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Abstract: Homologous recombination is a pervasive biological process that affects sequences in all living organisms and viruses. In the 
presence of recombination, the evolutionary history of an alignment of homologous sequences cannot be properly depicted by a single 
bifurcating tree: some sites have evolved along a specific phylogenetic tree, others have followed another path. Methods available to 
analyse recombination in sequences usually involve an analysis of the alignment through sliding-windows, or are particularly demanding 
in computational resources, and are often limited to nucleotide sequences. In this article, we propose and implement a Mixture Model 
on trees and a phylogenetic Hidden Markov Model to reveal recombination breakpoints while searching for the various evolutionary 
histories that are present in an alignment known to have undergone homologous recombination. These models are sufficiently efficient 
to be applied to dozens of sequences on a single desktop computer, and can handle equivalently nucleotide or protein sequences. We 
estimate their accuracy on simulated sequences and test them on real data.
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Introduction
Homologous recombination is a process through which 
genes descending from a common ancestor exchange 
parts of their sequence. Consequently, sequences 
having undergone recombination will display two 
different histories: one history for one part of their 
sequence, affected by the recombination event, and 
one history for the other part. If the recombining 
genes have been parts of different lineages long 
enough prior to this recombination event, the 
difference in the histories of the recombining and 
non-recombining parts of the gene may translate into 
topological incongruencies between their respective 
phylogenies.

If one applies classical phylogenetic methods to 
an alignment that has undergone recombination, only 
one tree will be recovered, with no guarantee that this 
tree corresponds to the part of the sequence whose 
history has been affected by the recombination event, 
the other part, or any of these two. Several methods 
have been developed to try and detect recombination 
in alignments;1,2 such methods can therefore be used 
prior to phylogenetic analysis to see whether it is 
meaningful to describe the history of an alignment by a 
single bifurcating tree. In cases where no recombination 
has been detected, the subsequent analysis is classical 
phylogenetics. In cases where recombination has 
been detected, there are few methods available that 
can analyse an alignment and precisely predict both 
the recombination breakpoints and the evolutionary 
histories found in the alignment.

If we put aside methods based on sliding windows, 
that cannot precisely pinpoint the recombination 
breakpoints, a few groups have proposed methods 
to unveil both the recombination positions and the 
phylogenetic trees. In 2000, Mcguire et al3 inspired by  the 
work of Felsenstein and Churchill,4 proposed a method 
based on a hidden Markov model (HMM) in which the 
hidden states were the phylogenetic trees themselves. 
Therefore, a transition between the states ought to be a 
recombination breakpoint. However, this first attempt 
was prone to misinterpreting rate heterogeneity 
as recombination events. Husmeier subsequently 
built upon this model to deal with heterogeneities 
in site evolutionary rates5 by superimposing another 
HMM whose states correspond to evolutionary rates: 
therefore two kinds of transitions are allowed along the 
alignment, a transition between topologies, indicative 

of recombination, and a transition between rates. 
Unfortunately, all these methods are computationaly 
demanding, and can only be applied in cases where 
the space of tree topologies is very limited, as all 
topologies need to be given a priori. Lastly, Kedzierska 
and Husmeier6,7 proposed a hybrid approach in which 
a sliding window is first applied to the alignment 
to build phylogenetic tree distributions along the 
alignment. Then, a HMM is run on the alignment, 
with its hidden states being the tree distributions 
themselves. This approach allows to handle a larger 
number of sequences than the previous ones, but is 
also probably less accurate in breakpoint detection, 
because the topology distributions are built from small 
arbitrary windows, which may not correspond to the 
true recombination structure of the alignment.

In 2002, Suchard and co-workers8 proposed a 
Bayesian multiple-changepoint model to detect 
recombination, and further improved it by adding a 
second changepoint process to account for changes 
in the substitutional process.9,10 This sophisticated 
method however also suffers from its computational 
requirements. In fact, both this method and those 
of Husmeier, Wright and co-workers have been 
implemented to only deal with DNA sequences, and 
cannot be used with large numbers of sequences.

