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Abstract: Implantable medical devices are increasingly important in the practice of modern medicine. However, patients with severely 
poor bone quality and quantity require highest implant osseointegration for the long-term success. A number of newly-developed 
advanced surface modifications of medical implants have recently been introduced to the medical implant system. Understanding the 
mechanisms by which osteogenic cells respond to such materials is therefore of major importance in developing the most effective 
materials to promote functional osseointegration. Diverse studies using materials with a wide range of new surface modification 
techniques have demonstrated the pivotal role of surface treatments in cell adhesion, proliferation and lineage specific differentiation. 
These events underlie the tissue responses required for bone healing following implant placement, with the interaction between adsorbed 
proteins on the implant surface and surrounding cells eliciting body responses to the treated implant surface. This review illustrates 
tissue responses to the implant material following implant placement and highlights cellular responses to new advanced implant surface 
modifications. Such information is of utmost importance to further develop several new advanced surface modifications to be used in 
the new era medical implantable devices.
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Introduction
A number of pathological osseous conditions require 
fixative and replacement therapies involving the use 
of medical implant appliances,1,2 and during the past 
several years, a number of materials, such as titanium 
and its alloys, have been used for the fabrication of 
these medical devices. Criteria such as an acceptable 
mechanical behaviour and biocompatible chemical 
composition to avoid adverse tissue reactions have 
been used to define an ideal implant material for 
orthopaedic surgery, but the overriding clinical 
requirement for these materials is to facilitate 
osteogenesis at the bone-implant interface, i.e. enhance 
osteoblast differentiation and function.3  While 
the shape, length and diameter of a medical implant 
have been proposed to enhance clinical performances, 
the type of material and implant surface treatment and 
coating markedly influence its osteogenic properties.4 
Although many implant materials appear to be capable 
of enabling bone cell attachment, migration and 
growth (osteoconduction), their ability to stimulate 
the proliferation and differentiation of pluripotent 
mesenchymal cells into bone forming osteoblasts 
(osteoinduction)5 is nevertheless still unclear. While 
titanium and a multitude of titanium alloys have 
been widely used and are generally regarded as the 
materials of choice due to their high biocompatibility 
and osteoconductivity,6,7 other promising implant 
coating materials, such as hydroxyapatite, bioactive 
glasses and biologically active agents, have also been 
used as coating materials in order to enhance bone-
to-titanium (alloys) anchorage by facilitating their 
osteoinductivity.8–11 Understanding the mechanisms 
by which osteogenic cells respond to such materials 
is therefore of major importance in developing 
the most effective materials to promote functional 
osseointegration, which is required for the long-term 
success of implant surgery.5

A number of commercially available implant 
surfaces have proven clinical efficacy (approximately 
95% over 5 years).12 Several attempts have been 
made to develop new implant surfaces and to study 
their in vitro and in vivo properties with respect to 
osteogenic enhancement in order to obtain a long 
term success of medical implants in some certain 
problematic conditions, such as immediate loading 
medical implants and difficult clinical situations 
with poor bone quality and quantity. Although the 

osteogenic role of these conventional surfaces has 
been extensively reviewed,6,13–18 the role of new 
advanced surface modifications in enhancing implant 
osseointegration has not yet well documented. This 
review therefore highlights the biological responses 
to newly-developed surface modifications of the 
implant material.

