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Abstract
Introduction: Numerous methods exist for basic processing, e.g. normalization, of microarray gene expression data. These 
methods have an important effect on the fi nal analysis outcome. Therefore, it is crucial to select methods appropriate for a 
given dataset in order to assure the validity and reliability of expression data analysis.

Furthermore, biological interpretation requires expression values for genes, which are often represented by several spots or 
probe sets on a microarray. How to best integrate spot/probe set values into gene values has so far been a somewhat neglected 
problem.

Results: We present a case study comparing different between-array normalization methods with respect to the identifi ca-
tion of differentially expressed genes. Our results show that it is feasible and necessary to use prior knowledge on gene 
expression measurements to select an adequate normalization method for the given data. Furthermore, we provide evidence 
that combining spot/probe set p-values into gene p-values for detecting differentially expressed genes has advantages com-
pared to combining expression values for spots/probe sets into gene expression values. The comparison of different methods 
suggests to use Stouffer’s method for this purpose.

The study has been conducted on gene expression experiments investigating human joint cartilage samples of Osteoarthritis 
related groups: a cDNA microarray (83 samples, four groups) and an Affymetrix (26 samples, two groups) data set.

Conclusion: The apparently straight forward steps of gene expression data analysis, e.g. between-array normalization and 
detection of differentially regulated genes, can be accomplished by numerous different methods. We analyzed multiple 
methods and the possible effects and thereby demonstrate the importance of the single decisions taken during data process-
ing. We give guidelines for evaluating normalization outcomes. An overview of these effects via appropriate measures and 
plots compared to prior knowledge is essential for the biological interpretation of gene expression measurements.
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Introduction
Today, numerous methods and tools exist for analyzing gene expression data. Many normalization 
techniques exist, e.g. [1,2,3,4], as well as methods for detecting differentially expressed genes, e.g. 
[5,6,7,8,9]. Specifi c databases for gene expression data have been set up (e.g. [10]), and software pack-
ages have been developed for analyzing microarray data in a largely automated way, e.g. [11,12,13,14,15], 
many of them integrate gene expression data with further information obtained from e.g. ontologies, 
pathway databases or text mining.

It is known that the ‘higher-level’ outcome, e.g. a list of differentially regulated genes, of any micro-
array experiment depends on the ‘low-level’ details of data processing. One important step in data 
processing is normalization. Yet, comparisons of normalization methods presented so far [16,17] do 
not consider sample groups. Generally, existing literature offers little guidance on how to decide which 
method to use, how to compare different methods and their outcomes, and how to check possible out-
comes against biological expectation and downstream interpretation.

We focus on the analysis of between-array normalization steps, i.e. we assume the data to be analyzed 
has already passed a primary normalization covering for variances due to localization of the probe 
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sequences on the array, GC-content of the probe 
sequences, varying sensitivity in different detection 
ranges, and others. Numerous methods are avail-
able for this primary normalization (e.g. the default 
Affymetrix method MAS 5.0, RMA [18], dCHIP 
[19], for an overview see [20]), these are not in the 
focus of the present study.

Furthermore, biomedical or biological interpre-
tation of microarray experiments require p-values 
and fold-changes for genes rather than spots. 
Microarrays often contain several spots or probe 
sets that represent the same gene but are not neces-
sarily identical. Typically they cover different 
sequence segments within the entire target 
sequence, or which sometimes represent splice 
variants. They vary in terms of binding affnity and 
specifi city, and, consequently, yield varying inten-
sities.

For interpretation and subsequent analysis, 
combination of spot information into gene informa-
tion becomes essential. This represents a somewhat 
neglected problem. Generally, the average of the 
individual spot/probe set expression values is taken 
as gene expression level. If the expression intensi-
ties vary due to the biochemical and physical 
effects described above, the spot/probe set yielding 
the highest intensity has the most signifi cant infl u-
ence on the overall mean. Thus the spots or probe 
sets representing the same gene do not contribute 
equally to the overall result.

Individual spots representing the same gene can 
be seen as individual tests (independent to a certain 
degree) of the same null hypothesis. For interpre-
tation, we aim at combining the results of these 
tests to ask whether there is evidence from the 
collection of tests that we might reject the null 
hypothesis of no differential expression. The col-
lection of methods known as meta-analysis gives 
many ways to perform these combinations, includ-
ing some techniques that combine p-values 
[21,22].

The combination of p-values represents a 
method to circumvent the combination of expres-
sion levels and thus to overcome the possible 
inconsistencies as it represents a scale-free method 
to combine spot information into gene information. 
For each spot or probe set, a p-value is calculated, 
and these spot p-values are subsequently combined 
into a gene p-value.

The focus of this study is twofold. The fi rst is 
to compare a number of between-array normaliza-
tion methods by analysis of their effects on the 

differen-tially expressed genes deduced from an 
exemplary data set for which we have some 
background knowledge. The large number of 
samples allows us to perform a stability analysis 
on the signifi cantly regulated genes. Recently, it 
has been shown [23] that in numerous published 
large studies on gene expression differentially 
expressed genes are highly unstable for subsets of 
the analyzed samples. Thus, as a gold standard is 
not available, we propose a procedure which 
estimates the errors and quantifi es their amount via 
a robustness analysis.

