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Abstract: The relationships between cancer incidence rates and the age of patients at cancer diagnosis are a quantitative basis for 
modeling age distributions of cancer. The obtained model parameters are needed to build rigorous statistical and biological models 
of cancer development. In this work, a new mathematical model, called the Generalized Beta (GB) model is proposed. Confidence 
intervals for parameters of this model are derived from a regression analysis. The GB model was used to approximate the incidence rates 
of the first primary, microscopically confirmed cases of pancreatic cancer (PC) and kidney cancer (KC) that served as a test bed for the 
proposed approach. The use of the GB model allowed us to determine analytical functions that provide an excellent fit for the observed 
incidence rates for PC and KC in white males and females. We make the case that the cancer incidence rates can be characterized by a 
unique set of model parameters (such as an overall cancer rate, and the degree of increase and decrease of cancer incidence rates). Our 
results suggest that the proposed approach significantly expands possibilities and improves the performance of existing mathematical 
models and will be very useful for modeling carcinogenic processes characteristic of cancers. To better understand the biological 
plausibility behind the aforementioned model parameters, detailed molecular, cellular, and tissue-specific mechanisms underlying the 
development of each type of cancer require further investigation. The model parameters that can be assessed by the proposed approach 
will complement and challenge future biomedical and epidemiological studies.
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Introduction
The number of newly diagnosed primary cancers 
at particular organ sites occurring in a specified 
population during a given time period (for instance, 
one year or five years), is called the cancer incidence 
rate. The rate of cancer incidence for a specific age 
group during this time period is called the age-specific 
incidence rate. Usually, the age-specific incidence rates 
are presented as the number of cancers per 100,000 
persons in a specified age group. The sequence of age-
specific incidence rates for all specified age groups is 
referred to as the age distribution of a given cancer. 
A mathematical modeling of the age distribution of 
cancer results in a simple analytical function, I(t), that 
can approximate observed values of cancer incidence 
rates and provides parameters of this function. The 
obtained model parameters can be further used to 
build rigorous statistical and/or biological models of 
cancer development.

Development of mathematical models of age-
specific cancer incidence rates began more than 
55 years ago. Analyzing cancer mortality rates in the 
UK, Nordling,1 as well as Armitage and Doll,2 noticed 
the existence of two age periods in which cancer 
mortality manifests differently. In the initial age 
period, a number of cancer mortalities per population 
at a given age is equal or close to 0. For the majority 
of adult onset cancers, this period is extended between 
birth and an age when the cancer presentation begins 
growing exponentially. In the second age period, 
the cancer mortality per population at a given age is 
exponentially growing with aging.

The first mathematical model of cancer 
presentation in aging was proposed by Armitage and 
Doll (the AD model).2 This model can be presented 
in the following way:

	 I(t) = ct k - 1� (1)

where I(t) is the modeled cancer incidence rate at 
age t; c is a parameter characterizing overall cancer 
susceptibility in a population at cancer risk, and k is 
the number of stages of cancer development. This 
model describes the relationship between cancer 
incidence rates and aging, when cancer development 
is in the exponential growth phase.

Cook, Doll and Fellingham found a single 
increasing linear trend for the logarithm of many cancer 
incidences plotted as a function of the logarithm of 

age at diagnosis,3 presumably reflecting accumulated 
lifetime carcinogenic risks and/or exposures. This led 
to conclusions that: (i) the number of stages of cancer 
presentation (parameter k) can vary between different 
cancer tissues, but is constant for a given cancer 
organ site, and (ii) the overall cancer susceptibility 
(parameter c) may be dependent on the geographical 
location (country of residency) of the population at 
cancer risk.

Extrapolation of the AD model to ages older than 
70 years (up to which observed data was considered 
reliable at the time the AD model was proposed) can 
lead to a statement that if a person lives long enough, 
sooner or later he/she will get cancer. However, Cook, 
Doll and Fellingham considered the possibility of 
flattening incidence rates of cancer in ages above 60.3 
For this purpose, they assumed that only a very 
limited and fixed fraction of the whole population 
is susceptible to a particular type of cancer. In this 
case, the cancer-sensitive fraction of a population will 
decrease with increasing age that, in turn, will cause a 
flattening of the cancer incidence rates at old ages.

