
Bioinformatics and Biology Insights 2009:3 83–87

This article is available from http://www.la-press.com.

© the authors, licensee Libertas Academica Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://www.creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction
provided the original work is properly cited.

Bioinformatics and Biology Insights 2009:3	 83

Open Access
Full open access to this and
thousands of other papers at

http://www.la-press.com.

Bioinformatics and Biology Insights

S h o r t R e p o r t

affyPara—a Bioconductor Package for Parallelized
Preprocessing Algorithms of Affymetrix Microarray Data

Markus Schmidberger, Esmeralda Vicedo and Ulrich Mansmann
Division of Biometrics and Bioinformatics, IBE, University of Munich, 81377 Munich, Germany.
Email: markus.schmidberger@ibe.med.uni-muenchen.de

Abstract: Microarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds
of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the
available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time
consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule’s
prediction quality honestly.
This paper proposes the new Bioconductor package affyPara for parallelized preprocessing of Affymetrix microarray data. Partition
of data can be applied on arrays and parallelization of algorithms is a straightforward consequence. The partition of data and
distribution to several nodes solves the main memory problems and accelerates preprocessing by up to the factor 20 for 200 or more
arrays.
affyPara is a free and open source package, under GPL license, available form the Bioconductor project at www.bioconductor.org.
A user guide and examples are provided with the package.

Keywords: parallel computing, R, microarray, preprocessing, normalization

http://www.la-press.com
http://www.creativecommons.org/licenses/by/2.0
http://www.la-press.com
http://www.la-press.com
mailto:markus.schmidberger@ibe.med.uni-muenchen.de

Schmidberger et al

84	 Bioinformatics and Biology Insights 2009:3

Introduction
Studies of gene expression using high-density
oligonucleotide microarrays have become standard
in a variety of biological and clinical fields. They
enable scientists to investigate the functional
relationship between the cellular and physiological
processes of organisms by studying transcription at
genome-wide system levels. Affymetrix GeneChip®
arrays are a very common variant of high-density
oligonucleotide expression microarrays. The data
recorded by means of the Affymetrix GeneChip®
microarray technique are characterized by the
typical levels of noise induced by the preparation,
hybridization and measurement processes as well as
a specific structure. Removing the sources of bias
needs a specific preprocessing of the raw data as far
as the steps background correction, normalization,
and summarization are concerned. For more details
and a brief introduction see e.g. Gentleman et al.1

The open source projects R2 and Bioconductor3
provide tools in computational biology and
bioinformatics. R is a free software environment and
provides a wide and extensible range of statistical
and graphical techniques. Bioconductor is an open
source software project and repository of instruments
for the analysis and comprehension of genomic
data. It is primarily based on the R programming
language. Especially, for the preprocessing of
microarrays the Bioconductor repository offers
many tools which are implemented and stored in
various packages4: affy5, affyPLM6, vsn7,... .

Problems and challenges
Processing a large number of microarrays is
generally limited by the available computer
hardware. The main memory limits the number of
arrays analysed. Furthermore, most of the existing
preprocessing methods are very time consuming
(http: //bmbolstad. com/misc/ComputeRMAFAQ/size.
html).8 Tasks which request a repeated preprocessing
of large microarray sets may block computing devices
for a long time. A specific class of such tasks is the
building of classification or prognostic rules which
uses resampling of the original data to estimate the
classification or prognostic error.9

A further challenge is the fact that microarray
experiments are becoming increasingly large. Meanwhile,

large multi-centre studies — e.g. the Microarray
Innovations in LEukaemia (MILE) study10 — prepare
for a standardised introduction of gene expression
profiling in diagnostic algorithms, aiming to translate
this novel methodology into clinical routine for
the benefit of patients with the complex disorders.
In the MILE study, data of more than 2000 patients
is used to derive diagnostic rules based on gene
expression. To preprocess the data so called ‘Add-On
normalization’ has to be used repeatedly.11 Add-On
normalization allows to normalize a new microarray
with respect to a normalization performed for a set
off arrays. The vsn package7 offers this technique
which is needed to apply gene expression profiles
for classification or prognosis to a new patient.
A misuse of this technique to normalize many of
hundreds of patients to a base set of a few hundreds
of patients results in a biased preprocessing result
(see vignette of the affyPara package).

Solutions
Most of these problems can be solved using faster
computer processors and bigger main memories.
Some preprocessing methods included in the
affy and affyPLM packages try to solve these
problems by exporting large parts of the algorithms
to C routines. Alternatively one can buy business
applications, store the data in databases, use the
hard drive as main memory, or take advantage of
the power of parallel computing. Algorithms using
efficient data structures on the hard drive level
already exist: aroma.affymetrix12. But, distributed
computing is the most promising solution, because
it accelerates the methods and it solves the main
memory problems. Therefore, the affyPara package
implements strategies using parallel computing for
preprocessing of microarray data.

