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Abstract: To determine if candidate cancer biomarkers have utility in a clinical setting, validation using immunohistochemical methods 
is typically done. Most analyses of such data have not incorporated the multivariate nature of the staining profiles. In this article, we 
consider modelling such data using recently developed ideas from the machine learning community. In particular, we consider the 
joint goals of feature selection and classification. We develop estimation procedures for the analysis of immunohistochemical profiles 
using the least absolute selection and shrinkage operator. These lead to novel and flexible models and algorithms for the analysis of 
compositional data. The techniques are illustrated using data from a cancer biomarker study.
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Introduction
The development of high-throughput assays such as 
mass spectrometry and gene expression microarrays 
has led to the generation of large numbers of candidate 
biomarkers in current medical research. However, 
while such results and signatures tend to provide 
great potential for disease prognosis, translating 
the discovery into a clinically useful biomarker 
requires more investigation. An important first step 
typically is to validate the finding using so-called 
immunohistochemical staining patterns.

In immunohistochemical studies, staining patterns 
of the biomarker are measured across a variety of 
samples. One common way this is done is using a tissue 
microarray.1 In this scheme, the “spots” on the glass 
slide represent tumor cores from different patients, and 
an antibody for the protein of interest is applied to the 
slide. The staining patterns are then correlated with 
patient characteristics. In most instances, the staining 
is assessed by a pathologist, who assigns a score on 
an ordinal scale, with larger values corresponding to 
higher levels of staining. Note that this structure is quite 
different from an expression microarray, in which the 
spots are individual genes and proteins of interest, while 
what is hybridized to the slide is a single sample.

Typically, an analysis of such data requires the 
creation of a univariate score measuring staining 
intensity for each sample. Then the score is associated 
with clinical outcomes using standard testing and 
regression methods. For example, if the clinical 
outcome is binary, one could use a parametric or 
non-parametric two-sample test for association. 
Alternatively, one could fit a linear regression of 
staining intensity on clinical outcome or a logistic 
regression of the outcome on staining intensity.

As noted by Etzioni et al2 the staining of tumor 
samples to the antibody is not completely homogeneous. 
What is available for certain scoring systems is a 
multivariate profile of percent of tumor cells staining 
at each level of the various scoring categories. As an 
example, we consider tissue microarray data from a 
candidate prostate cancer biomarker, LIMK1.3 LIMK1 
is a dual specificity novel serine/threonine kinase 
which modulates actin dynamics through inactivation 
of the actin depolymerizing protein cofilin.

The function of LIMK1 in reorganization of the 
cytoskeleton has been studied extensively during 
developmental defects.4,5 Recently, a role of LIMK1 

in progression and invasiveness of breast and 
prostate cancer has been predicted.6,7 In this paper, we 
explore the status of LIMK1 staining in the nucleus 
and cytoplasm as it relates to aggressiveness of 
prostate cancer.

In this dataset, there were five staining categories, 
and 50 samples were profiled for LIMK1 nuclear 
staining. The data for five randomly chosen 
observations are given in Table 1. Note that by 
definition, the percentages within each row must add 
up to one. Such data are referred to as compositional 
data.8 A major advance by Etzioni et al2 was to advance 
the use of composition data analytic techniques for the 
analysis of immunohistochemical data. They propose 
the use of Bayesian inference for the so-called logistic 
normal distribution for compositional data. However, 
fitting their model requires customized software that is 
typically not available to data analysts. In this article, 
we discuss the model proposed by Etzioni et al2 and 
show that it is in fact equivalent to a particular linear 
discriminant analysis model. Linear discriminant 
analysis (LDA), pioneered by Fisher,9 has been a 
popular model in the classification literature. Software 
for fitting LDA is available in most mainstream 
statistical packages, such as MINITAB, SAS and 
Splus/R. Thus, the first aim of the article is to show 
that one can in fact fit the model of Etzioni et al2 using 
LDA methods. A second goal of the article is to jointly 
perform classification and feature selection within 
this class of LDA models. Such an approach would 
allow for the automated inclusion of informative 
and exclusion of non-informative categories for 
discriminating samples. In the context of the tissue 
microarray example, this means that we want to find 
which staining categories that are informative for 
predicting aggressiveness. This will be done using 
the lasso penalty described initially by Tibshirani,10 in 
conjunction with a model selection strategy.