In the second half of the 20th century, the quality of 
the collected cancer incidence rate data has improved 
markedly. Thanks to the implementation of the 
Surveillance, Epidemiology, and End Results (SEER) 
program, a lot of reliable data on the cancer incidence 
rates for specific organ sites at different ages (including 
the oldest ones) were collected.4 Using the SEER 
database, Pompei and Wilson showed that patterns of 
the age-specific incidence rate for the fixed time period 
(2000–2004) for most common adult cancers have a 
turnover point (near the age of 80),5 after which these 
patterns have a tendency to fall and may reach a value 
of 0 as age increases toward the end of the human 
life span. This observation encouraged Pompei and 
Wilson to extrapolate the AD model beyond the age 
of 70 to the life span by adding an additional term to 
Equation 1, resulting in:

	 I(t) = (at)k - 1(1 - bt)� (2)

where the a parameter is a constant for limiting 
stage transitions; k reflects the number of these rate-
limiting (slow) stages required to initiate cancer; 
and b is a parameter, whose meaning can be easily 
described by its reciprocal value, 1/b, that presents an 
age at which I(t) becomes 0. Equation 2 is a special 
form of the Beta function.
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Recently, Harding, Pompei, Lee and Wilson 
modified Equation 2 to:

	 I(t) = ct k - 1(1 - bt)� (3)

where the c parameter characterizes a combined 
rate constant for limiting stage transitions. Values 
of the c, k and b parameters can be determined by 
best-fitting the age-specific incidence rates collected 
in the SEER database.6 Below, we will refer to this 
model as the Pompei and Wilson (PW) model.

By adjusting c, k and b of Equation 3, Harding and 
coauthors performed curve fitting for the age-specific 
cancer incidence rates for 20 major organ sites listed 
in SEER for males and 21 major organ sites listed for 
females.6 A satisfactory data fitting was shown for 
many of the examined cancer sites. It was also shown 
that the age-specific incidence rate distributions 
demonstrated a common shape. In 36 of the 
41 considered cancer sites (for males and females), 
this common shape was characterized by the location 
of the corresponding distribution peaks (the incidence 
rate turnover near the age of 80), and relatively small 
(10%) variability of 1/b (near age of 100). The 
k values varied between 2.4 and 10.6. Very large 
variations (more than five orders of magnitude) were 
found for the c values.

In all the aforementioned works, the modeling of 
age distribution of cancer was performed without 
considering time period and cohort effects. However, 
ignorance of these effects could seriously distort 
cancer presentation in aging.7–10 Recently, Meza, 
Jihyoun, Moolgavkar, and Luebeck carried out an 
adjustment of the observed age-specific incidence 
rates of colorectal and pancreatic cancers for birth 
cohort and time period effects and did not observe a 
turnover point at old ages.11 These authors proposed to 
present distribution of the adjusted cancer incidence 
rates by a composition of two analytical functions: 
(i) a power (or exponential) function that up to the 
age of approximately 60 years remains the same 
as in the AD model; and (ii) a linear function, after 
the ages of 60+. Thus, Meza and coauthors not only 
rejected the existence of the turnover points of the 
age distribution of cancer at old ages (at least in the 
cases of the colorectal and pancreatic cancers) but 
also stated that for the ages beyond 60 years the linear 
function approximates the adjusted observational 
data better than other functions used before.

In addition to ignorance of the time period and 
cohort effects, there are other potential problems in 
the utilization of mathematical models for studies 
of the age distribution of cancer. Most models use 
raw incidence rate data without omitting cases 
corresponding to second primary or secondary 
tumors, and do not omit cases which have not been 
microscopically confirmed. Also, these models do not 
provide means to calculate confidence intervals for 
the determined model parameters.12

The present work is aimed at overcoming the 
aforementioned shortcomings in the modeling of age 
distribution in cancer.

Materials and Methods
Data preparation and filtration
To build mathematical models for age distribution in 
PC and KC, we used data from the SEER 9 registries 
that contain cancer data collected in the following 
nine locations: Atlanta, Connecticut, Detroit, Hawaii, 
Iowa, New Mexico, San Francisco-Oakland, Seattle-
Puget Sound, and Utah. In the SEER database, each 
case record contains information on whether this is 
the first primary malignant case and whether the case 
is histopathologically confirmed. Limiting inclusion 
to cases where the patient was of known race and 
whose case indicated a first primary, microscopically 
confirmed tumor is considered to be a filtered data, 
and data where this filtering was not performed is 
considered to be a raw data. For age distribution 
modeling, we used the filtered data, which are expected 
to be more reliable than raw data. We utilized the 
incidence rate data expressed per 100,000 persons to 
the nearest 0.0001 decimal place and age-adjusted by 
the direct method to the 2000 United States standard 
population.13

We used SEER 9 data collected during the 20-year 
time period between 1985 and 2004. To smooth out 
random fluctuations, the data were combined in four 
five-year cross-sectional time periods: 1985–1989; 
1990–1994; 1995–1999; and 2000–2004. For PC 
and KC, the gender-specific incidence rates were 
grouped into 18 five-year age groups: 17 groups, 
ranging from 0 to 84 years old, and the 18th group 
that included all cases for ages 85 or over. For each of 
these intervals, i, the corresponding I(ti) and standard 
errors (SEi) were obtained by processing the SEER 
data according to SEER’s rate algorithms.14 For each 
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age interval, the values of the coefficient of variance 
were also determined as: CV SE I ti i i= ( ).