Secondly, we provide evidence that combining 
spot/probe set p-values into gene p-values has 
advantages compared to combining intensities. We 
compare different methods for combining spot 
p-values into gene p-values and suggest a method 
for this task.

We present a case study conducted on two gene 
expression data sets of human joint cartilage 
samples. The focus is on a large data set represent-
ing 83 samples classifi ed into four disease-related 
groups of osteoarthritis (OA). For reviews on osteo-
arthritis see [24,25,26]. The data was collected to 
identify genes differentially regulated between pairs 
of sample groups as these genes are of potential 
interest for understanding disease mechanisms, for 
diagnosis and medical therapy. cDNA arrays 
allowed for analysis of the four distinct groups as 
they require smaller amounts of sample material. 
The large number of samples allows us to perform 
a robustness analysis of derived p-values. Further-
more, we analyzed a data set obtained with Affyme-
trix GeneChips investigating 26 samples of human 
joint cartilage classifi ed into two disease-related 
groups. Importantly, these data sets allowed us to 
make use of existing background knowledge on the 
disease progress and specifi cities concerning indi-
vidual disease stages.

We focus on data processing effects that need to 
be considered not only in the case of cDNA arrays 
but also for other types of arrays (here only shown 
exemplarily for Affymetrix GeneChips). Although 
structure and distribution of the data is somewhat 
different, similar effects can be observed and 
similar measures can be applied. Regardless of the 
chip technology in-between array normalization is 
required and probe sets representing the same gene 
show signifi cant variances in fold-changes and 
p-values . Special care is necessary to deal with 
probe sets representing the same gene that show 
opposite regulation in a number of cases.
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Methods

Dataset
The data analyzed in the present study was obtained 
from a custom designed cDNA microarray. The 
experiment, including array production, hybridiza-
tion, scanning by phosphorimaging, and primary 
data analysis (i.e. local background correction, 
removal of outlier spots, within array normalization, 
and expression value determination) was performed 
by GPC-Biotech AG (Martinsried, Germany). A 
part of the spotted cDNA species had been prese-
lected for OA-relevant genes. Scanning was done 
by phos-phorimaging. Each microarray contains 
7467 spots, 5517 spots represent 3648 genes, there 
are 1 to 74 spots per gene on the array, and 1062 
genes are represented by more than one spot.

The data set is described in the following as:
X = Xks = {xks|k = 1 ... 83, s = 1 ... 7467}, where 

s: spots, k: samples.
83 samples of human joint cartilage were ana-

lyzed, 5 of them were outlier and thus removed 
(details not shown here). The raw data of the 
remaining 78 samples represents the starting point 
for all further analysis. The expression value dis-
tribution is given in Figure 1.

The samples were classifi ed based on histo-
logical criteria: 18 normal (n), 20 early degenera-
tive cartilage (e), 21 peripheral OA (p), and 19 
central OA (c). The class ‘late OA’ (l) was defi ned 
as the combined set of peripheral and central OA, 
this represents all samples of patients severely 
affected by Osteoarthritis.

One of the main goals of the experiment was to 
identify differentially regulated genes for the group 
pairs ne, np, nc, ep, ec, pc, nl, el. For the subsequent 

biomedical analysis, genes differentially expressed 
between specifi c pairs of disease stages (especially 
ne, nl, and pc) are of primary interest as these 
provide specifi c information on the individual steps 
of disease progress, and thus on the individual 
disease stages.

Given the diffculty of obtaining human joint 
samples this represents a large data set. The group 
sizes of about 20 samples allow for statistical 
robustness and quality analysis. The used cDNA 
microarrays require signifi cantly smaller amounts 
of sample material than e.g. Affymetrix arrays and 
thus make it possible to measure gene expression 
for samples that contain very low amounts of RNA 
like the disease stage ‘central’ that is characterized 
by nearly complete cartilage loss. The full dataset 
used for this study and its biological interpretation 
has been published separately [27].

The Affymetrix data set contains data from 26 
U133 Plus 2.0 arrays measuring healthy and osteo-
arthritic cartilage (13 samples each). This array 
contains 1–20 probe sets per Entrez Gene identifi er 
(manuscript in preparation).

Background knowledge
For the given data, the following background 
knowledge was available and corresponding expec-
tations apply for data processing:
(1) It was experimentally confi rmed that mRNA 

content was the same for all sample prepara-
tions, and thus expression intensities are 
expected to be similar for all measurements.

(2) The number of up- and downregulated genes 
is expected to be balanced for each comparison. 
This expectation applies to many experiments, 
exceptions encompass e.g. stimulation experi-
ments.