The structure of this article is as follows. In Results 
and Discussion, we outline the data structures and 
discuss the logistic normal model formulation of 
Etzioni et al2 for analysis of immunohistochemical 
profiles and equivalence with LDA. We also describe 
the lasso algorithm of Tibshirani.10 The methods are 
then applied to the motivating dataset. In the Methods 
section, we describe the optimal scoring algorithm 
for converting the classification problem of linear 
discriminant analysis into a regression problem.11 
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This will allow for the fusion of the classification using 
multivariate staining profiles along with automatic 
lasso-based selection of staining categories that are 
informative. In addition, we describe methods for 
additional covariate adjustment and model selection 
within this framework.

Results and Discussion
Data structures and logistic  
normal model
We will be assuming that we have data (Di, Yi, X), 
i = 1, ..., n, a random sample from (D, Y, X), 
where D denotes the group status, Y ≡ (Y1, ..., Yp) is a 
p-dimensional staining profile, and X is a q-dimensional 
vector of covariates. D will take values 0 and 1. We 
let s1, ..., sp denote the scores assigned to (Y1, ..., Yp); 
typically, we take (s1, ..., sp) to be (0, ..., p - 1) or 
(1, ..., p). It is assumed that Yi (i = 1, ..., p) takes values 
in (0, 1) and that Yii

p
 = 1

=∑ 1
. While Y is assumed to 

have all non-zero components, in practice zeroes do 
exist. We follow the recommendations of Etzioni 
et al2 and add in a random noise term.

Logistic Normal Distribution  
for Compositional Profiles
Define the (p - 1)-dimensional vector
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 Note that we have transformed 
the p-dimensional vector Y into a ( p - 1)-dimensional 
vector Z in order to remove the constraint Y Yjj

p
. =

=∑ .
1

 
In addition, the components of Z are nonnegative. Thus, 
transformed vectors are multivariate measurements 
on the product space (0, ∞)(p-1). The probabilistic 

model proposed in Etzioni et al2 for the analysis of 
immunohistochemical profiles is to assume that 
conditional on D,

	 Z D N D∼ ( , ),µ ∑ � (2)

where µD is a ( p - 1)-dimensional mean vector and 
Σ is a covariance matrix. The induced distribution 
for (Y1/Y, ..., YP/Y) is referred to as the logistic normal 
distribution in the compositional data analysis 
literature.8,12 While interpretation for the parameters 
on the transformed scale (i.e. Z) is easy, it is harder to 
interpret on the original scale.

In terms of analyzing immunohistochemical 
profiles, Etzioni et al2 adopted a hierarchical model in 
which priors were placed on µD and Σ. They then used 
a Markov Chain Monte Carlo (MCMC) sampling 
algorithm to sample from the the posterior distribution 
of µD. It was used to construct a 95% credible interval 
for mean shifts for the log-transformed profile. 
An easier estimation procedure that does not require 
implementing a Gibbs sampling algorithm is to fit a 
linear discriminant analysis model to the transformed 
data Z. This can be performed using virtually any 
standard statistical software package. The estimated 
linear discriminants from performing the linear 
discriminant analysis can be used in several ways. 
First, they can be used as a visualization method. 
Second, they can serve as a data-driven summary 
score on which further analysis can be performed.

One also notes that (2) can be generalized to 
allow for proportional covariance matrices across 
populations. This would then necessitate fitting a 
quadratic linear discriminant analysis model to Z.

Lasso Estimation
Shifting gears, we discuss the Least Absolute 
Shrinkage and Selection (LASSO) algorithm 

Table 1. Summary of staining data for five randomly chosen observations from prostate cancer data.