Tissue Responses to the Implant 
Material Following Implant placement
Within a few nanoseconds following implantation, 
the tissue responds to the implant material surface by 
allowing water molecules to make contact with the 
implant surface, thus forming a water layer surrounding 
the implant.19 Surface properties of the implanted 
material have a major influence on the extent and 
specific interaction pattern of the material surface 
with this hydration layer, which in turn facilitates 
proteins and other molecules in the biological micro-
environment to adsorb to the material surface.19,20 
In the second stage, from seconds to hours after 
implantation, the material is subsequently covered 
by a thin layer of the extracellular matrix proteins; 
its conformation, orientation and composition are 
also likely to be affected by the implant material 
surface.21–23 The third stage involves the interaction 
of cells with the ‘surface’ of the implant via the 
adsorbed protein layer. The cell-protein bound 
surface interface, occurring from as short as 
minutes after and up to days following implant 
placement, initiates cellular adhesion, migration and 
differentiation, which occurs from a few hours to 
several days after implantation.21 This stage is tightly 
regulated by numerous biological factors, including 
extracellular matrix proteins, cell surface-bound and 
cytoskeletal proteins, by chemical characteristics and 
topographies at the implant surface and by the released 
ions/products from the material.24 The final stage of 
the body responses to the implant, which can last up 
to several decades, is the continuing development 
of the earlier stages, eventually resulting in the 
formation of functionally active mineralized bone 
tissue surrounding the implant. However, adverse 
responses, such as pathological inflammation, fibrous 
capsule formation and implant failure, can also occur 
during this stage.25–27 The future development of 
modern implant biomaterials is therefore aimed to 
minimize such effects as well as to promote rapid 
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wound healing and implant-to-bone integration for 
the long-term success of an implanted device in the 
body, which is significantly dependent on the tissue 
biocompatibility at the site of implantation as well as 
the physicochemical properties of the material.

Both in vivo studies and controllable in vitro 
experiments mimicking in vivo situation have been 
important tools to study the effect of biomaterials 
on living tissues and their interactions with cell 
functions. This includes biocompatibility test, which 
is thereby assessed in vitro by the observation of 
viability and bio-functionality of cells on a material 
surface. Osteoconduction experiments are also 
carried out in vitro by determining the ability of a 
material soaked in simulated body fluid to facilitate 
cell attachment, spreading and proliferation.28–30 
This allows the rapid initial screening of materials 
for further development and optimization for their 
clinical use. Finally, bioactivity or “osteoinduction” 
experiments are generally performed in vitro by 
determining the mineralized crystal forming ability 
of a material, which will subsequently be further 
established in a well-accepted in vivo animal model. 
It has recently been suggested that conventional 
histological- and histomorphometrical analysis and 
micro-computed tomography should be considered 
as complementary methods for the assessment 
of peri-implant osteogenesis following implant 
placement.31,32 The information derived from the 
basic understanding regarding the responses of cells 
to materials may provide important insight into 
the development of a number of promising surface 
modifications to be used in endosseous medical 
implantology in the new era.

cellular Responses to Modern Implant 
Surface Modifications
It is generally accepted that commercially pure 
titanium and its alloys are gold standard materials for 
medical implants, and their osteogenic properties can 
be enhanced by various modifications of the material 
surface in order to obtain osteogenic-inducing 
surface chemistry. A number of approaches have been 
considered in an attempt to achieve rapid and long term 
success of implant osseointegration. These modern 
trends include surface roughening at the nanoscale 
level, the use of biomimetic calcium phosphate 
coatings and the incorporation of biologically active 

agents into medical implants. A summary of the 
current advanced surface modifications of implants is 
shown in Table 1.

Nanoscale surface roughening 
of medical titanium implants
It is well established that the roughness of implant 
surfaces plays a crucial role in the biological events 
following implant placement. It is possible that 
implant materials with a rough surface topography 
induce a three-dimensional growth of cells, 
supporting osteoblast adhesion and differentiation 
and promoting mesenchymal cells to differentiate 
along the osteoblast lineage by activation of several 
osteogenic-associated genes, e.g. core-binding factor 1 
(Cbfa1), collagen, alkaline phosphatase, osteonectin, 
osteopontin and bone sialoprotein.33–38 It is thus 
believed that surface topography has a significant 
influence on the proliferation and differentiation of 
osteoprogenitor cells. Although presently available 
data are not consistent, the most commonly observed 
trends are that as surface roughness increases, 
the differentiation of osteogenic cells and their 
synthesis of extracellular matrix increase together 

Table �. A summary of the current advanced surface 
modifications of implants.