(3) From previous experiments, it is known that the 
degree of similarity varies substantially between 
the sample classes. Specifi cally, n and e as well 
as p and c are very similar, whereas n is very 
different from p and c and, consequently, also 
from l. Previous cluster analysis showed a good 
separation between the class pairs ne and pc, 
whereas the groups n and e as well as p and c 
were not separated from each other (results not 
shown here). Interestingly, also in terms of 
clinical staging, n and e and p and c resemble 
each other, whereas the two group pairs ne/pc 
are clearly distinct. The result of the cluster 
analysis lead to the expectation that more genes 
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Figure 1. Raw data distribution: Distribution of raw data of the ana-
lyzed dataset (before outlier removal, i.e. 83*7467 spots). 
Background-correction lead to negative values.
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are signifi cantly regulated in the comparisons np, 
nc, and nl than in the comparisons ne and pc.
In the following we briefl y describe the methods 

applied for data processing and procedures for 
control of the biological expectations.

Normalization
We applied the following standard normalization 
methods (For an overview see [28,29,30], for 
details see indicated references):

Globalization assumes that the overall mRNA 
content of each sample and thus the total intensity 
is the same for each array. Normalization is 
achieved via dividing intensities by the total inten-
sity of the given array.

Centralization [31] is a normalization method 
that estimates for each pair of arrays the factor of 
proportionality. From the resulting matrix of pair-
wise factors, an optimally consistent scaling is 
determined. This results in a multiplicative factor 
for each array. Centralization requires as param-
eter the range of reliable measurements; for the 
given data we estimated 0.03–1.

Percentile Normalization is a method that 
adjusts a certain selected percentile to the same 
level for all samples by applying a multiplicative 
factor to each sample. We used the 50% (eq. global 
median location normalization) and 75% percen-
tiles, which are typically used.

MAD Scale Normalization [32,33] adjusts the 
median and MAD (median absolute deviation), 
which are robust measures for the location and 
spread of distributions, of all arrays to a common 
level. The median and MAD of each array are set 
to the respective measure of the entire data set. For 
each sample k and spot s the original value xks is 
transformed into the normalized value xks

"  
according to the following equation:

 xks
xks" = − median(x )

MAD(x )
k

k
 

 xks
"  = xks

′  * MAD(X) + median(X) 
 MAD(xk) = median(|xk – median(xk⋅)|) 

where: MAD: median absolute deviation; k: sample; 
s: spot measured in sample k; X: entire dataset.

Variance Stabilization [34] incorporates data 
calibration, an intensity-dependent error model and 
data transformation; it is intended to lead to a 

measure of differential expression which is 
independent of the mean intensity.

LOESS [35] (Local Regression) fi ts simple mod-
els to subsets of the data; thus it does not require to 
specify a global function of any form to fi t a model 
to the data, only to fi t segments of the data, where 
segments are defi ned by measured intensity.

Quantile Normalization normalizes the distribu-
tions of the expression values, i.e. each quantile, 
for each array.

Flooring
The background level was estimated to be at 0.01 
(details not shown here) and expression values <0.01 
were set to 0.01 for all further analysis. Overall, 
approx. 17% of the expression values were set to 
the fl oor threshold value; spots assigned with the 
fl oor threshold for all samples are not considered 
for further analysis (26 spots).

Differential expression

p-value combination
Differently expressed genes were detected based 
on the following procedure: First, the two-sided 
Wilcoxon ranksum test was applied for calculation 
of p-values for spots. Next, these spot p-values are 
combined to obtain overall gene p-values. We 
applied three different methods for combining spot 
p-values into gene p-values:
(1) Fisher’s inverse chi-square method [36]. This 

method uses the fact that given a uniform dis-
tribution U, –2 * log(U) has a chi-square distri-
bution with two degrees of freedom, and the 
sum of two independent chi-square variables is 
again chi-square distributed (with four degrees 
of freedom). Consequently, the combined 
p-value pchi(g) for a gene g can be computed as:

 p X pschi d
s

( * ( )g) = − −
⎛
⎝⎜

⎞
⎠⎟∑1 22

2 log  

where ps are the p-values for spots s representing 
gene g (in our case obtained from the two-sided 
Wilcoxon ranksum test), d is the number of spots 
s representing gene g, and X xd

2 ( )  is the cumulative 
distribution function of the chi-square distribution 
with d degrees of freedom.
(2) A variant of Fisher’s inverse chi-square 

method that also considers the directions 
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associated to individual spot p-values:

 p g X pdirchi d s
dir

s

( ) min * ( )= − −
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟∑1 22

2 log  

where ps
dir  are the onesided spot p-values 

(Wilcoxon ranksum test) for all spots s represent-
ing gene g; these onesided spot p-values are deter-
mined for both regulation directions; the overall 
combined gene p-value then equals to the smaller 
of the two combined p-values, each of them cor-
responding to one test direction.
(3) Stouffer’s method [37]. This method trans-

forms p-values to z-scores assuming a normal 
distribution (ps → Zs) by

 Z ps s
onesided= −( )−φ 1 1  

Each Zs gets the sign of the log2(fold change) of 
the corresponding spot. The z-scores of spots repre-
senting one gene are summed, and the sum is 
scaled:

 Z Z koverall s
s

= ∑ /  

where k is the number of tests, i.e. the number of 
spots to be combined. Finally the z-scores are trans-
formed back to p-values (Zoverall → poverall) by

 p e dtoverall
onesided

t
overall=

−

−

−

∫1
2

2

2

π inf

⏐Ζ ⏐  

Gene p-values obtained without p-value 
combination. Mean expression values over all 
spots representing a gene were calculated for each 
sample and gene, and subsequently Wilcoxon 
ranksum p-values from these mean expression 
values were determined (mean expr. value). Given 
the individual spot p-values of the spots represent-
ing a gene, we used for each gene the most (min. 
p-value) and least (max. p-value) significant 
corresponding spot p-value as gene p-value.