Birth cohort and time period adjustments
We assumed that each observed incidence rate, Iij(ti), 
can be estimated as a product of the corresponding 
coefficient of time period effect, vj, coefficient of 
cohort effect, ul, and theoretical incidence rate 
(or the hazard function depending only on age), 
h(ti), i.e.

	 Iij(ti) = vjulh(ti)� (4)

where i, j, and l are indexes of the age, time period 
and birth cohorts, correspondingly; and t = ti is the 
midpoint of the corresponding age group.11,15 Indices 
i and j determine index l (see below). The birth cohort 
and time period adjustments performed in this work 
can be easily described by the use of Table 1 and Table 2.

Table 1 schematically presents the incidence 
rate of data collected in 1985–1989, 1990–1994, 
1995–1999, and 2000–2004. In this Table, the 

incidence rates of the same cohorts are located along 
diagonals. We used data for the age groups over age 
30 (index i = 7, …, 18), because the incidence rates 
for these age groups are statistically different from 
0. We also limited our analysis by nine birth cohorts 
(index l = 1, …, 9). The first cohort includes patients 
that were born in years of 1915–1919, while the ninth 
cohort is formed from patients born in 1955–1959. In 
Table 1, each of these nine birth cohorts are marked 
by an arrow linking the diagonal cells, in which 
the cancer incidence rates observed for this group 
in each time period are presented.

Table 2 schematically presents the observed 
incidence rates as a product of the hazard function, 
h(ti), and the corresponding time period and birth 
cohort coefficients, v and u. As can be seen on 
the corresponding diagonals in Table 2, there are 
four approximations of the observations related to the 
first cohort: v1u1h(t15), v2u1h(t16), v3u1h(t17), v4u1h(t18). 
Analogously, there are four approximations for each 
of the other eight cohorts. (Note that in this Table 
we did not provide data corresponding to other 

Table 1. Presentation of the observed age-specific incidence rates for nine birth cohort groups during four time periods.

Period of observation
Age group 1985–89 1990–94 1995–99 2000–04 Birth cohort
Index, i Mid point, ti j = 1 j = 2 j = 3 j = 4 Index, l Years
1 2.5
⋅⋅⋅ ⋅⋅⋅

7 32.5 I7,1(t7) I7,2(t7) I7,3(t7) I7,4(t7)

8 37.5 I8,1(t8) I8,2(t8) I8,3(t8) I8,4(t8)

9 42.5 I9,1(t9) I9,2(t9) I9,3(t9) I9,4(t9)

10 47.5 I10,1(t10) I10,2(t10) I10,3(t10) I10,4(t10) 9 1955–59

11 52.5 I11,1(t11) I11,2(t11) I11,3(t11) I11,4(t11) 8 1950–54

12 57.5 I12,1(t12) I12,2(t12) I12,3(t12) I12,4(t12) 7 1945–49

13 62.5 I13,1(t13) I13,2(t13) I13,3(t13) I13,4(t13) 6 1940–44

14 67.5 I14,1(t14) I14,2(t14) I14,3(t14) I14,4(t14) 5 1935–39

15 72.5 I15,1(t15) I15,2(t15) I15,3(t15) I15,4(t15) 4 1930–34

16 77.5 I16,1(t16) I16,2(t16) I16,3(t16) I16,4(t16) 3 1925–29

17 82.5 I17,1(t17) I17,2(t17) I17,3(t17) I17,4(t17) 2 1920–24

18 87.5+ I18,1(t18) I18,2(t18) I18,3(t18) I18,4(t18) 1 1915–19
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cohorts: the cells that should be assigned for the 
1900–04, 1905–09, 1910–14, 1960–64, 1965–69, and 
1970–74 birth cohorts are empty. For these cohorts, 
the numbers of observations are less than four and 
their corresponding coefficients, u, should be treated 
with a lower weight than ones for the considered 
groups. Therefore, we used the most homogeneous 
and reliable data.)

From Table 2, the relationship between indexes 
i, j, and l can be presented as: l = j - i + 15. Now, 
assuming the absence of the cohort effect (u = 1) and 
using Equation 4 and Table 2, we can estimate the 
ratios of the coefficients of the time period effect in 
the following way:
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From this system of three Equations we can obtain 
thee unknowns, v2, v3, and v4, by setting v1 = 1.