1. Nanoscale surface roughening
 1.1. Physical compaction
 1.2. Molecular self-assembly method
 1.3.  Chemical modification: acid/alkaline treatment, 

peroxidation
 1.4.  Nanoparticle deposition: sol-gel method, crystalline 

deposition
2. Biomimetic calcium phosphate coatings
 2.1. electrochemical method
 2.2. Immersion method
3. Incorporation of biologically active agents
 3.1.  Osteogenesis-inducing agents: BMPs, TGFs, 

veGFs, PDGFs, IGFs
 3.2.  Bone remodeling-associated agents: 

bisphosphonates
 3.3. Synthetic RGD peptides
 3.4. Antibiotics
Abbreviations: BMPs: bone morphogenetic proteins; TGF-β1: 
transforming growth factor β1; veGFs: vascular endothelial growth factors; 
PDGFs: platelet-derived growth factors; IGFs: insulin-like growth factors.
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with a concordant decrease in their proliferation. 
While micron-scale topographic modification of 
the commercially pure titanium surface has been 
accepted in the endosseous implant market due to its 
ability to facilitate osteogenesis at the bone-implant 
interface,39,40 increasing evidence has suggested 
that surface nanotechnology applications to the 
titanium implant may provide a promising approach 
to manufacture endosseous implant surface with a 
greater specific control of osteoblast differentiation 
and surrounding tissue fate, thus positively regulating 
implant osseointegration.

Nanotechnology involves materials that have 
a nanoscale topography or comprise nano-sized 
materials, which generally have a size range 
between 1 and 100 nm. Several methods have 
been proposed to create nanofeatures on titanium 
implant surfaces, for example, physical approach 
by compaction of nanoparticles (such as titanium 
dioxide (TiO2)), molecular self-assembly method, 
chemical modification by acid/alkaline treatment 
or peroxidation, nanoparticle deposition (such as 
sol-gel and discrete crystalline deposition).41 While 
a number of methods have already been utilized 
to treat titanium orthopedic implants available 
commercially, most of nanotechnology-based surface 
modifications are currently undergoing the research 
and development process. A number of in vitro 
experiments have shown that nanoscale structures, 
but not smooth surfaces, markedly increase 
osteoconductivity of materials by facilitating the 
attachment and proliferation of mesenchymal stem 
cells and osteogenic cells.41–47 It has been reported 
that metallic implant materials, such as titanium and 
its alloys, and some traditional polymeric materials 
treated with either nanoparticulate alumina or 
titanium using ionic plasma deposition and nitrogen 
ion immersion plasma deposition techniques 
show greater nanoscale roughness with increased 
osteoblast adhesion compared with the control 
untreated surfaces.48

It is not yet clear how nanoscale roughened 
topography influences its target cells. It is possible 
that nano-roughness topology regulates the interfacial 
forces that direct re-organization of cytoskeletal and 
cell surface receptor proteins. Moreover, nanoscale 
roughness could also modify the protein adsorption 
and conformation of integrin-binding adhesion 

molecules and thus modulating intracellular integrin 
pathway. This eventually results in controlling 
transcriptional events in the nucleus that guide target 
cells to undergo osteoblast differentiation, hence 
promoting implant osseointegration.

Although mechanisms by which nano-roughness 
enhances cell adhesion are not yet well understood, 
it has been suggested that initial attachment of cells 
to implant surfaces occurs through well-developed 
filopodia, directly exploring surface irregularities of 
the implant.44 This is found to be primary adhesion 
structures in cell-to-extracellular matrix interaction. 
The roughness at nanometer thus provides positive 
guidance for osteogenic cells to attach, leading 
to enhanced cellular attachment via the selective 
attachment of osteoblasts to the implant surface.44 
This selective attachment process might result in 
the improvement of initial healing around medical 
implants with nanoscale roughened surfaces. On the 
other hand, cells attach to a smooth surface by focal 
adhesions around their surface membrane as primary 
attachment structures because repulsive signals from 
the environment lead to the retraction of filopodia 
back to the cell bodies.44 This results in flattened cells 
with reduced cellular attachment to their surrounding 
substrates. Intriguingly, Prince and colleagues49 
reported that nanometer dimension fibers selectively 
enhanced osteoblast adhesion, whereas they decreased 
adhesion of smooth muscle cells, fibroblasts and 
chondrocytes. Such selective cell adhesion property 
therefore offers an advantage of a nano-roughened 
surface over its counterpart surface with respect to 
its potential to induce true direct bone contact but 
not unfavourable integration such as fibro-osseous 
intregation.