Observation Category 1 Category 2 Category 3 Category 4 Category 5
1 1.000 0.00 0.00 0.000 0
2 0.950 0.05 0.05 0.000 0
3 0.600 0.30 0.10 0.000 0
4 0.600 0.40 0.40 0.000 0
5 0.950 0.05 0.05 0.000 0
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proposed by Tibshirani.10 Suppose we wished to fit 
the linear regression model: E(Ui|Yi) = βTYi, where 
(U1, ..., Un) are continuous variables, and β is an 
unknown p-dimensional vector of unknown regression 
coefficients to be estimated. The LASSO solution is 
given by

	
ˆ arg min | |,β β βL i

T
i

i

n

j
i

p

U= -( ) +
= =
∑ ∑Y

2

1 1

λ
�

where λ  0 is a penalty parameter, and βj denotes 
the jth component of β. Tibshirani10 showed that 
placing an L1 constraint on the sum of the magnitude 
of the regression coefficients yielded sparsity in the 
estimates of β. To be specific, for certain values 
of λ, it is possible for the lasso estimate of β to be 
identically zero. Further details on the numerical 
algorithm implemented here is given in Methods.

LIMK1 Biomarker Study
Using the procedures described above as well as in 
the Methods section, we now consider a real-life 
application. The immunohistochemical data come 
from a putative prostate cancer biomarker, LIM 
kinase 1 (LIMK1).3 In this study, the expression 
profile of LIMK1 was determined using a prostate 
tumor tissue array comprising 50 samples from 
tumors at different stages of progression. The pool 
of samples in the array included three uninvolved 
prostate tissues for comparison. TNM classification 
of tumors in the TMA indicated that 62% patients had 
histories of either lymph node or distant metastasis at 
the time of surgery or biopsy, and 88% of the tumors 
had Gleason scores of 7 or above. Gleason score (GS) 
is an aggregate measure of the aggressiveness of the 
tumor. It is composed of a major and minor Gleason 
score, each of which is scored on a scale of one to 
five. We dichotomized Gleason score as less than or 
greater than or equal to eight.

Analyses of nuclear staining are considered first. 
Scatterplots of the multivariate nuclear staining 
profiles by pairwise category comparison are given 
in Figure 1. To associate staining with the clinical 
parameters (presence of metastases, Gleason 
score), we used the product score, multiplying 
the percentage staining by the staining intensity. 
Boxplots of the product score for nuclear staining 
versus presence of metastases and Gleason score 

are provided in Figures 2 and 3. While Figure 2 
indicates that metastatic tumors have higher nuclear 
staining relative to non-metastatic tumors, there 
is less difference in nuclear staining across the 
different Gleason score categories. A t-test reveals 
the differences corresponding to the boxplot in 
Figure 2 to be statistically non-significant (P = 0.32 
for presence of metastases), while an analysis of 
variance yields the association between nuclear 
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Figure 1. Pairwise plots of nuclear staining by staining category for the 
LIMK1 study.
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Figure 2. Boxplot of product score for LIMK1 nuclear staining (vertical 
axis) by presence of metastases (horizontal axis). 0 indicates absence of 
metastases, while 1 indicates presence of metastases.
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staining and Gleason score to also be nonsignificant 
(P = 0.31).

A series of logistic classification models using the 
proposed methods were run; they are summarized 
in Table 1. Based on the analyses we find that if 
we use nuclear staining profile to predict presence 
of metastases, then all four staining categories are 
informative. Using the BIC criterion, there was no 
improvement by including presence of metastases as 
a covariate. On the other hand, if one wishes to use 
nuclear staining to predict Gleason score, then only 
the third staining category is informative. There is no 
improvement by including presence of metastases as 
a covariate.

Next, we considered analyses based on 
cytoplasmic staining intensity. Pairwise scatter-plots 
of cytoplasmic staining are given in Figure 4. As with 
nuclear staining, we used the product score for 
associating the immunohistochemcial profile for 
cytoplasmic staining with Gleason score and presence 
of metastases. The boxplots of the LIMK1 cytoplasmic 
staining product score by presence of metastases and 
Gleason status are given in Figures 5 and 6. Analyses 
analogous to those for nuclear staining reveal 
nonsignificant associations (P = 0.75 and P = 0.40 
for presence of metastases and Gleason score, 
respectively).

