij. By the assumption that GCN change 
is determined by the underlying genetic source and 
given A2, the pair (i, j) share the same genetic 
source at the locus and the same copy number 
change status; thus X1 = Y1, X = Y. Note that the 
random variables X1 and X are of continuous type 

and P((X1 – X) (Y1 – Y). 0|A2) = P((X1 – X)2. 
0|A2) = 1. Also, X1 – X and Y1 – Y are random 
variables symmetric around 0, thus given A0, X1 – X 
and Y1 – Y are independent, so the events 
(X1 – X)(Y1 – Y). 0 and (X1 – X)(Y1 – Y), 0 are 
completely random, each with probability 1/2, i.e. 
P((X1 – X)(Y1 – Y)|A0) = 1/2. By the additivity 
assumption, given A1, the probability of the event 
(X1 – X)(Y1 – Y). 0 is the average of those for cases 
of given A2 and A0, i.e. P((X1 – X)(Y1 – Y). 0|A1) = 3/4. 
Then at any fi xed locus, Kendall’s tau between a 
fi xed type of relative pair (i, j) is

τ ij P X X Y Y A P A

P X X Y Y A P A
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= − − >

+ − − >
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