Fold change
Given two sample groups C1, C2 ∈ {n, e, p, c, l}, 
C1 ≠ C2 the overall fold-change for a gene g was 
estimated as follows: A spot s for the gene g is 
taken into account if at least one expression value 

in the groups under investigation is above the fl oor 
value (0.01); for each spot we compute fold-
changes ( ),sfcSg

C C1 2  for all pairs of samples derived 
from the two groups to be compared. The median 
of these spot fold-changes is used as overall esti-
mate for the gene-fold change ( ( ) ),fc g C C1 2 .

 

S s spot s
s S s S k C C

g

g g

′

′

:
: { | { }:

= { }
∈ = ∈ ∃ ∈ ∪ >

| represents gene g

1 2 0Xks .. }

: log ( /exp r ) ,

( )

01

2 1sfc x i C j C s SS
C ,C

is js 2 g

C ,C

g
1 2

1

= ∧{ }� � �

fc g 22 Sg
C1,C2median(sfc )

= 2

 

where: xks is the expression value of spot s in 
sample k.

We apply different methods for combining spot 
p-values into gene p-values, and one method for 
computing fold changes. In rare cases, the inde-
pendent determination of gene-fold change and 
directed gene p-value causes sign inconsistencies 
for gene p-value and fold change. We analyzed the 
data for this and found that this effect only occurs 
for few genes with fold changes that are very close 
to 1; therefore this does not imply problems for 
further biological interpretation of data.

Number of regulated genes
The gene p-values are converted into q-values by 
use of the R-library ‘qvalue’[38]. The q-value 
quantifi es the false discovery rate, its computation 
implies the estimation of the number of non-
regulated genes π0 from the p-value distribution via 
bootstrapping. 1−π0 thus estimates the number of 
regulated genes, which we use as quality measure 
for evaluating appropriateness of normalization.

Robustness analysis

Leave-one-out analysis
Leave-one-out analysis allows for estimating the 
robustness of p-value calculation, i.e. one sample 
is disregarded at a time and p-values are calculated 
based on the remaining samples. The resulting lists 
of p-values were compared to the list derived from 
the full dataset. This analysis was conducted with 
the Stouffer method for combining p-values. 

For estimating the robustness, the p-values 
obtained from the full dataset were considered as 
standard of truth. A series of cutoff-p-values 
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(between 10−7 and 10−1) is applied and for each of 
these, the fraction of signifi cantly regulated genes 
from the full dataset that are also signifi cantly regu-
lated to the given cut-off p-value in the leave-one-out 
datasets is determined. We selected ‘robust’ differ-
entially expressed genes according to two criteria:
• exact: The fraction of genes that are signifi cant 

in all leave-one-out datasets.
• relaxed: The fraction of genes that are signifi -

cant with a p-value of ≤2* the cutoff p-value in 
all leave-one-out datasets.

Subset sampling
The subset sampling analysis is used for estimating 
the robustness of the most signifi cantly regulated 
genes for a given group comparison. For each 
group pair, 50 random sample subsets (m = 10 ... 18 
samples used for each of the groups to be com-
pared) are generated and p-values are calculated 
based on these subsets. Next, the top p-value genes 
are analyzed; we used the t top genes obtained from 
the entire sample set as standard of truth and deter-
mined the fraction of these top candidates that are 
also among the t top candidates of at least s% of 
the subset p-value sets. For t we used 50, 75, 100; 
for s we used 100, 80, 50.

Results and Discussion
In the following we describe the results of various 
methods for normalization and gene p-value deter-
mination; we focus on the analysis of plausibility 
criteria and the correspondence of outcomes to the 
available background knowledge described in 
the methods section (see Data—Background 
knowledge).

Normalization

Effect on expression levels
The effect of normalization on data is typically 
evaluated by visual inspection of boxplots (Fig. 2, 
left panel). A boxplot shows the individual samples 
on the x-axis and the expression values on the 
y-axis. The 25% percentile and 75% percentile of 
a dataset are shown as lower and upper boundary 
of a box and the median as horizontal line within 
the box, the whisker length is typically proportional 
to the interquartile range, and all data points lying 
outside these whiskers are displayed individually 
as outliers. While boxplots are easy to generate and 
interpret, we suggest in addition to these a different 
type of plot for evaluating the effect of normaliza-
tion, especially for experiments dealing with 
sample groups.