Analogously, assuming the absence of the time 
effect (v = 1), we can obtain estimates of the ratios of 
the coefficients of the cohort effect:

time period effect, v, using the system of equations 
(Equation 5). Then, we fixed the obtained time period 
coefficients and corrected the observed incidence rates 
by dividing them by the coefficients presented in 
Equation 4. Continuing, we estimated the coefficients 
of the cohort effect, u, from the system of equations 
(Equation 6), in which the time effect-corrected 
incidence rates were used. Assuming v = 1 in Equation 4 
and using the estimated cohort effect coefficients u, 
the incidence rates can be corrected one more time.

This adjusting procedure aims to correct possible 
systematic errors in the observed age-specific incidence 
rates, Iij. After such an adjustment, the incidence rates 
mainly contain random errors that can be treated by 
standard statistical approaches. In the calculations 
presented below, we used age-specific incidence 
rates adjusted for time period and cohort effects.

Generalized beta model
To fit the filtered observational data on age-specific 
incidence rates, we tested various models, such as: 
a gamma function, a Weibull function, a special 
variant of the Beta function proposed by Harding and 
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By setting u1 = 1, we can find eight unknowns, 
u2, u2, …, u9, from this system of eight Equations.

When the exact mathematical form of the hazard 
function h(t) is unknown, we experience the well-
known “identifiable problem.” In this case, simultaneous 
evaluation of the time period and cohort effects can 
only be performed using additional assumptions.8 
To solve this problem, we used an iterative technique 
proposed by Luebeck and Moolgavkar.15

Initially, we assumed that the cohort effect was 
absent (u = 1) and evaluated coefficients of the 

coauthors,6 and the Generalized Beta (GB) probability 
distribution function defined as:

	 Ir(T ) = c(bT )k-1 (1 - bT )m-1� (7)

where T = (t - A), t is the age at cancer diagnosis; the 
incidence rate Ir (T ) = I(t); b B A= -1 ( );

A and B are the lower and upper age limits of cancer 
development, respectively; c is a generalized rate 
constant; k - 1 and m - 1 are the degrees of increase and 
decrease in cancer incidence rates, correspondingly.
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Our results suggest that the best fit can be obtained 
by using the GB function presented by Equation 7. 
I(t) can be also presented as:

	
I t c

t A

B A

B t

B A

k m

( )
1 1

= -
-





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-
-







- -

� (8)

For each age interval, j, the corresponding age-
adjusted incidence rates, I(tj), and their standard 
errors (SEj), can be obtained from the SEER data; and 
the coefficient of variance, CV, can be determined 
as: CV SE I tj j j= ( ).  

For each age interval, the SEER data presents 
the incidence rates as well as the number of cases, 
which can be considered as a Poisson distribution.10,14 
For large case numbers, the incidence rates can be 
viewed as variables that are approximately normally 
distributed around expected I(tj) with standard error 
SEj. To calculate incidence rates, we considered only 
those age intervals that contain at least five cases; 
otherwise we assumed that in the corresponding age 
interval the value of the incidence rate was 0.

Values of the A and B age limits of cancer 
development can be considered as known a priori. 
Traditionally, the lower age limit A has been 

chosen as 0, assuming that the process of cancer 
development starts from the birth.3 The upper age 
limit, B, can be treated as an approximation of 
the upper limit of the life span, or the age at which 
the best curve-fitting is obtained.5,6 It should be 
noted that the model variables c, k and m are very 
sensitive to variations of the A and B age limits. 
In this case, the problem of the curve-fitting becomes 
a so-called “ill posed” problem. Therefore, the use 
of a priori information is necessary to stabilize the 
solution against variations of the input parameters, 
A and B.16 In this work, for simplicity, we fixed the 
age interval of cancer development as: A = 0 year and 
B = 100 years.

Thus, for each age interval, i, one can calculate 
Ti = (ti - A) and obtain Ir (Ti   ) = I(tj) and their standard 
errors SE[Ir(Ti)] = SEi. Taking logarithms from both 
sides of Equation 7 in each age interval, one can 
obtain a system of linear Equations:

ln Ir(Ti) = ln c + (k - 1) ln bTi  
	 + (m - 1) ln(1 - bTi), i = 1, 2, …, n.� (9)

Where n is the number of the considered age 
intervals.

Table 2. Presentation of the observed incidence rates as the product of the hazard function, h(t), and the corresponding 
time period (v) and birth cohort (u) coefficients.