However, the detection of recombination should 
not be limited to recently diverged sequences. When 
protein-coding sequences have diverged a long time 
ago, synonymous sites of the nucleotide sequence may 
be saturated, so that it becomes advisable to resort to 
amino-acid sequences. In such conditions, none of 
the previously described methods can be used.

Most recently, Pond and co-workers developped 
GARD,11,12 a software able to detect recombination 
with any type of alphabet. This program estimates 
the phylogenetic trees, the number of recombination 
breakpoints and their positions in a maximum 
likelihood framework. To do so, it tries different 
numbers of breakpoints, and for each number, uses 
a genetic algorithm to estimate the best breakpoint 
positions. During this procedure, phylogenetic trees 
are estimated with the Neighbor-joining algorithm,13 
and the best number and positions of breakpoints 
are chosen according to the Akaike criterion. This 
considerable task can be achieved efficiently through 
a parallelised architecture, which can be run on a 
cluster of computers.
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In this article, we present two new methods to 
uncover the recombination structure of a protein 
or nucleotidic alignment, that can be easily and 
efficiently run on a desktop computer. The first 
method is based on a Mixture Model (MM), and the 
second is based on a phylogenetic Hidden Markov 
Model (Phylo-HMM). We begin by introducing the 
mathematics behind these models, shortly explain 
how these were implemented, and finally proceed 
to test them on both simulated and real alignments. 
We discuss the merits and limits of our methods and 
propose a few refinements.

Computing the Likelihood  
of a Single Tree
We first explain how one computes the likelihood 
of a phylogenetic tree14 with nucleotide or protein 
sequences using the following example (Fig. 1).

Most commonly, sites are supposed to evolve 
independently of each other: a site does not depend 
on its neighbors’ states but only on its past state. As 
a consequence, the likelihood of a tree for a whole 
sequence is the product of all the likelihoods obtained 
from single sites.

The likelihood Ls,τ of the tree τ given in Figure 1 
for a single site s is computed as follows:
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where Pxy(lA, υA) is the probability for base x to 
change into base y along a branch of length lA, 
with rate category g from the Γ distribution and 
other evolutionary parameters υA, P(R = x) is the 
probability to have base x at the root R, and Ω is 
the set of possible states (for instance, Ω = {A, T, 

C, G} in case of a DNA alignment); Ls,low (RA)(A = z) 
is the lower conditional likelihood of observing the 
data downstream from branch R → A conditionally 
on the underlying subtree and on having base z at 
node A. Note that computing the likelihood of a site 
when using a distribution over the evolutionary 
rates amounts to averaging the likelihoods of 
the site obtained when using each evolutionary 
rate in turn.

Computing the Likelihood 
with a Mixture Model on trees
As for the likelihood of a model where different rates 
are allowed, one can compute the likelihood of a 
model where one allows different trees. Consequently, 
to get the likelihood of a model whose parameters of 
interest are the trees that best describe the alignment, 
one can take at each site the average over the 
likelihoods obtained with each one of the trees that 
are considered.

This is summed-up in the following formula for 
the likelihood of a single site, where T represents the 
set of trees τ currently in use, and |T| the number of 
trees in T:

	
L

T
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T
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∈
∑1 τ
τ 	

(2)

with such a formula, both across-site rate 
heterogeneity and topology heterogeneity are 
taken into account, respectively by the gamma 
distribution and the Mixture Model on topologies. 
Once the likelihood of a Mixture Model over trees 
has been computed and maximized, it is possible 
to predict a posteriori the most likely tree for a 
given site (see below). This possibility can be 
used to uncover the recombination structure in an 
alignment.

Toy example: it is possible to optimize the 
topologies with a Mixture Model on trees.

In a setting where we search for |T| trees τ that 
describe an alignment, we try to find the set of |T| 
trees whose likelihood as computed above in Eq. 2 
is maximal. The object that is looked for is the set T 
itself. In principle, a set of |T| distinct trees can have 
a higher likelihood than that of any single tree, as 
can be seen in this toy example, where |T| = 4, with 
4 sites:
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In this example, the most likely topology is 
Topology 2, with a log-likelihood of log(10–4 × 
10–2 × 10–3 × 10–4) = –13. However, if one uses 
a Mixture Model on tree sets containing 4 trees, 
this does not simply result in the same Topology 2 
topology being found in the 4 trees. Indeed, as the 
average over the likelihoods of each topology is 
computed for each site, one obtains the following 
log-likelihood:

�	

It is thus more likely on this example to use 4 
different trees rather than a single tree. However, 
had the alignment been homogeneous, this model 
could have resulted in the same tree repeated 4 times, 
possibly with branch lengths differing between trees.