This group-level plot also shows the 25%, 50% 
and 75% percentiles for the individual samples as 
does the boxplot. Data displayed as outlier in box-
plots is ignored as it is not in the focus of normal-
ization. Most importantly the plot additionally 
shows the group-levels of the plotted percentiles, 
i.e. the median of the corresponding percentile over 
all samples belonging to the same group. This 
group-level allows to identify group-specific 
variations within data, which may not be inherent 
to the biological samples under investigation. 
Figure 2 shows a boxplot and group-level plot for 
our dataset. For the investigated samples, analysis 
of total mRNA content showed no group specifi c 
variations on the mRNA level; variations must be 
due to experimental setup or any other undesired 
effect. The group-level plot clearly shows the dif-
ferent levels of expression data for the different 
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sample group representing different disease stages (n: samples 1–18, e: 19–38, p: 39–59, c: 60–78; cl.med: class median).
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sample groups, in the boxplot this is much less 
evident.

Effect on differential expression
From prior knowledge we expect that up- and 
down-regulation events should be approximately 
balanced. If the group expression levels are sig-
nifi cantly different we might not be able to observe 
the expected behavior. Figure 3 contrasts 
normalized data with raw data for the comparison 
pc, it shows group-level plots and the resulting 
p-values and fold changes. The raw and central-
ized data yield asymmetric fold-change distribu-
tions, more genes appear upregulated than 
downregulated from p to c due to the differences 
in group level. The 50% percentile normalization 
produces more downregulated than upregulated 
genes. Only a subset of the analyzed methods yield 
approximately symmetric distributions, these are 
the 75% percentile normalization, MAD scale 
normalization, Variance Stabilization, LOESS, 
and Quantile Normalization.

Between-array normalization aims at removing 
systematic effects occurring between arrays, e.g. 
when one array yields systematically higher 
expression values than a second one even though 
hybridized with the same sample. Various methods 
exist for between-array normalization, they vary 
signifi cantly in how rigorously they modify the 
original data. Some of the methods apply a multi-
plicative factor that depends on the total of expres-
sion values of the considered array (e.g. 
globalization) or a single characteristic value of 
the distribution of expression values (e.g. percen-
tile normalization), or on the expression values of 
the set of arrays under consideration (e.g. 
centralization). More stringent normalization 
methods apply a multiplicative and an additive 
factor, i.e. they modify location and spread of the 
original distribution (e.g. scale normalization). 
Finally, some normalization methods fit the 
location and the shape of the original distribution 
(e.g. quantile normalization), or adjust data in a 
intensity-dependent way (e.g. variance stabilization, 
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LOESS). This class of methods clearly modifi es 
the original data the most.

Generally, normalization is intended to modify 
the underlying data as slightly as possible, but as 
much as necessary to remove systematic biases yet 
to conserve biological relevant information. Far 
more normalization techniques than the ones ana-
lyzed here exist (e.g. [39,33,1,40]); most of the 
newer normalization techniques are non-linear as 
this is assumed to perform generally better than 
linear techniques. Some of them focus on two-
channel or Affymetrix-type data and can therefore 
not easily be applied to other kind of data, others 
can directly or after slight adaptation be applied to 
e.g. one-channel cDNA mi-croarray data. The 
study presented here concentrated on a number of 
normalization techniques and shows that different 
normalization methods yield different results, thus 
the normalization method should be selected in 
accordance to the data set under investigation with 
the general guideline ‘enough’ normalization with 
only slight data modifi cation.

Deriving p-values for genes

General considerations
Within microarrays, the number of spots/probe sets 
per gene typically varies. Different cDNAs repre-
senting the same gene do not need to be identical, 
they can represent splice variants or cover distinct 
regions within the gene sequence, which can result 
in high variability of measured expression intensi-
ties. In the case of oligonucleotide arrays, the 
individual oligos representing a gene vary in bind-
ing affnity (i.e. sensitivity) and specifi city and the 
annotation of individual spots/probe sets varies in 
reliability. These issues complicate the interpre-
taion of expression data. On virtually all current 
microarray platforms, a subset of the genes are 
represented by multiple spots or probe sets. Gener-
ally, the decision how to deal with this multiplicity 
is deferred to the user. The individual spots or 
oligos thus can return varying expression values; 
these result from experimental methodology and 
should not always be considered as measurement 
errors. The naive combination of spot expression 
values into gene expression values can lead to 
biased results as spots or probe sets of varying 
intensity do not contribute equally. Another 
approach that is frequently taken is to take the most 
or least signifi cant spot representing a gene. This 

yields the most optimistic or most conservative 
estimate of real signifi cance, and consequently is 
very susceptible to outlier p-values.

We propose to determine gene p-values based 
on spot p-values. To our knowledge, gene p-value 
determination has not been addressed by spot 
p-value combination, and this is the only compre-
hensive analysis about how to best combine spot 
p-values into gene p-values available.