The logistic normal models results for analysis 
using the cytoplasmic staining profiles are given in 

Table 2. For predicting presence of metastases, only 
the first staining category is needed. However, if we 
seek to adjust for Gleason score, then categories 1, 3, 
and 4 are needed. However, the BIC shows that the 
model fit worsens. If we use cytoplasmic staining 
to predict Gleason score, then categories 2, 3, and 4 
are selected by the LASSO procedure. Including 
presence of metastases does not improve the model 
fit. Comparing across the models listed in the Table, 
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Figure 3. Boxplot of product score for LIMK1 nuclear staining (vertical 
axis) by Gleason score (horizontal axis).
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Figure 4. Pairwise plots of cytoplasmic staining by staining category for 
the LIMK1 study.
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Figure 5. Boxplot of product score for LIMK1 cytoplasmic staining 
(vertical axis) by presence of metastases (horizontal axis). 0 indicates 
absence of metastases, while 1 indicates presence of metastases.
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we see that models with fewer staining categories 
selected tend to have better model fit. This supports the 
use of the LASSO algorithm for automating variable 
selection while fitting the logistic normal model to 
the immunohistochemical profiles. This also suggests 
that the proposed methodology, which in effect can 
fit a reduced submodel of the model of Etzioni et al2 
is a better fit to the data rather than the full model of 
Etzioni et al.2

Conclusions
In this article, we have explored a compositional 
data model initially proposed by Etzioni et al2 that is 
applicable to the modelling of immunohistochemical 
biomarker data such as those which might arise 
from tissue microarrays. We have shown that it has 

a natural link with linear discriminant analysis, which 
has been very well-studied in the statistical literature. 
Consequently, the Etzioni et al model can be fit using 
standard software packages for LDA, after some 
data manipulations are performed. The inference we 
perform is non-Bayesian, in contrast to the Bayesian 
inference done by Etzioni et al.2

We also have developed an automated variable 
selection procedure within the class of models by 
incorporating LASSO estimation procedures. The 
real data example shows that this automated variable 
selection leads to a better fit. We have also outlined 
a model selection strategy in which the Etzioni et al 
model is compared to submodels in which categories 
are suppressed.

While we dealt with the situation in this paper 
where D is binary (as did Etzioni et al), the optimal 
scoring algorithm can be easily extended to deal 
with the case where D has more than two levels. One 
converts D into a n × (G - 1) matrix, where G is the 
number of groups. The regression model that is fit is 
then a multivariate regression in that the response is 
multivariate.

Scientifically, while a score-based method such 
as the product score provides a simple summary 
statistic for staining data that can then be associated 
with clinical parameters in tests of hypotheses and 
regression models, it might oversimplify the data too 
much. This would be especially undesirable if there 
is substantial within-sample staining heterogeneity. 
Thus, methods which explicitly account for the 
multivariate nature of the staining offer a useful 
alternative. Compositional data methods are one type 
of multivariate approach. What our method allows 
the analyst to do is (1) model the staining profiles in a 
multivariate manner, (2) incorporate clinical variables 
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Figure 6. Boxplot of product score for LIMK1 cytoplasmic staining 
(vertical axis) by Gleason score (horizontal axis).

Table 2. Summary of logistic normal classification models fit using proposed methods in the paper.

Staining Intensity Group label Covariate Adjustment Categories Selected BIC
Nuclear Staining Presence of Metastases

Presence of Metastases
Gleason score
Gleason score

None
Gleason score
None
Presence of Metastases

1,2,3,4
1,2,3,4
3
3

17.41
17.77
13.24
16.28

Cytoplasmic Staining Presence of Metastases
Presence of Metastases
Gleason score
Gleason score

None
Gleason score
None
Presence of Metastases

1
1,3,4
2,3,4
2,3,4

13.90
17.77
16.14
16.28
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as covariates and (3) exclude uninformative staining 
categories.

Methods
Lasso-based optimal scoring algorithm
In this section, we describe our proposal, which 
entails developing a sparse estimator in the logistic 
normal model for compositional data. This is done 
by using the optimal scoring algorithm of Hastie 
et al11 to convert the logistic normal classification 
problem into a regression problem. This is done in 
the following way:

1.	 Choose an initial score matrix M satisfying 
M′CPM = I, where Cp = D′D/n, and let M0 = DM.

2.	 Fit a linear regression model of M0 on Z, yielding 
fitted values M.

3.	 Obtain the eigenvector matrix Φ  of Φ of M M;
0′ 

the optimal scores are then M M= 0Φ.

The fitted values obtained at the end of the 
algorithm are proportional to the linear discriminant 
analysis coefficients. To extend the algorithm so 
that we jointly perform classification and automated 
variable selection, we simply replace step 3 of 
the algorithm by LASSO estimation of the type 
described in Results and Discussion. Based on the 
algorithm, regression coefficients for each variable in 
X will be estimated. Those with estimated regression 
coefficients that are zero are considered unimportant 
variables or features.