This example shows that in case of an alignment 
altered by a recombination event, a set of |T| trees 
can be optimized to best account for the sequence 
evolution with a Mixture Model: it is not necessary 
that the tree topologies are specified before the search 
for the recombination breakpoint is undertaken.

A Phylogenetic Hidden Markov Model 
to Detect Recombination
The Mixture Model described above fails to account 
for an important property of the alignment: it is 
expected that the topology that best describes a given 
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Figure 1. Example rooted tree for likelihood computation.

Topologies Site 1 likelihood Site 2 likelihood Site 3 likelihood Site 4 likelihood
Topology 1 10–2 10–4 10–4 10–4

Topology 2 10–4 10–2 10–3 10–4

Topology 3 10–4 10–4 10–2 10–4

Topology 4 10–4 10–4 10–4 10–2
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site has a high probability of properly describing 
the neighboring sites. Thus there is a dependency 
between sites, that can be modelled through the use of 
a Hidden Markov Model, whose hidden states are the 
topologies themselves. This model therefore belongs 
to the family of Phylo-HMMs. The rate heterogeneity 
is taken into account through a mixture model on rates, 
through the commonly used gamma distribution.

Computing the likelihood  
with the Phylo-HMM
The likelihood of the Phylo-HMM can be computed 
with the forward algorithm, as already explained 
in the phylogenetics framework by Felsenstein 
and Churchill.4 We rapidly go through this algorithm 
here.

The algorithm starts from one end of the 
alignment and finishes at the other end; arbitrarily, 
we will start by the beginning of the alignment, at 
site 1, and end at site n. We suppose that individual 
site likelihoods have been already computed for all 
the trees. We note as L1,τ the likelihood obtained with 
Felsenstein’s pruning algorithm at site 1 for the tree τ. 
The likelihood of the alignment up to site k with tree 
τ associated to site k is denoted L kτ( ). The transition 
probability of going from tree τ at site k to tree τ′  at 
site k + 1 is written Pτ,τ′ . We define as |T| the total 
number of trees in the set T.

At the first site, the likelihood of the alignment 
up to site 1, given that site 1 has tree τ is simply the 
likelihood of tree τ for the site 1:
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At the second site, the likelihood of the alignment 
up to site 2, given that site 2 has tree τ′ 
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The first part of the formula before the multiplication 
symbol is the classical likelihood of a tree for site k, 
which can be obtained through Felsenstein’s pruning 
algorithm14 as in Equation 1. The dependency between 

sites is introduced through the second part of the 
formula. At the end of the alignment, at site n, the 
total likelihood of the alignment given the set of trees 
T is computed as follows:
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In our model, the transition probability of going 
from tree τ at site k to tree τ′ at site k + 1, Pτ,τ′ is 
defined as follows, with the help of the autocorrelation 
parameter λ:

	
P

Tτ τ τ τλδ λ
, ,′ ′= + −1

�

Here, δτ,τ′ is the Kronecker delta function, which is 
1 when (τ = τ′ ) and 0 otherwise. This means that at 
any site, there is a probability 1–λ that another tree is 
drawn for the next site, with the possibility that the 
same tree is drawn again.

Since one can compute the likelihood of the 
alignment with the Phylo-HMM, all parameters can 
be estimated in the maximum likelihood framework 
(or in a Bayesian framework). Therefore in our 
program, both the trees (topologies, branch lengths, 
parameters of the models) and the parameter λ are 
estimated by optimizing the likelihood as computed in 
equation 3, through the same algorithm as PhyML15 for 
common parameters, and through Brent’s numerical 
optimization algorithm15 for the autocorrelation 
parameter λ.