In addition to the positive effect of nanostructured 
surfaces on osteoconductivity, it has also been shown 
to facilitate the implant material osteoinductive 
property by enhancing osteoblast differentiation of 
stem/progenitor cells. Recent studies have shown 
strong cell responses of mesenchymal populations 
and osteoprogenitors to nanofeatures with increased 
levels of two important bone matrix proteins, 
osteocalcin and osteopontin.50,51 It is also suggested 
that progenitor cells are, in fact, more responsive 
to topography than more mature cell types and 
that they are actively seeking cues from their 
micro-environment.52 Moreover, Oh and colleagues53 
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have recently shown that the optimal dimension 
(approximately 70–100 nm diameter) of nanotube 
titanium oxide surface structures markedly drived 
differentiation of human mesenchymal stem cells 
into osteoblasts without the use of supplemented 
osteogenic-inducing factors in vitro, whereas 
increased stem cell adhesion without osteoblast 
differentiation of the stem cells was found in 
nanotubes with approximately 30 nm diameter. 
The reason for this is not yet well established, but 
it is possible that such optimal pore size may allow 
functionally-relevant stem cell elongation that in turn 
influences cytoskeletal stress, thus promoting stem 
cell differentiation into osteoblastic cells.

The roughness of the material also plays a 
significant role in the bacterial attachment process, 
presumably when the surface irregularities are 
comparable to the bacterial size and can protect them 
from unfavourable environment. In general, most 
commonly found bacteria range between 0.5 and 
5 µm. Thus, it is possible that surface roughness 
on a scale much smaller than the bacteria would 
not be expected to influence the initial attachment. 
It is noteworthy that while osteoblastic cells are 
selectively adhered onto nanoscale surface, bacterial 
adhesion and growth on such surface is reduced.54 
Moreover, Mitik-Dineva and colleagues55 reported 
that surface modification by etching, which resulted 
in a 70% reduction in the nanoscale roughness of 
the glass surface, significantly increase the number 
of bacteria adhering to the surface, suggesting 
that bacteria are sensitive to nanoscale surface 
roughness. Since the adhesion of bacteria to implant 
surfaces is also a key factor for the failure of implant 
osseointegration, this initial report suggests that 
such nanometer-roughness may provide favourable 
condition for successful osseointegration by 
preventing post-operative bacterial infection. 
Future comprehensive studies on the role of the 
nanotopography in bacteria are undoubtedly 
required to develop a clinically-successful medical 
implant system.

While a number of novel nanophase materials 
may be a promising alternative implant material, 
potential pitfalls or undesirable side effects 
associated with the use of nanomaterials in medical 
applications are also of important concern.56 
Nanostructured implants by physical compaction of 

nanoparticles could possibly be problematic due to 
loosening particles, resulting in an accumulation of 
nano-sized wear debris. Although the role of micron-
sized wear particles in long term post-operative 
surgery is well-known, the effect of nano-sized 
debris generation in bone micro-environment is 
still poorly investigated. Thus, more detailed in vivo 
experiments in this context are required before the 
full benefits of nanotechnology in implant surgery 
can be widely recognized.