We will use the algorithm of Osborne et al13 for 
LASSO estimation. Let σ be the index set, a subset 
of {1, ..., p}. The ith component of β is non-zero if 
and only if I ∈ σ. The algorithm of Osborne et al13 
operates by sequentially updating the index set. Let 
P denote the permutation matrix that arranges the 
non-zero components of η as the first s components, 
where s is the cardinality of σ. We have that

	 β
βσ=









PT

0
. �

Let θσ be the sign vector of βσ. At each step of the 
algorithm, β must satisfy the L1 constraint; this can 
be expressed as θ βσ σ

T t≤ . The optimization problem 
solved by Osborne et al13 is to minimize

	 1

2 0

2

1

M hi i
T

i

n

- +( ){ }
=
∑ Z β �

over h subject to θ βσ σ σ
T t( )+ ≤h  and

	 h
h

0
=





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pT σ . �

If the constraint is active, then the optimal solution 
for h is given by the least square method. Let h denote 
the solution, and let (β* = β + h. If sign(β*)σ = θσ, 
then (β* is said to be sign feasible. If (β* is not sign 
feasible, then the following steps are taken:

1.	 Find the smallest α ∈ (0, 1) such that 0 = βk + αhk 
for a k ∈ σ and set β β α= + h.

2.	 One of two steps may be taken here. Either
i.	 Set θk = -θk and recompute h. If β + h is sign 

feasible for the revised θ, set (β* = β + h and go to 
step 3. or

ii.	Update σ by deleting k, resetting β and θσ 
accordingly, and recompute h for the revised 
problem.

3.	 Iterate between steps 1 and 2 until a sign feasible 
β  is obtained. Set β β* .= 

Once the sign feasibility is obtained, the optimality 
of the candidate solution is tested. This is done by 
calculating

v
*

*
v
v= -

-
= ( )Z D Z

Z D Z

T T

T T

TP
( )

( )
,

β
βσ

2

1

where Zσ is the design matrix Z with columns 
corresponding to P. By definition, the ith component 
of v1 is θi for 1  i  s. If the absolute magnitude of 
the ith component of v2  1 for 1  i  (p - s), then 
β* is a solution to the lasso problem. Otherwise, the 
following steps are taken:

1.	 Find the index j such that the jth component of v2 
has the largest magnitude.

2.	 Update σ by adding j to it and update βσ by adding 
a zero as its last element and βσ by appending the 
jth component of sign(v2).

3.	 Set (β* = β and iterate between steps 1 and 2.

This algorithm has been implemented as an R 
function (www.r-project.org) by the first author and 
can be obtained upon request.

Covariate adjustment and model selection
An important question not addressed by Etzioni et al2 
was adjusting for other co-variates in addition to D. 
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Since we have expressed the classification problem 
as a regression one via the optimal scoring algorithm, 
we can immediately modify it to account for X:

1.	 Choose an initial score matrix M satisfying 
M′CPM = I, where Cp = D′D/n, and let M0 = DM.

2.	 Fit a linear regression model of M0 on X.
3.	 Compute the residuals from step 2 and regress on 

Z using the LASSO estimation algorithm, yielding 
fitted values M .

4.	 Obtain the eigenvector matrix Φ of ′M0 M ; the 
optimal scores are then M = M0Φ.

Notice that this algorithm forces X to be inthe 
model so that components of X are not set to zero 
using the LASSO algorithm.

Based on the models, it would be useful to have 
a criterion for performing model selection. We can 
do this easily again using the equivalence of the 
classification and regression problem. We simply use 
the formula RSS + p/2 log n, where RSS denotes the 
residual sum of squares from the linear regression 
output in the algorithm, and p denotes the number 
of variables that are in the regression model. In 
particular, variables with estimated zero coefficients 
are not counted. Lower values of the criterion indicate 
better model fit. We will refer to this criterion as the 
Bayesian Information Criterion (BIC), a version of 
which was proposed by Schwarz.14 Note that if the 
smallest BIC value corresponds to no variables being 
excluded, then this indicates that the best model fit is 
that of Etzioni et al.2
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