Exploring the space of tree topologies 
with a mixture model on trees or with  
a phylogenetic hidden Markov model
The problem of optimizing |T| trees simultaneously 
is different from the problem of optimizing a single 
topology |T| times. At any given time, a topology 
is to be optimized taking into account the other 
topologies. Indeed, if each topology were optimized 
independently of the other topologies, the result would 
be |T| identical trees: this would have been equivalent 
to solving the single tree optimization problem |T| 
times, in parallel.

A parallel algorithm based on a client-server 
architecture, as described in Figure 2, allows to 
acknowledge the dependencies between topologies.
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The server exchanges data with clients. For each 
set of communications between the server and a 
client, one red arrow corresponds to the sending by 
the server to the client of a matrix containing all the 
site likelihoods for all the topologies, and the other 
one corresponds to the sending by the client to the 
server of an optimized likelihood vector.

In this algorithm, each client is given a topology, 
which it tries to refine through commonly used 
tree search algorithms. However, while in common 
algorithms such as PhyML the client would simply try 
to maximize the likelihood of the topology, here it needs 
to maximize the likelihood of the MM or of the phylo-
HMM as a whole, by only modifying the topology it 
has been given, while taking into account the other 
topologies. For instance, in the Mixture Model, the 
likelihood function each client tries to maximize thus 
is L

T
L

Treemixture s T s= ∏ ∑ ∈
1

τ τ, , which implies that each 
client needs vectors of site likelihoods obtained from 
the other clients. The dependency between topologies 
is only taken into account through a shared matrix of 
likelihood vectors.

The algorithm has been summed up in the pseudo-
code below.
Algorithm 1 Searching for the most likely set of trees T.
likelihood_threshold=1e-6
MAXIMUM=1e6
|T| = 2
if (server) {

get alignment aln
set_of_trees T = Generate(|T|,aln)

Create |T| clients
send_all alignment
send trees T
likelihood_matrix = receive_all_likelihood_vectors()
oldlk=compute_likelihood(likelihood_matrix)
send_all(likelihood_matrix)
diff=MAXIMUM
while (difflikelihood_threshold) { 
	 receive(likelihood_vector)
	 update(likelihood_matrix)
	 newlk=compute_likelihood(likelihood_matrix)
	 diff=newlk – oldlk
	 oldlk=newlk
	 send_all(likelihood_matrix)
}
send_all(stop_signal)
output_server_results

}
else if client {

	 receive alignment
	 receive tree
	 compute_likelihood
	 send(likelihood_ vector)
	 receive(likelihood_matrix)
	 while (not stop_signal)
	 {
		  optimize(tree, likelihood_matrix)
		  send(likelihood_ vector)
}
output _client_results
}

Server

Client Client Client Client

Tree 1 Tree 2 Tree 3 Tree 4

Tree 4
and

Updated
likelihood

All trees likelihoods
Tree 1
Tree 2
Tree 3
Tree 4

Figure 2. Client-Server architecture to efficiently find a set of topologies that best describe the alignment.
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At the beginning of the program, the number of 
topologies to consider needs to be set, as this algorithm 
is not able to estimate the appropriate number of 
trees |T| to consider to describe the history of an 
alignment; in the pseudo-code above, it has been set 
to 2. In practice, setting this parameter should hardly 
be a problem, as a gene sequence should not harbour 
more than two (detectable) different evolutionary 
histories; it is however possible to specify more 
than two topologies to be searched for in a single 
alignment. At the begining of the algorithm, the 
function “Generate” divides the alignment in |T| 
equal parts and builds a BIONJ16 tree for each part. 
This results in |T| trees used as starting topologies 
for the bulk of the algorithm (alternatively, the user 
can also provide |T| starting trees). Each client then 
receives the alignment and a tree it is in charge of, 
computes the likelihood of this topology, and returns 
a vector of site likelihoods to the server. The server 
assembles all vectors into a matrix, that is sent to all 
clients. Each client subsequently modifies the specific 
tree it is in charge of, in order to maximize, LTree mixture 
or LPhyio-HMM. Periodically, it sends an updated vector 
of site likelihoods to the server, which updates the 
likelihood matrix containing all likelihood vectors. 
This updated matrix is subsequently sent to all clients, 
so that they continue optimizing their topologies 
acknowledging the most recent changes in other 
topologies. In practice, communications between the 
server and the client are asynchronous, so that slowly-
computing clients do not slow down the other clients. 
For the Phylo-HMM, the auto-correlation parameter λ 
is also exchanged between the server and the clients, 
and optimized by the server every ten times it receives 
a likelihood vector from one of its clients.