Biomimetic calcium phosphate coatings 
on medical titanium implants
Delamination of calcium phosphate coating from 
the titanium implant surface causes a long term 
failure of osseointegration of the conventional 
plasma-sprayed hydroxyapatite-coated titanium 
implant. A new coating method, mimicking the 
natural process of bone mineralization, has been 
recently developed in order to avoid the drawbacks 
of such coatings. In this biomimetic approach, 
precipitation of calcium phosphate apatite crystals 
from simulated body fluids forms a coating on the 
titanium surface at room temperature.57,58 In order 
to enhance the deposition of coatings from aqueous 
solutions, a number of methods have been used. 
The electrochemical method involves the deposition 
of calcium phosphate by using a titanium cathode 
and a platinum anode to generate a current.59,60 This 
method is generally performed in acidic calcium 
phosphate solutions and gives rise to brushite coating 
formation which is subsequently converted into 
apatite by hydrothermal processing. Moreover, the 
electrochemical deposition conducted in simulated 
body fluid buffered at neutral pH can also produce 
a carbonated apatite coating directly on the titanium 
surfaces.61 This method gives possible impeccable 
control of the calcium phosphate thickness on all 
types of complicated surfaces with a short coating 
time and high reproducibility and efficacy.62 The 
second method involves immersion in simulated 
body fluid which allows calcium phosphate to 
precipitate onto titanium surfaces.57,58 This method 
involves the heterogeneous nucleation and growth 
of bone-like crystals on the surface of the implant. 
An implant is first treated with an alkaline in order 
to form titanium hydroxyl groups on the titanium 
surface, serving as nucleating points, followed by 

http://www.la-press.com


Singhatanadgit

� Bone and Tissue Regeneration Insights 2009:2

the crystal growth of the coating. In general, these 
subsequent events help promote the heterogeneous 
nucleation of the calcium phosphate.

Bone cell responses to biomimetically produced 
calcium phosphate materials have previously 
been shown. For example, these materials 
promote surface adhesion and proliferation 
of both osteoblastic and osteoclastic cells in 
vitro.63,64 It has also been reported that biomimetic 
calcium phosphate coatings are more soluble 
in physiological fluids and more resorbable by 
osteoclasts than high temperature plasma-sprayed 
hydroxyapatite coatings.65,66 Thus, these materials 
might be useful to enhance favorable bone 
remodeling, an important process in bone healing 
involving osteoclastic resorption and subsequent 
bone formation by osteoblasts. Although the 
osseointegration of titanium implants coated 
biomimetically has not yet been compared with 
other surface treatments in pre-clinical models, 
biomimetic coatings have been shown to provide a 
greater bone-implant contact compared with their 
counterpart uncoated surfaces.67,68

The osteogenic effect of biomimetic calcium 
phosphate-coated implants has been assumed to be 
comparable to the conventional calcium phosphate 
coatings. Previous in vivo studies have shown that 
hydroxyapatite coatings stimulate bone growth 
compared with uncoated titanium alloys.69,70 
Although enhanced bone integration is also observed 
when hydroxyapatite-coated and uncoated implants 
are both implanted into the same animal,71,72 trials 
with human patients have shown the advantages 
of hydroxyapatite-coated devices compared with 
their non-coated counterparts, such as increased 
implant survival, radiographic stability, lack of 
pain, and inhibition of implant movement.73,74 It 
has also been shown that hydroxyapatite facilitates 
osteoblast differentiation of cultured marrow 
stromal, pre-osteoblastic and bone-derived cells.75–77 
However, to increase the relatively poor mechanical 
properties of hydroxyapatite, various modifications 
have recently been introduced to the hydroxyapatite 
system, for example, glass-reinforced hydroxyapatite 
composite materials, which were further found to 
enhance the expression of bone sialoprotein and 
osteonectin by osteoblastic cells compared with 
cells cultured on pure hydroxyapatite alone.78 

However, the cellular effect of such modified 
hydroxyapatite composites biomimetically coated 
on core implant materials has not yet been reported. 
It has also been shown that different types of calcium 
phosphates coatings demonstrate different cellular 
responses. For example, a carbonate apatite coating 
stimulates the proliferation and differentiation of 
initially developing pre-osteoblasts, whereas in 
the late stage of their development, an octacalcium 
phosphate coating significantly enhances osteoblastic 
proliferation and differentiation compared with the 
carbonate apatite coating, via the activation of late 
differentiation marker genes, such as osteocalcin 
and bone sialoprotein.79 These data suggest that 
the osteogenic calcium phosphate-coated implant 
surfaces processed by this novel biomimetic method 
not only prevent the delamination of the coated layers 
from the implant surface, but also stimulate implant 
osseointegration.