Period of observation
Age group 1985–89 1990–94 1995–99 2000–04 Birth cohort
Index, i Mid point, ti j = 1 j = 2 j = 3 j = 4 Index, l Years
1 2.5
⋅⋅⋅ ⋅⋅⋅
7 32.5 v1u9 h(t7)
8 37.5 v1u8 h(t8) v2u9 h(t8)
9 42.5 v1u7 h(t9) v2u8 h(t9) v3u9 h(t9)
10 47.5 v1u6 h(t10) v2u7 h(t10) v3u8 h(t10) v4u9 h(t10) 9 1955–59
11 52.5 v1u5 h(t11) v2u6 h(t11) v3u7 h(t11) v4u8 h(t11) 8 1950–54
12 57.5 v1u4 h(t12) v2u5 h(t12) v3u6 h(t12) v4u7 h(t12) 7 1945–49
13 62.5 v1u3 h(t13) v2u4 h(t13) v3u5 h(t13) v4u6 h(t13) 6 1940–44
14 67.5 v1u2 h(t14) v2u3 h(t14) v3u4 h(t14) v4u5 h(t14) 5 1935–39
15 72.5 v1u1 h(t15) v2u2 h(t15) v3u3 h(t15) v4u4 h(t15) 4 1930–34
16 77.5 v2u1 h(t16) v3u2 h(t16) v4u3 h(t16) 3 1925–29
17 82.5 v3u1 h(t17) v4u2 h(t17) 2 1920–24
18 87.5+ v4u1 h(t18) 1 1915–19
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According to Equation 8, the system (Equation 9) 
can be rewritten as:

	

ln ( ) ln ( 1) ln

( 1) ln , 1,
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Three unknown parameters, ln c, (k - 1) and 
(m - 1), can be determined from Equation 9 or 10 
by minimizing the following function R* using a 
weighted least square method:

	
min ( ) ,

1

2R w O Ci
i

n

i i
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=
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where wi is a weight of the i-th residual, (Oi - Ci), 
which is the deviation between the observed value, 
Oi, of the ln [Ir(Ti)] and its expected value calculated 
by Equation 9 in the following way:
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Based on the rules of the error propagation,17 one 
can show that the variance of errors for ln [Ir(Ti)] is 
approximately equal to the square of the coefficient 
of a variation of the incidence rate: CV SE I ti i i

2 2= ( )( ) . 
It also can be shown that, when w CVi i= ( )1 ,2  the 
weighted sum of residuals

	
R R w O Ci

i

n

i i
* * ( )ν = = -

=
∑

1

2 � (13)

has a χν
2 distribution with ν = n – p degrees of 

freedom, and p = 3 is the number of derived 
parameters.18

By numerical experiments, we have shown that 
for small variances of error in incidence rate data, 
the distribution of errors of ln Ir (Ti) is close to 
normal. On the other hand, systems like systems 
(Equations 9 and 10) with normally distributed errors 
in the dependent variable, can be solved by multiple 
linear regression analysis.19 Therefore, in this work 
we used the multiple linear regression analysis to solve 
the system (Equation 10). To estimate the goodness 
of model fitting, we used a standard χ2 test.19

Results and Discussion
Comparison of distributions of the raw 
and filtered age-specific incidence rates 
for PC and KC
As described in Materials and Methods, we extracted 
the raw and filtered age-specific incidence rates for 
PC and KC for white males and females collected in 
the SEER 9 database during the years of 1985–2004 
and combined these data in four time period subsets: 
1985–1989, 1990–1994, 1995–1999, and 2000–2004. 
The age distributions of the raw and filtered data, 
gathered in each of these subsets, are shown in 
Figure 1. As can be seen from this figure, the age 
patterns corresponding to the raw and filtered incidence 
rates for the same type of cancer have significantly 
different amplitudes and shapes. The large differences 
in amplitudes are caused by the inclusion of cases 
of non-first primary and metastatic cancer, as well 
as cases with microscopically unconfirmed tumors 
in the raw data. The number of cases excluded by 
these criteria are detailed in Table 3. In addition, the 
age patterns of the filtered incidence rates exhibit the 
existence of a decline at old ages, while in the cases 
of unfiltered data this fall is not evident. The obvious 
deceleration/decline that the filtered incidence rates 
exhibit at age 75 and over cannot be caused just by 
a diagnostic bias at old ages, but rather it strongly 
suggests an influence of basic biological processes 
on carcinogenesis and the rates of clinical cancer 
manifestation at an old age.20 Because it is clear that 
the filtered incidence rates represent more reliable 
and more homogeneous statistical data than the raw 
data, in the present work we exclusively used the 
filtered data.

Figures 2 and 3 show how time period and 
cohort adjustments affect the overall shape of age 
distributions of PC and KC for white males and 
females. Because all adjustments were made by 
using data schematically shown in Table 2, these 
figures presented the age distributions of nine cohorts 
(1915–1919; 1920–1924; 1925–1929; 1930–1934; 
1935–1939; 1940–1944; 1945–1949; 1950–1954; and 
1955–1959) during four time periods (1985–1989; 
1990–1994; 1995–1999; and 2000–2004). Therefore, 
during the first considered time period, 1985–1989, 
these nine cohorts exhibit incidence rates in the 
following nine five-year age intervals: 30–34; 35–39; 
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40–44; 45–49; 50–54; 55–59; 60–65; 65–69; and 
70–74. During the next considered time periods, 
these nine cohorts exhibit incidence rates in the nine 
five-year age intervals shifted by five years compared 
to the previous time period.