This algorithm has been implemented to function 
with both the MM and with the Phylo-HMM (where 
the autocorrelation parameter λ is exchanged between 
the server and clients, and periodically optimized 
by the server) in the PhyML-Multi program, based 
on PhyML v.2.4.4 code.15 This program can take 
advantage of a multi-processor or multi-core machine, 
by dispatching clients in charge of trees to different 
processors. It has been compiled and tested on Linux 
machines and can be downloaded at:

http://pbil.univ-lyon1.fr/software/phyml_multi/
As a result, each client outputs an optimized 

topology, and the server outputs the matrix containing 

site likelihoods computed with each topology. If 
there have been recombination events in the history 
of the alignment, there should be stretches of sites 
whose most likely topology is the same. Through 
segmenting the matrix of site likelihoods, one should 
be able to uncover these stretches of sites with a 
common history. The Phylo-HMM can directly 
output a most likely segmentation; on the other 
hand, the Mixture Model does not provide such a 
segmentation.

Partitioning the matrix of site likelihoods 
output by the mixture model
Methods to partition an alignment
Common approaches to segmentation involve the use 
of sliding windows, Hidden Markov Models or of the 
Maximum Predictive Partitioning algorithm (MPP 
algorithm).17,18 We have chosen not to use sliding 
windows, as the fixed size of the sliding window does 
not allow to precisely pinpoint the recombination 
events. Both the MPP algorithm and the HMM 
approach rely on a statistical approach to segment a 
sequence: given a set of models, they infer the most 
likely partitioning of the sequence into these models. 
In our case, the models are the trees themselves, and 
the sequence is the alignment. For each model, the 
site likelihoods have been previously computed by 
the MM or the Phylo-HMM. The partitioning of the 
alignment therefore is done according to these site 
likelihoods.

The Phylo-HMM approach permits to directly 
estimate a partitioning, which depends upon the 
transition probabilities between models. These 
transition probabilities can be estimated with the 
Baum-Welch algorithm.

The MPP algorithm on the other hand does not 
require that transition probabilities are set, but 
simply uses the matrix of site likelihoods as input 
for partitioning. More precisely, the MPP algorithm 
computes successively the most-likely partitions 
in at most k segments of a sequence, for all k from 
1 to a given n, given a set of Markovian models. It 
is a modification of the partitioning algorithm of 
Bellman,19 adapted to the computing of the likelihood 
of Markovian processes. Let Lt(i) be the likelihood of 
tree t at site i. If Mk,t(i) is the likelihood of the most-
likely partition in k segments of the alignment up 
to site i given that site i has tree t, and Mk(i) is the 
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likelihood of the most-likely partition in k segments 
of the alignment up to site i:

M1,t(i) = Lt(l) × ... × Lt(i)
Mk+1,t(i) = Lt(i) × max (Mk(i–1), Mk+1,t(i–1))
M i M ik

t
k t( ) max ( ),=

We can see that the most-likely partitioning of the 
alignment in k segments Mk(n), can be computed from 
the likelihoods of the models at each site in a time 
proportional to the product of the number of trees and 
the number of sites.

The MPP algorithm thus provides most likely 
partitionings in k segments, k ∈ [l, n]. In the end the 
user is faced with a range of most likely partitionings, 
among which a choice is to be made according to 
some criterion.

Estimating the number of segments  
with the MPP algorithm
As the number of segments increases, the likelihood 
of the segmentation generally also increases, not 
necessarily because adding a segment reveals a 
significant property of the alignment, but also 
because adding a segment may permit it to better fit 
a non-significant heterogeneity in a particular part of 
the alignment. In other words, the improvement in 
likelihood observed when the number of segments 
increases is due to the fitting of the “noisy” part of the 
signal rather than the meaningful part.