Unfortunately, large scale gold standards are 
not available. So correct fold-changes and signifi -
cances for all genes represented by more than one 
spot/probe set on an array are not known. Some 
spike-in experiments are publicly available (e.g. 
[41,42]). These are useful for evaluating methods 
for the determination of expression values, but they 
make no assertions on differentially expressed 
genes represented by more than one spot/probe set. 
Con-fi rmation of differential expression can be 
obtained from alternative techniques like quantita-
tive PCR. We verifi ed 10 genes by quantitative 
PCR [27] and the results showed good agreement 
with our proposed method.

Requirements
We propose a number of heuristic yet intuitive 
criteria for the evaluation of gene p-values:
• if all spots are regulated in the same direction, 

then the gene p-value should be at least as 
significant as the least significant spot 
p-value.

• if spots show inconsistent direction of regula-
tion, then the gene p-value should be of lower 
signifi cance than the most signifi cant spot p-
value.

• for spots showing inconsistent direction of 
regulation and of approximately equal signifi -
cance the gene p-value should tend towards 1.
These criteria refl ect our interest in differentially 

expressed genes. For studies with an alternative 
focus, such as detection of alternative splicing, 
other criteria could be set up.

Evaluation
Figure 4 gives an overview over p-values obtained 
from the individual methods for the group com-
parison normal versus late (n-l). The dendrograms 
on the y-axes indicate the ‘relatedness’ of results. 
For all genes represented by at least 2 spots (sub-
plot a), Stouffer’s method yields results that are 
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most similar to the chi-square method and the 
variant thereof while p-values based on mean 
expression values are rather similar to the minimum 
of the underlying spot p-values. In the case of 
consistently regulated spots (b), these similarities 
become even more pronounced as can be deduced 
from the dendrogram branch lengths. For genes 
represented by exactly 2 spots which show opposite 
regulation (c), p-values from Stouffer’s method are 
most similar to the baseline (p-value = 1). For 
genes represented by at least 3 inconsistently 
regulated spots (d), Stouffer’s p-values are 
generally most similar to the baseline and the 
maximum spot p-value. These results indicate that 
Stouffer’s method returns conservative p-values 
for doubtful spot information yet it is as sensitive 
as e.g. the chi-square method for consistent spot 
information.

P-values derived from Stouffer’s method and 
mean expression values show high correlation for 
genes measured with more than one spot 
(Spearman’s rho 0.82). Lower correlation (0.53) 
was determined for genes represented by exactly 

two inconsistently regulated spots, for which 
Stouffer’s method produces in approx. 3/4 of the 
cases less signifi cant p-values than those derived 
from combined expression values. For genes rep-
resented by multiple consistently regulated spots 
correlation is high (0.94), and Stouf-fer’s method 
produces in approx. 3/4 of the cases more signifi -
cant p-values than those derived from combined 
expression values. Finally, for genes represented 
by multiple inconsistently regulated spots, p-values 
from both methods show moderate correlation 
(0.6), and no method shows clear tendency to return 
more signifi cant p-values than the other. It is impor-
tant to keep in mind that p-value combination make 
more signifi cant p-values possible; genes repre-
sented by more spots/probe sets can achieve more 
signifi cant p-values than those represented by 
fewer spots/probe sets. Thus, the number of spots 
for a given gene needs to be reported together with 
the p-value and fold-change. The argument that 
genes represented by few spots/probe sets are per 
se discriminated can be brought forward, yet on 
the other hand it appears reasonable that the 
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Figure 4. p-value combination: Comparison of different methods for combining spot p-values to gene p-values by their overall results. Plots show 
p-values (log10 transformed, black: least signifi cant p-value, white: most signifi cant p-value) for genes (columns) obtained from various combina-
tion methods (rows). (p-value = 1) is added as baseline of insignifi cant p-values. Hierarchical clustering was performed by euclidean distance 
and average linkage. The individual plots show: (a) all genes represented with min. 2 spots; (b) all genes represented with min. 2 spots, both 
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with min. 3 spots and at least one up-and one down-regulated spot. For details see section ‘Differential Expression’ and ‘p-value combination’.
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detection of differential expression via multiple 
spots/probe sets increases overall confi dence.

The detailed results for exemplary genes (Fig. 5) 
illustrate the method’s behavior with regard to 
various numbers of individual spots with agreeing 
or disagreeing regulation direction. Genes 3, 8, 36 
demonstrate Stouffer’s capability of penalizing 
disagreeing regulation direction; genes 2, 19, 22 
show the important effect (i.e. more signifi cant 
gene p-value) of combining individual evidence 
via p-value combination versus combining spot 
expression values. For Affymetrix GeneChips 
(Fig. 6) similar effects occur, i.e. in a number of 
cases probe sets representing a same gene show 
inconsistent regulation. Here, e.g. genes 7 and 8 
were each measured by two probe sets showing 
opposite regulation with unequal probe set 
p-values, and both spots show similar intensity 
levels; for these genes Stouffer’s method returns 
p-values similar to those determined based on mean 
expression values. For genes with an unequal 
number number of up- and downregulated spots 
(e.g. genes 2, 4, 16), Stouffer’s p-values are gener-
ally more signifi cant.