Thus, for the 30–34 age interval, only one observation 
made in the first time period, 1980–1984, was used. 
For the 35–39 age interval, two observations made 
in the first and second time periods, 1980–1984 and 
1985–89, correspondingly, were used. Analogously, 
three observations for the age interval 40–44 made in 
the first three time periods and four observations for 
each of the 50–54, 55–59, 60–64, 65–69 and 70–74 
age intervals, made during all considered time periods 

were utilized. In the cases of the 75–79, 80–84, and 
85+ age intervals, three, two and one observations 
were used as shown in Table 2.

Figures 2 and 3 show influence of adjustments 
on PC and KC incidence rates, correspondingly. 
Below, we demonstrate that the age distributions of 
the adjusted incidence rates for PC and KC can be 
very well approximated using the generalized Beta 
function defined by Equation 7.

Mathematical models of age distribution 
of PC and KC
To estimate the model parameters in Equation 8, we 
minimized the weighted sum R* (Equation 11) by 
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Figure 1. Age-specific incidence rates of PC and KC obtained from the raw and filtered SEER data. (A) PC in white males; (B) PC in white females; 
(C) KC in white males; (D) KC in white females.
Notes: Incidence rates obtained from the raw and filtered data are shown as dashed and solid lines, respectively. Time periods of data presented in 
panel A are shown in the legend; time periods presented in panels B, C, and D are the same as in panel A.
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a least squares method. To do this, we utilized the 
regress function of the MATLAB software package.21 
For this function, we used n = 35 values of the adjusted 
incidence rates Iij(ti), and their SEi as input data. The 
rate for the 85 + age interval was not used due to an 
uncertainty of its middle point position. This resulted 
in three estimated model parameters, c, k, and m, 
and their 95% confidence intervals (CI), assuming 
that A = 0 and B = 100. The obtained parameters 
are supposed to determine the best curve fitting that 
system (Equation 10) can provide for the adjusted 
incidence rates that were used as input data.

We examined the goodness of the curve fit 
by the χ  2 test for the values of the weighted sum 

of residuals R*ν (Equation 13). The degrees of 
freedom, ν = n – p, was defined by the number of 
used data points (n = 35), less the number of derived 
parameters ( p = 3). According to the standard 
χ 2 test with the 0.05 significance level, if the value 
of R*ν was outside the interval ( χ  20.025,ν; χ  20.975,ν), 
we would reject the hypothesis that our model 
fits the observed data. The two tail limit values of 
the χ  2 test were χ  20.025,32 = 18.3 and χ  20.975,32 = 49.5, 
correspondingly. Therefore, in the case when 
the weighted sum of residuals, R*ν  , is within the 
interval 18.3  R*ν  49.5, one can conclude that 
the null hypothesis (that the distribution of the 
modeled incidence rates obtained by Equation 10 
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Figure 2. Age-specific incidence rates for PC in white males and females obtained from the filtered SEER data. (A) Unadjusted for time period 
and cohort effects incidence rates for white males; (B) adjusted for time period and cohort effects incidence rates for white males; (C) unadjusted for time 
period and cohort effects incidence rates for white females; (D) adjusted for time period and cohort effects incidence rates for white females.
Notes: Time periods of data presented in panel A are shown in the legend. Time periods presented in panels B, C and D are the same as in panel A.
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fits the set of adjusted values) is not rejected at the 
0.05 significance level.

Table 4 presents the obtained values of model 
parameters and descriptive statistics. Figure 4 shows 
the results of modeling of the age-specific incidence 
rates of PC and KC for the white male and female 
populations. As was mentioned previously, the 
incidence rates for the age interval 85+ were not used 
as input data for the curve fitting. These incidence 
rates are shown on Figure 4 only for illustration 
purposes. Figure 4 shows that the modeled incidence 
rates well approximate the adjusted values of the 
observed incidence rates (including the 85+ point). 
This good visual fit is strongly supported by the χ2 

tests, which suggest that in all cases the values of the 
weighted sum of residuals, R*ν  , are within the given 
interval, 18.3  R*ν  49.5 (see Table 4).