Incorporation of biologically active 
agents into medical titanium implants
The surface of implants may be coated with 
osteogenesis-stimulating agents, such as growth 
factors, in order to accelerate angiogenesis and 
bone formation surrounding the endosseous 
implants. Members of the transforming growth 
factor β (TGF-β) superfamily (in particular bone 
morphogenetic proteins (BMPs) and TGF-β1), 
vascular endothelial growth factors (VEGFs), 
platelet-derived growth factors (PDGFs) and insulin-
like growth factors (IGFs) are some of the most 
promising candidates for this purpose. For example, 
incorporation of BMP peptides into medical implants 
have widely been used to induce and sustain implant 
osseointegration.80–83 However, the biologically active 
product has to be released progressively, and not in a 
single burst, to the peri-implant micro-environment. 
Another method to obtain the BMP-incorporated 
surface is the utilization of a plasmid containing the 
BMP encoding gene.84 Although this option may 
offer a better sustained release profile of the BMP, the 
outcome could nevertheless be limited due to the poor 
efficacy of transfecting plasmids into the target cells 
and the low expression/secretion level of the protein 
by the transfected target cells. In addition, continuing 
overexpression of the BMP by plasmid-transfected 
cells might not be advantageous after the completion of 
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bone healing following implant placement. In addition 
to BMPs, much attention has currently been focused 
on the activation of angiogenesis, a key factor for 
rapid bone healing, by local and sustained delivery of 
plasmid DNA encoding for VEGF.85,86 Incorporation 
of VEGF gene into the implant surface could thus be 
a promising modern surface modification in this era 
medical implantology.

The implant surface could also be loaded with bone 
remodeling-associated bioactive agents. Incorporation 
of certain bone antiresorptive drugs, such as 
biphosphonates, might be beneficial in clinical 
application for patients lacking sufficient bone 
support, e.g. severely resorbed alveolar ridges. It has 
recently been shown that a chemically-associated 
biphosphonate zoledronate onto calcium phosphate 
compounds inhibits osteoclastic activity and thus 
reducing bone resorption.87,88 This might shift the 
balance of bone remodeling toward the formation 
of new bone in vivo. For example, experimental 
in vivo studies using bisphosphonate-incorporated 
titanium surfaces demonstrated a significant increase 
in the amount of supporting bone surrounding 
the implants.89–91 However, other experimental 
studies have demonstrated only a slight increase 
in implant osseointegration.92,93 The major concern 
is the controlled and sustained release of these 
antiresorptive agents on the titanium implant 
surface. Due to the great chemical affinity of 
biphosphonates for calcium phosphate molecules, 
incorporation of these agents onto implants 
could be obtained using the biomimetic coating 
procedure, previously described. However, the 
ideal dose of these antiresorptive drugs should be 
comprehensively determined because an increase 
in peri-implant bone density has been reported 
to be biphosphonate concentration-dependent.91 
Moreover, an unexpected potential adverse effect of 
these antiresorptive drugs is a possible association 
with the osteonecrosis of jaw bone.94–96 The 
comprehensive studies of such bioactive drugs for 
endosseous implants must therefore be carefully 
evaluated pre-clinically before they can be translated 
into the clinical application.

The integrins are a superfamily of cell adhesion 
receptors necessary for cell-to-cell and cell-to-
matrix attachments, which play an important 
role in cell signalling and consequently control 