Description
Parallel computing divides large computation
problems into smaller ones, which are then
solved concurrently. An overview, review and
benchmark of parallel computing techniques and
tools for parallel computing with R is available in
Schmidberger et al.13

Parallel computing for microarray data distributes
arrays to different processors, performs demanding

http://www.la-press.com

affyPara—a bioconductor package for parallelized preprocessing algorithms

Bioinformatics and Biology Insights 2009:3	 85

computations on smaller sets of microarrays and
communicates the results between the processors
efficiently to achieve the needed overall result.
Microarray data are stored in a matrix structure.
Using the block cyclic distribution the arrays will
be distributed equally to all nodes. Therefore, the
amount of required main memory per processor gets
smaller. Basic Bioconductor packages can be used
on the single processors since their data structure is
array oriented. The snow package14 is used as parallel
computing API due to availability on different
cluster environments, its compatibility to many
multi-processor and multicomputer systems, its good
performance, and user friendly code interface.13

Existing statistical algorithms and data structures
had to be adjusted and reformulated for parallel
computing. Using the parallel infrastructure the
methods could be enhanced and new methods
will become available. For background correction
the methods RMA and MAS 5.0 are implemented.
These methods only depend on the actual array

and can easily be parallelized. Normalization
methods make measurements from different
arrays comparable and multi-chip methods have
proved to perform very well.4 The normalization
methods contrast, invariantset, quantile, and
vsn (in development) are parallelized. The
parallelization of the quantile normalization is
visualized by the flowchart in Figure 1 (a). It was
also possible to parallelize several summarization
methods (avgdiff, liwong, mas, medianpolish)
as well as complete preprocessing strategies
(e.g. rma). Furthermore quality assessment tools
optimized for huge numbers of microarrays are
implemented.

The user-interface of the affyPara package
is very similar to the code structure of the affy
package and therefore very easy for trained R and
Bioconductor users. Some simple example codes for
creating an AffyBatch object and rma background
correction with the affy and affyPara packages is
visualized in the following code lines:

partition

STArT
Normalize AffyBatch Quantiles para

STop
Normalize AffyBatch Quantiles para

rebuild AffyBatch

Initialize AffyBatch

Sort Columns

Calculate row means

Calculate full row means

Normalize

Initialize AffyBatch

Sort Columns

Calculate row means

Initialize AffyBatch

Sort Columns

Calculate row means

Normalize Normalize

…

…

(A) Flowchart

5 10 15 20

1
2

3
4

5
6

7

Quantil normalization

Number of processors

S
pe

ed
up

50 arrays
100 arrays
200 arrays
300 arrays

(B) Speedup Curves
Figure 1. Flowchart and relative speedup curves for parallelized quantile normalization calculated on the super-computer HLRBII at the LRZ in Munich,
Germany.

http://www.la-press.com

Schmidberger et al

86	 Bioinformatics and Biology Insights 2009:3

	 library (affy)
	 AB - ReadAffy()
	 AB_bgc - bg.correct(AB, method = "rma")
	 library (affyPara)
	 makeCluster (5, tpe = "MPI")
	 AB - ReadAffy()
�	 AB_bgc - bgCorrectPara(AB, method = "rma")
	 stopCluster()
To use the power of parallel computing, the user

needs only a working computer cluster and cluster
start or administration programs (e.g. Sun Grid
Engine). The R syntax is very similar and only two
more lines for starting and stopping the cluster are
required.

Results
In parallel computing, speedup (S) refers to how much
a parallel algorithm is faster than a corresponding
sequential algorithm: S T TN N= 1 . Where N is the

number of processors, T1 the execution time of the
sequential algorithm and TN the execution time of
the parallel algorithm with N processors.15 Limits
for the speedup are described in ‘Amdahl’s Law’.16
For example in theory using N processors can not
achieve a speedup of more than factor N.

Figure 1(b) visualizes the relative speedup
for quantile normalization. The plot compares
the parallelized and new implemented code in the
affyPara package running on one processor to
the execution time on two to twenty processors.
Due to the use of 15 computers for 300 microarrays
an absolute speedup can be achieved up to factor 20
(serial computation time of the affy package: 1806
sec, parallel computation time: 75 sec). A substantial
gain in computation time is essential for a successful
application of resampling techniques to the validation of
gene expression profiling rules.

More details about the implementation, speedup of
other methods and usage can be found in Schmidberger
and Mansmann (2008)8 or the vignette of the package.