Overall, Fisher’s inverse chi-square method is 
most predominantly used for combining p-values 
among the analyzed methods. A drawback of this 
method is that it considers only absolute values of 
the p-values, i.e. the combination of two spots 

results in the same gene p-value irrespectively of 
their regulation direction, and the resulting gene 
p-value is of higher signifi cance than the p-value 
of the corresponding spots.

The presented variant of Fisher’s inverse chi-
square method partially eliminates this effect. If 
two spots have signifi cant p-values and are regu-
lated in opposite directions the resulting gene 
p-value is clearly less signifi cant than the respective 
value of the original Fisher’s inverse chi-square 
method. Yet, p-values cannot cancel out each other; 
the more signifi cant spot has higher infl uence and 
the less signifi cant one has a minor, yet still increas-
ing effect on the overall signifi cance.

Stouffer’s method refl ects p-values of opposite 
direction in a more prominent decrease in 
signifi cance of the resulting overall p-value than 
the other methods for p-value combination. In 
Stouffer’s method, two spots of opposite directions 
and approximately equally signifi cant p-values 
nearly cancel each other out. The comparison 
against combination of expression values 
(Figs. 4 and 5) indicates that Stouffer’s method 
generally returns very signifi cant p-values for 
consistently regulated spots and conservative 
p-values for inconsistent spot information, thus it 
shows a high discriminative power. p-values based 
on the mean expression values do not depend on 
the number of spots representing a same gene, yet 
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they are biased towards the spot p-value of the 
underlying spot with highest expression intensity. 
Despite its favorable properties, Stouffer’s method 
has so far been, to our knowledge, predominately 
been used in studies aiming at integration of 
various types or sets of previous results (meta-
analysis, e.g. for integration of medical studies 
[43,44,45] and in social sciences [46]), we are not 
aware of its application for combining spot p-
values into gene p-values. Besides the widely used 
methods analyzed here, a number of other more 
rarely used methods for combining p-values exist 
(e.g. [22,21]).

The analyzed methods for p-value combination 
assume statistical independence of the input data. 
Spot p-values are not necessarily independent. 
Microarray studies often entail experimental 
validation which generally is labor-intensive and, 
thus, only a certain number of genes can be further 
investigated. Therefore, a rather limited number of 
top p-value candidates is of interest, often pre-fi l-
tered for signifi cant fold-change; these genes are 
required to be differentially expressed with high 
confi dence. Gene p-values are predominently used 
for ranking genes and for giving a rough estimate 
of statistical signifi cance; the p-values derived 
from Stouffer’s method are perfectly suited for 
these tasks, especially as they refl ect consistent and 
inconsistent regulation in a more meaningful 
manner than other methods.

This combination method was applied in all 
other presented analyses based on gene p-values 
if not indicated otherwise.

Number of regulated genes
Figure 7 shows that the estimated number of 
signifi cantly regulated genes varies signifi cantly 
for different group comparisons and different 
normalizations. The effect of normalization is 
most pronounced for the comparison pc; depending 
on the normalization method between 7% and 74% 
of the genes appear regulated. The expectation is 
to fi nd less genes to be regulated in the comparisons 
ne and pc compared to np and nc. Only a subset 
of the analyzed normalization methods yield 
results which support this expectation, these are 
the percentile normalization to the median, 
Variance Stabilization, MAD scale normalization, 
LOESS and Quantile normalization. The latter 
four yield significantly smaller numbers of 
regulated genes in all comparisons than other 
methods.

The estimation of the number of differentially 
expressed genes via the R-library ‘qvalue’ is 
straight forward to apply. We propose this 
method for quality control of normalizations, 
especially for multi-group comparisons. As this 
approach returns a single number per group 
comparison and normalization, the overall 
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number of regulated genes and the specific 
pattern of various group comparisons can easily 
be checked against background knowledge. This 
method thus represents a very useful method for 
testing the appropriateness of normalization 
methods.

Robustness analysis
The large number of samples available in the 
OA-dataset allows us to assess the robustness of 
the differentially regulated genes between two 
sample groups. The exemplary results shown in 
Figures 8 and 9 were obtained with MAD-scale 
normalized data and Stouffer’s method for 
differentially regulated genes.

Leave-one-out analysis
The results of this analysis (Fig. 8) show that the 
p-values are generally very robust. Considering a 
cutoff p-value of 10−3 the agreement of most group 
comparisons covers >82% of all genes in the strict 
analysis and >93% in the relaxed analysis. The 
comparison of p-values between normal and early 
degenerative cartilage shows the smallest robust-
ness; one reason for this is the small number of 
signifi cantly regulated genes in this comparison 
(only 8 genes have a p-value = 10−5, 38 genes have 
a p-value = 10−3), and this also refl ects the rela-
tively high similarity of normal and early degen-
erative cartilage samples.

Overall, this confi rms that the applied methods 
for normalization and p-value combination yields 
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robust p-values and, thus, the genes selected on the 
basis of these p-values or the corresponding 
q-values can be assumed to be appropriate for fur-
ther biological investigation. Our analysis shows 
that an error of about 10% of the signifi cantly dif-
ferentially regulated genes has to be expected.