In Table 4 the parameters k and m assess the degrees 
of the increase and decrease in cancer incidence rate, 
correspondingly. The parameter c is related to an 
overall risk of getting a cancer for a given population. 
The point of inflection indicates the point in which 
the second derivative of I(t) (Equation 7) is equal 
to 0, which corresponds to the age at which the 
decrease begins to prevail over the increase in cancer 
incidence rate. We did not consider the second point 
of inflection due to uncertainties of data at very old 
ages. The maximum indicates the age at which the 
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Figure 3. Age-specific incidence rates for KC in white males and females obtained from the filtered SEER data. (A) Unadjusted for time period 
and cohort effects incidence rates for white males; (B) adjusted for time period and cohort effects incidence rates for white males; (C) unadjusted for time 
period and cohort effects incidence rates for white females; (D) adjusted for time period and cohort effects incidence rates for white females.
Notes: Time periods of data presented in panel A are shown in the legend. Time periods presented in panels B, C and D are the same as in panel A.
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Table 4. Descriptive statistics and model parameters for pancreatic and kidney cancer. 

Pancreatic cancer Kidney cancer
 Male Female Male Female
Number of cancer cases (n) 13,919 13,306 20,054 12,106
Parameter c × 10,000† 2.9 (2.1, 4.1) 1.5 (1.0, 2.4) 2.5 (1.9, 3.3) 0.3 (0.2, 0.5)
Parameter k† 10.2 (9.8, 10.5) 10.2 (9.8, 10.7) 8.9 (8.6, 9.1) 7.8 (7.4, 8.2)
Parameter m† 3.7 (3.6, 3.9) 3.4 (3.2, 3.6) 3.9 (3.8, 4.0) 3.2 (2.9, 3.4)
Weighted sum of residuals (R*ν   ) 25.0 39.0 24.5 46.0
Point (age) of inflection 64.3 66.7 58.6 60.6
Age of maximum incidence 77.0 79.1 72.8 75.7
†Numbers in parentheses denote 95% confidence intervals.

30 40 50 60 70 80 90 100
0

10

20

30

Age (years)

A
dj

us
te

d 
in

ci
de

nc
e 

ra
te

 p
er

 1
00

,0
00

30 40 50 60 70 80 90 100
0

20

40

60

Age (years)

A
dj

us
te

d 
in

ci
de

nc
e 

ra
te

 p
er

 1
00

,0
00

30 40 50 60 70 80 90 100
0

20

40

60

Age (years)

A
dj

us
te

d 
in

ci
de

nc
e 

ra
te

 p
er

 1
00

,0
00

30 40 50 60 70 80 90 100
0

20

40

60

Age (years)

A
dj

us
te

d 
in

ci
de

nc
e 

ra
te

 p
er

 1
00

,0
00

1985–1989

1990–1994

1995–1999

2000–2004

BA

Dc

Figure 4. The GB approximation of the age-specific incidence rates adjusted for time period and cohort effects. (A) PC in white males; (B) PC in 
white females; (C) KC in white males; (D) KC in white females.
Note: Error bars denote standard errors (SE).
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incidence rate reaches its maximum, after which the 
cancer incidence rate declines.

Table 4 and Figures 4A and 4B suggest that the 
parameter c for PC in white males is higher than for 
white females. However, the confidence intervals 
of this parameter for males and females are slightly 
overlapping. For PC, the values of the parameter k in 
males and females are statistically indistinguishable, 
while the values of parameter m for males are 
statistically higher than for females. The higher 
value of m in males is a result of the point (age) of 
inflection and maximum incidence rate, which occur 
about two years earlier in males than in females. 
This may suggest that biological mechanisms of PC 
development differ in white males and females.

As can be seen from Table 4 and Figures 4C and 4D, 
in the case of KC all three model parameters, c, k, 
and m, for white males are statistically higher than 
those for white females. The point of inflection for 
males appears two years earlier than that for females, 
while the maximum of cancer incidence rate for 
males appears about three years earlier than that for 
females. Notable differences in all parameters that 
characterize the age distributions of KC in males and 
females may suggest distinct biological mechanisms 
of KC development in white males and females.

A comparative analysis of the age patterns of the 
PC and KC incidence rates (see Table 4) suggests that 
for these types of cancer, the value of parameter m is 

greater than 2. This is in contrast to the assumption 
made by Harding and coauthors,6 where it was 
postulated that for all types of cancers, m should 
be equal to 2. As for parameter k, for PC in males 
and females the values of k are statistically higher 
than the ones for KC, which resulted in an earlier 
presentation of inflection points for KC incidence rates 
than for the PC (see Table 4). Analogous comparisons 
show that the peaks of the KC incidence rates appear 
four years earlier than the corresponding ones of 
the PC. These comparisons suggest the existence 
of distinct organ-specific biological mechanisms of 
the carcinogenesis in the pancreas and kidney.