Such non-significant gains in likelihoods can 
also be seen in alignments where sites have been 
randomly swapped, erasing the meaningful signal of 
the recombination structure, but where nonsignificant 
heterogeneities are expected to be found simply 
by chance. Therefore the comparison between the 
true alignment and randomized versions of the 
alignment permits to distinguish improvements in 
the likelihood of a partitioning due to the uncovering 
of a homogeneous segment coming from a past 
recombination event from “noise” improvements in 
the likelihood, due to the fitting of non-significant 
heterogeneities.

To get an estimate of the number of segments in an 
alignment, the following protocol is thus applied, for 
each number i of segments in [1; n], with n defined a 
priori by the user:

•	 the likelihood L of the most likely partitioning in i 
segments is computed using the MPP algorithm

•	 the matrix of site likelihoods is randomized 50 times 
by swapping columns of site likelihoods (which is 
equivalent to swapping sites in the alignment), and 
for each of these 50 replicates, the likelihood of 
the most likely partitioning is computed using the 
MPP algorithm; the average l of these 50 likelihood 
replicates is computed

•	 the value L L
l* =  is computed and used as a 

normalized likelihood for the partition in i 
segments.
In the end, all normalized likelihoods can be 

compared; the partitioning with the highest normalized 
likelihood is considered as the most reasonnable 
partitioning.

Tests of the Mixture Model 
and the Phylo-HMM Model
In our Phylo-HMM, HMM segment lengths follow 
a geometric law of parameter T T−( ) × −( )1 1 λ . The 
autocorrelation parameter λ is thus in direct relation 
with segment length. In cases where the alignment 
has undergone recombination and the two parts of 
the alignment are of very different size, the fact that 
all states share the same value for the autocorrelation 
parameter may pose a problem, as the lengths of the 
segments are highly variable. The MPP approach does 
not need a parameter for determining segment length, 
and may therefore produce different results from the 
HMM segmentation. The Phylo-HMM approach and 
the MM + MPP approach may therefore complement 
each other, each having defaults that the other does 
not have. This suggests that both approaches should 
be used in parallel, and their results compared. In this 
purpose, we used simulations.

Simulation procedure
The first 100 trees from the PhyML test set15 were 
selected. These trees contain 40 leaves, were designed 
to resemble real-life datasets and should therefore 
provide an appropriate test-set. An alignment affected 
by a recombination is an alignment in which one part 
is best described by a particular tree, and the rest by 
another tree. In the most difficult instances, the two 
trees corresponding to the two parts of the alignment 
differ by a single clade whose position is in one place 
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in the first tree, and another place in the other tree. To 
obtain such pairs of trees, each of the 100 trees was 
subjected to a Subtree Prune and Regraft operation 
(SPR), in which a subtree is detached from the tree 
and attached in another position. This yielded pairs 
of trees separated by one recombination event, with 
Robinson and Foulds distances20 ranging from 2, when 
the SPR regrafted the pruned subtree very close to its 
original position, to 30, when the pruned subtree was 
regrafted far from its original position. Alignments 
harbouring a recombination event were simulated 
by evolving a portion of an alignment according to 
one of the 100 trees and the rest of the alignment 
according to the same tree modified by the SPR. 
For each alignment, there was only one breakpoint 
position. For each pair of trees, nine 1000-nucleotide 
alignments were simulated with k sites according to 
one tree and 1000—k sites according to the other 
tree, with k taking the values 100, 200, 300, 400, 500, 
600, 700, 800, 900. Seq-Gen21 was used to simulate 
sequences, with the GTR model22 and a continuous 
gamma rates across site distribution with parameter 
alpha set to 0.8.

Reconstruction of the recombination  
structure with the Mixture Model  
and the Hidden Markov Model
Both the Mixture Model and the Hidden Markov 
Model were applied to the simulated datasets. The 
number of trees were set to two for both examples, 
as none of the programs is able to estimate the right 
number of trees to consider to faithfully describe 

an alignment. The evolutionary model used was 
HKY23 with a gamma distribution discretized in four 
classes to account for accross site rate variation. 
The reconstruction model therefore does not exactly 
correspond to the simulation model, as would be 
the case in a realistic setting where sequences have 
evolved according to an unknown and complex 
process.