Conclusion
The affyPara package implements parallelized
and efficient preprocessing methods for a huge
number of high-density oligonucleotide microarrays
in the R language. For all parallelized methods
using 5 to 10 processors (or more) and more than

150 microarrays there is an obvious acceleration
than with the code from the affy package. The
user-interface is simple and extends the functionality
of the affy package. Using the snow package the
new package works on computer clusters as well
as on multi-core architectures. It supports standard
preprocessing steps and provides tools for quality
assessment of huge numbers of microarray data.
The affyPara package is a free and open source
package — under GPL license — and available form
the Bioconductor project at www.bioconductor.org.
A user guide and examples are provided with the
package.

Acknowledgement
The work of Markus Schmidberger and Ulrich
Mansmann is supported by the LMUinnovative
collaborative centre “Analysis and Modelling of
Complex Systems in Biology and Medicine”.

Disclosure
The authors report no conflicts of interest.

References
	 1.	 Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S. Bioinformatics

and Computational Biology Solutions Using R and Bioconductor. 2005;
Springer, 1 edition.

	 2.	 R Development Core Team R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0. 2008.

	 3.	 Gentleman RC, Carey VJ, et al. Bioconductor: Open software development
for computational biology and bioinformatics. Genome Biology.
2004;5.

	 4.	 Irizarry RA, Hobbs B, et al. Exploration, normalization, and summaries
of high density oligonucleotide array probe level data. Bio statistics.
2003;4(2):249–64.

	 5.	 Irizarry R, Gautier L, Cope L. An R package for analyses of affymetrix
oligonucleotide arrays. In Parmigiani G, Garrett E, Irizarry R, and Zeger S,
editors, The Analysis of Gene Expression Data: Methods and Software.
2002; Springer, New York.

	 6.	 Bolstad BM. Low-level Analysis of High-density Oligonucleotide Array
Data: Background, Normalization and Summarization. 2004; Ph.D. thesis,
University of California, Berkeley.

	 7.	 Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M.
Variance stabilization applied to microarray data calibration and to the
quantification of differential expression. Bioinformatics. 2002;18 Suppl 1:
S96–104.

	 8.	 Schmidberger M, Mansmann U. Parallelized preprocessing algorithms for
high-density oligonucleotide arrays. In Proc. IEEE International Symposium
on Parallel and Distributed Processing IPDPS. 2008;1–7.

	 9.	 Ruschhaupt M, Huber W, Poustka AM, Mansmann U. A compendium to
ensure computational reproducibility in high-dimensional classification
tasks. SAGMB. 2004;3: Article 37.

10.	 Bacher U, Kohlmann A, Haferlach T. Current status of gene expression
profiling in the diagnosis and management of acute leukaemia. Br J
Haematol. 2009. [Epub ahead of print].

http://www.la-press.com

affyPara—a bioconductor package for parallelized preprocessing algorithms

Bioinformatics and Biology Insights 2009:3	 87

Publish with Libertas Academica and
every scientist working in your field can

read your article

“I would like to say that this is the most author-friendly
editing process I have experienced in over 150

publications. Thank you most sincerely.”

“The communication between your staff and me has
been terrific. Whenever progress is made with the
manuscript, I receive notice. Quite honestly, I’ve
never had such complete communication with a

journal.”

“LA is different, and hopefully represents a kind of
scientific publication machinery that removes the

hurdles from free flow of scientific thought.”

Your paper will be:
•	 Available to your entire community

free of charge
•	 Fairly and quickly peer reviewed
•	 Yours! You retain copyright

http://www.la-press.com

11.	 Kostka D, Spang R. Microarray based diagnosis profits from better
documentation of  gene expression signatures. PLoS Comput Biol. 2008;
4(2):e22.

12.	 Bengtsson H. Aroma M an R object-oriented microarray analysis
environment. Preprints in Mathematical Sciences, Mathematical Statistics,
Lund University. 2004;18.

13.	 Schmidberger M, Morgan M, Eddelbuettel D, Yu H, Tierney L,
Mansmann U. State-of-the-art in parallel computing with R. Journal of  Stat
istical Software. 2009; Accepted, 1–26.

14.	 Rossini AJ, Tierney L, Li NM. Simple parallel statistical computing
in R. Journal of Computational and Graphical Statistics. 2007;16(2):
399–420.

15.	 Sloan J. High Performance Linux Clusters with OSCAR, Rocks, OpenMosix,
and MPI (Nutshell Handbooks). O’Reilly Media, Inc 2004.

16.	 Amdahl GM. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS ‘67 (Spring): Proceedings of
the April 18–20, 1967, spring joint computer conference, pages 483–5,
New York, NY, USA. ACM.

http://www.la-press.com
http://www.la-press.com