Subset sampling
The result of subset sampling for t = 50 (t = 75 and 
t = 100 yield very similar results) is shown in 
Figure 9. The fi gure shows that the p-values are of 
varying stability. Generally, the fraction of stable 
genes increases when the number of samples in the 
subset (m) increases. The genes for the group 
comparisons ne and pc are signifi cantly less robust 
than the other comparisons. The other group com-
parisons show higher stability; for a subset sample 
size of 10, about 50% of the top-candidates are 
present in all subset p-value top-candidates; about 
90% of the top-candidates are present in half of 
the subset top-candidates. For these group com-
parisons, the fraction of stable genes also rises with 
increasing subset size, but this increase is rather 
modest compared to ne and pc. In any case, the 
analysis yields an overview of the error and vari-
ance to be expected within the respective group 
comparison and the involved differentially regu-
lated genes.

Robustness analysis has previously been used 
as a means for estimating the stability of the 
top-candidates derived from group comparisons 
(e.g. [23]). We propose it as a means for testing 
biological hypotheses and appropriateness of nor-
malization. For the given data set, we know that 
degree of similarity between the sample groups 
varies substantially. This is refl ected in p-value 
robustness; for appropriately normalized data the 
top-candidates of comparisons of clearly distinct 

groups are more robust than top-candidates of very 
similar groups.

Conclusions
Our study shows that microarray data normaliza-
tion and processing have important effects on the 
fi nal outcome, especially for the identifi cation of 
differentially expressed genes. Generally, a nor-
malization method should modify the original data 
as little as possible. Methods that modify data more 
importantly can become necessary if the data 
shows abnormal effects that cannot be covered by 
moderate normalization methods. Prior biological 
knowledge is helpful when deciding on the appro-
priateness of a method under investigation. It is 
evident that prior biological knowledge is not 
always available and thus no requirements with 
respect to the expression levels and/or differentially 
expressed genes can be formulated, e.g. if so far 
unknown biological phenomena are studied with 
small-scale microarrays. In this case, generally 
well performing methods should be applied and, 
if possible, results should be validated by addi-
tional experiments (e.g. RT-PCR).

We propose the following guidelines and pro-
cedures that should be performed after any nor-
malization to test its appropriateness. All these 
analyses produce quality measures which need to 
be inspected and checked against prior biological 
knowledge. The corresponding check list can be 
formulated as follows:
1. Does the data show systematic differences in 

expression levels for the different sample 
groups, and are these potential effects of the 
biological phenomena under investigation? 
⇒ inspection of group-level plots.

2. Is the distribution of fold-change and p-value 
compatible with prior biological knowledge? 
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calculation that are also among the 50 top candidates in at least s% of the subset-based p-values. Left: all subset p-values (s = 100); middle: 
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⇒ analysis of shape of volcano-plots (e.g. 
symmetry if appropriate).

3. Does the estimated number of differentially 
regulated genes agree with biological expecta-
tion? Generally, for most experiments only a 
small fraction of genes is expected to be regu-
lated. In the case of multi-group comparisons, 
does the pattern of these numbers for the set of 
comparisons contradict prior knowledge? 
⇒ estimation of the number of differentially 
expressed genes.

4. Are the most significantly differentially 
expressed genes consistently signifi cant when 
applying subset sampling? For multi-group 
comparisons, does the pattern of top-candidate 
stability correspond to prior knowledge? 
⇒ leave-one-out and subset-sampling analysis 
for estimating the reliability of the genes 
detected as being differentially expressed.

Furthermore, we analyzed methods for integrat-
ing spot data into gene data, an important task that 
has been somewhat neglected so far. We showed 
that p-value combination has some important 
advantages over combination of expression values 
in terms of sensitivity, robustness against opposite 
regulation direction and independence of varying 
expression intensities for individual spots. We 
found Stouffer’s method for combining p-values 
to correspond best to the imposed requirements. 
According to our experience, Stouffer’s method is 
the only available method yielding plausible results 
if genes are resampled by multiple spots on a chip 
and if these might exhibit inconsistent fold-changes 
and signifi cantly varying expression levels. For the 
given data sets, Affymetrix did not show as prom-
inent variation in expression levels as the cDNA 
data set, yet the method represents a useful control 
in absence of a gold standard and a valuable alter-
native to the standard method based on mean 
expression levels. This method has not been 
described before for this task.

In summary, this study shows on exemplary data 
that it is of vital importance to check every indi-
vidual step of gene expression data analysis for its 
appropriateness. Certainly, gene expression data 
analysis has to fi t statistical requirements, but it 
also needs to account for experimental and bio-
logical background knowledge. For most indi-
vidual processing steps numerous alternatives exist 
and, therefore, it is important to test different pos-
sibilities and analyze the effects of the decision 

with appropriate tools and measures. For large 
enough measurements (approx. 20 samples per 
group) the use of global robustness and quality 
measures, obtained e.g. via the subset sampling 
approach, can help in estimating the reliability of 
fi nal microarray study results.
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