Ability to detect the right number of segments
The reconstruction models should detect two 
parts in the alignment, each part corresponding to 
different tree topologies. Although the algorithm was 
constrained to look for a set of 2 trees, it may find 
that the alignment is broken in more than 2 segments, 
with the first predicted to have evolved according to 
tree 1, the second segment according to tree 2, the 
third segment according to tree 1 again, etc ... Figure 3 
shows that both models have a recovery rate of the 
right number of segments that is dependent upon the 
position of the breakpoint. If the breakpoint is too 
close to the begining or the end of the alignment, the 
recovery rate is lower than if the breakpoint is more 
central. This is likely because lengths such as 100 or 
200 nucleotide sites contain too little information to 
properly reconstruct a tree topology. Such values may 
therefore represent the statistical limit below which 
our models cannot detect recombination. The Phylo-
HMM is more efficient than the MM in all cases, 
which indicates that acknowledging that it is highly 
probable that neighbor sites have the same most likely 
tree improves breakpoint detection.
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Figure 3. Ability of the Phylo-HMM (left) and the Mixture Model (right) and to detect the number of segments in simulated alignments.
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Ability to detect the breakpoint position
Both the MM and the Phylo-HMM most often detect 
two segments in the alignment. In such cases, Figure 4 
shows that the precision with which the breakpoint is 
predicted displays the same dependency upon the length 
of the smaller segment as the ability of the models 
to detect the number of segments. The phylo-HMM 
seems slightly better than the MM in detecting the 
precise breakpoint position when the smallest partition 
is 200 bases long. Although the Phylo-HMM seems 
not as good as the Mixture Model when the smallest 
partition is 100 bases long, the difference between 
the two methods is not significant (Student t-test and 
Wilcoxon test on the absolute differences between 
expected position and predicted position). This suggests 
that using more than a single autocorrelation parameter 
in the HMM method may not be useful, even when 
segment lengths are very dissimilar.

Ability to recover the true topologies
On average, the Phylo-HMM is better at recovering 
the trees used in the simulation than the MM, and 
both models find it easier to get good trees if the 
alignment that has been simulated along them is long 
(Fig. 5). However, the quality of the reconstructed 
trees finds an optimum for alignments that are 600 to 
800 sites, not longer. When one of the two topologies 
found in the alignment represents only 100 sites, both 
topologies, the one found in 100 sites and the one 

found in 900 sites, are less well reconstructed. We 
note that the topological accuracy of our algorithm is 
in line with results obtained by PhyML on alignments 
500 bases long,15 where the RF distance was reported 
to be approximately 8 when simulations incorporated 
rate heterogeneity, as in ours.

Computation times
Computations were run on the IN2P3 computing 
centre, on single processors ranging from 2.2 
to 2.8 GHz. It took on average 9 min 48 s for the 
Mixture Model implementation to give a result 
on the simulations, while only 3 min 45 s for the 
phylo-HMM. The additional optimization of the 
autocorrelation parameter has not resulted in an 
increased computational time, but a decrease, perhaps 
because the HMM ensures that the set of sites pleading 
for a given topology is more stable throughout the tree 
space search than when the MM is used. However, 
both models are very efficient on datasets containing 
40 sequences and on single desktop computers.

Conclusions on the simulations
Overall, the Phylo-HMM is better able to uncover 
the recombination structure of simulated alignments, 
since it more often finds the right number of segments, 
is more accurate at pinpointing the recombination 
breakpoint, and also recovers trees closer to the 
true trees. This is probably because the HMM takes 

Figure 4. Ability of the Phylo-HMM (left) and Mixture Model (right) to detect the breakpoint position in simulated alignments. The dashed grey line 
corresponds to values that would be obtained with an ideal method, whose reconstructions are identical to simulations.
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into account the dependency of neighboring sites. 
Although the HMM approach is superior to the MM 
approach, we recommend using both the MM and the 
Phylo-HMM to analyse datasets, and use the MM to 
confirm or question results obtained with the HMM.