the biological activity of the cells. Therefore, the 
coating of titanium implant surface that contains 
binding sites for integrin receptors may potentially 
enhance peri-implant osteogenesis. Synthetic RGD 
peptides (Arg-Gly-Asp) coated onto the surface of 
implant materials increase bone-to-implant contact 
and newly formed peri-implant bone,97 presumably 
by enhancing early cellular attachment to the 
implant surface. Moreover, the RGD coating has 
been shown to promote the bone-bonding ability 
of the coated implants.98 The osteogenic role of 
RGD coating has also been demonstrated in in vivo 
implants, which are unavoidably surrounded in part 
by gaps, to improve mechanical implant fixation 
with a considerable increase in bone and a marked 
decrease in fibrous tissue formation.99 Significantly 
increased cell spreading, cell proliferation and 
expression of the osteocalcin gene were observed 
in primary calvarial osteoblasts grown on the RGD-
immobilized surfaces compared with those in the 
control surfaces, suggesting the enhanced functions 
of osteoblasts cultured on the RGD-modified 
surfaces.100 Moreover, the role of RGD-coated 
titanium implants in bone formation has also been 
reported in the rat femur bone. The study showed 
that 4 weeks postoperatively following implant 
placement, mechanical pull-out testing revealed 
that the average interfacial shear strength of peptide 
modified implants was greater than the control 
group,101 further supporting that the RGD peptide 
coating may promote implant osseointegration. 
However, long term evaluation of such modification 
in larger animal models is undoubtedly important 
to establish its significant role in enhancing in vivo 
implant osseointegration.

Interestingly, it has been demonstrated that 
coatings of implant surface by a combination of 
different bioactive molecules synergistically influence 
osteogenic events. For example, when RGD peptides 
coupled to a bisphosphonate were chemically 
adsorbed on titanium discs, adhesion and spreading 
of osteoblastic cells together with the formation 
of biomineralization were markedly enhanced.102 
Moreover, nanoscale roughened surfaces with RGD 
peptide coating provided an optimum surface for cell 
adhesion, spreading, and cytoskeletal organization, 
and also enhanced the expression of integrins.45 
However, the effect of combination coatings on new 
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bone formation at the implant site in vivo is thus far 
lacking.

While several lines of evidence suggest the 
osteogenic-enhancing role of the RGD coating, 
a recent study has shown that RGD-coated 
hydroxyapatite discs significantly inhibited total 
bone formation as well as the amount of new bone 
formed at the peri-implant site.103 It is noteworthy 
that RGD coatings, which are widely believed 
to promote cell-biomaterial interactions, could 
have a negative effect on hydroxyapatite implant 
performance, suggesting that for biomaterials that are 
highly interactive with the tissue microenvironment, 
e.g. hydroxyapatite, the ultimate effects of RGD 
peptides will depend upon how signaling from these 
peptides integrates with endogenous processes such 
as protein adsorption.

Antibiotic incorporation into implant coatings 
has also recently been introduced. Calcium-
based coatings of an implant material can bind 
to antibiotics, such as cephalothin, carbenicillin, 
amoxicillin, cefamandol, tobramycin, gentamicin 
and vancomycin, which are able to release from 
the coating material. These releasing antibiotics 
also remain their bacterial inhibition property.104 
For example, tobramycin-supplemented coatings 
on titanium alloys release functionally active 
tobramycin that could suppresses growth of 
Staphylococcus aureus bacteria.105 Moreover, recent 
reports suggest that antibiotics incorporated in 
polyester urethane coatings on implants significantly 
inhibit bacterial colonization and prevent bacterial 
resistance.106,107 The data suggest that certain 
antibiotics could be utilized to prevent post-operative 
bacterial infection and thus potentially enhancing 
implant osseointegration following implant 
placement. Moreover, future studies focusing on 
the drug release, method of drug incorporation 
and chemical structures of the antibiotic that 
facilitate their incorporation capacity, would be of 
utmost importance to develop a novel antibiotic-
incorporated coating material for medical implants.

conclusion
Studies of recent advanced surface modifications 
of implants have provided insight into potential 
benefits for endosseous implant therapy by positively 
controlling osteogenic responses of progenitor cells 

and thus stimulating both in vitro and in vivo bone 
formation. How these modern surface modifications 
may be used clinically in patients to accelerate 
implant osseointegration remains largely unexplored. 
It is noteworthy that the currently available implants 
differ in their topography and chemistry, in their 
design and in their bulk material composition. It is 
therefore difficult to draw specific conclusions from 
the data available regarding the surface modification 
alone. However, all previously reported data suggest 
that these new advanced surface modifications offer 
promising solutions to clinical problems where rapid 
and optimal implant osseointegration is critically 
required.
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