Goodness of curve fitting  
for different model functions
Among existing models,2,3,5,6,11,15 only special types 
of the Beta function as proposed by Pompei and 
Wilson,5 and Harding and coauthors,6 have an ability 
to describe the turnover of incidence rates at old age 
(for other models, incidence rates are monotonically 
increasing). There are other well-known statistical 
models, such as the Gamma and Weibull functions, 
which, in principle, can also be used to describe this 
turnover. Therefore, using the weighted least squares 
method, we compared the goodness-of-fit of our 
proposed GB function with the goodness-of-fit of 
the special type of the Beta function (PW model), as 
well as the Gamma and Weibull functions. Figure 5A 
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Figure 5. Comparison of goodness-of-fit of the KC incidence rates in white males performed by the GB model (solid line) and other models. (A) The GB 
model vs. the PW model (dotted line). (B) The GB model vs. models described by the Gamma (dotted line) and Weibull (dashed line) functions.
Note: Error bars denote standard errors (SE).
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shows the comparison of fitting of observational KC 
data for white males using the GB model versus the 
PW model. Figure 5B shows an analogous comparison 
of the GB, Gamma, and Weibull functions.

As can be seen from Figure 5, the GB model fits 
the pattern of the KC incidence rates in white males 
much better than the other considered models, and 
this visual appearance is well supported by the use 
of χ    2 statistic. In fact, the data from Table 4 show that 
the observed incidence rates of KC in white males 
can be very well fitted by the GB model. However, 
for the PW model and the Gamma and Weibull 
functions, the standard χ   2 test rejects the hypotheses 
that the curves described by these functions fit the 
observed data with the 0.05 significance level. In fact, 
for the PW model, the value of this statistic is equal 
to 565.0 with ν = 32 degrees of freedom (where 
ν = n - p, n = 35 – the number of used data points, 
and p = 3 - the number of parameters to be derived). 
Analogously, for the Gamma function (ν = 33, 
two estimated parameters) this statistic is equal to 
1,720.6, and for the Weibull function this statistic is 
equal to 208.0 (ν = 33, two estimated parameters). For 
the special type of Beta function, the limit values of 
the χ 2 test are χ 20.025,32 = 18.3 and χ 20.975,32 = 49.5, and 
for the Gamma and Weibull functions, these values 
are χ 20.025,33 = 19.0 and χ 20.975,33 = 50.7. For all of these 
functions the values of the χ 2 statistic are outside of 
the defined intervals of the χ 2 test. Analogous results 
were obtained for KC incidence rates in white females, 
as well as for PC incidence rates in both white males 
and white females (data not shown). Therefore, these 
results clearly show that the GB model has superior 
performance compared to the other considered models.

Conclusion
In this work, we emphasized several general 
shortcomings in the mathematical modeling of age 
distribution of cancer, which include: the use of 
“raw” cancer data (inclusion of cases which were not 
microscopically confirmed or were not first primary 
cancers); the lack of consideration of time period and 
cohort effects on the observed incidence rates; and 
the omission of rigorous statistical evaluation of the 
determined model parameters. To overcome these 
shortcomings, we proposed a new approach, called 
the Generalized Beta (GB) model. This model utilizes 
observational data of age-specific incidence rates 

and uses sound statistical criteria to assess model 
parameters.

To test the performance of this model, we used 
“filtered” data from the SEER 9 database during 
the years of 1985–2004. We utilized these data to 
estimate the incidence rates of the first primary, 
microscopically confirmed cases of pancreatic cancer 
(PC) and kidney cancer (KC) in white males and 
females. These incidence rates were adjusted for time 
period and cohort effects. By the newly proposed GB 
approach, we approximated the adjusted incidence 
rates of the primary PC and KC in white males and 
females. Confidence intervals for model parameters 
were estimated by regression analysis. We showed 
that the age distributions of the KC and PC incidence 
rates have turnover points within the age interval of 
74–81, after which these distributions fall off and 
reach the value of 0 (near the age of 100 years) at the 
end of the human life span.

The results presented in this work suggest that our 
approach significantly expands the possibilities of 
modeling of age distributions in PC and KC. We are 
certain that this approach could be generalized for 
many other organ-specific cancers and cancer 
subtypes and provide distinct model parameters 
that will be useful for the modeling of carcinogenic 
processes characteristic to particular cancers. It should 
be noted that in this work, we used the terms 
degree of increase or degree of decrease in a purely 
mathematical sense, because the precise mechanisms 
causing the increase and decrease of cancer incidence 
rates are not fully understood. To better understand 
the biological plausibility of the model parameters 
used in the proposed approach, detailed molecular, 
cellular and tissue-specific mechanisms underlying 
the development of each type of cancer will require 
further investigation. The model parameters that can 
be assessed by the proposed approach should challenge 
future biomedical and epidemiological studies.
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