Application to real protein sequences
Several studies have unveiled recombination events in 
viruses, for instance in HIV viruses. In 1999, Gao et al 
discovered that a recombination event in a chimpanzee 
host was at the origin of the YBF30 (group N) HIV-1 
virus: the begining of the genome of YBF30 was most 
closely related to group M whereas the rest of its 
genome was most closely related to a chimpanzee 
virus, SIVcpzUS. They based this conclusion on first 
a sliding window analysis where divergence between 
pairs of sequences was computed, and second the 
reconstruction of trees for two portions of the alignment, 
on each side of a putative recombination breakpoint, 
which had been identified by eye. Likelihood tests 
confirmed the recombination event, showing that the 
first part of the alignment rejected the tree obtained for 
the second part, and vice-versa.

This study therefore provides a good test of the ability 
of the Mixture Model and the Phylo-HMM to detect 
recombination in natural conditions, on an amino-acid 
alignment. The two models were run on the alignment 
from Gao et al, setting the number of trees to two. 
The Mixture Model predicted two breakpoints, one at 
position 95, and the other at position 1354. The phylo-
HMM predicted only one breakpoint, at position 1353. 
The two models therefore agree on the presence of a 

breakpoint around position 1353, which falls very close 
to the recombination breakpoint determined by eye in 
the original analysis, at position 1400. The additional 
breakpoint predicted by the MM is more uncertain as it 
is not detected by the Phylo-HMM. Interestingly, both 
the MM and the Phylo-HMM uncover the shifting 
position of YBF30, which first is close to group M 
sequences, and then close to SIVcpzUS (see Fig. 6 for 
trees found with the Phylo-HMM).

This example shows that the Phylo-HMM is also 
efficient on real sequence datasets. The use of such 
a program offers an improvement over the sliding-
window approach taken by Gao et al; indeed, if one 
is to look for a recombination event in any sequence, 
all sequences are to be analysed two by two, which, 
for the 16 sequences present in the tree amounts to 
looking at 16 * 15/2 = 240 plots of divergence. With 
programs such as ours, only two steps are required, 
as advocated by Chan et al24 first a statistical measure 
to detect the occurence of recombination needs to be 
applied; if positive, our programs can then be used 
to precisely pinpoint the recombination breakpoint 
and reconstruct phylogenetic trees. This way, all 
the sequences are analysed at once, and the user 
input is minimal. Eventually, statistical tests such as 
implemented in Consel25 can be applied to confirm 
the occurence of recombination.

Improvements
Our approaches are simple and therefore more 
efficient than sophisticated Bayesian approaches, 

Figure 5. Ability of the Phylo-HMM (left) and Mixture Model (right) to recover topologies from simulated alignments. RF distances were computed between 
simulated and reconstructed trees for each part of the alignments, and are reported with respect to the number of sites the reconstructed trees are based 
upon.
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and can pinpoint recombination breakpoints more 
precisely than approaches based on sliding windows. 
Our models however could be improved; importantly, 
including a model of dependency between topologies 
before and after a recombination breakpoint may be 
very useful. Indeed, a recombination event should not 
entirely change a phylogeny but on the contrary merely 
change the particular position of a clade. Therefore, 
on each side of a recombination breakpoint, one could 
allow only pairs of trees that differ by the position of 
a single clade. This has been done very recently in the 
Bayesian framework;26 importing this in a maximum 
likelihood framework while keeping computational 
efficiency would be an interesting challenge.

Conclusion
In this article, a Mixture Model and a Phylogenetic 
Hidden Markov Model to detect recombination were 
presented. Both methods were tested on synthetic 
datasets, which showed that the Phylo-HMM was 
superior to the Mixture Model in most circumstances. 
Notably, both methods were highly efficient. The 
analysis of an already published HIV dataset showed that 
the models could successfully uncover recombination 
breakpoints and topologies. Future improvements 

might include searching for the appropriate number 
of topologies to use, or constraining the topologies 
on each side of a breakpoint to differ by no more than 
one rearrangement.
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