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Abstract: We describe the conditions under which a set of continuous variables or characters can be described as an X-tree or a split 
network. A distance matrix corresponds exactly to a split network or a valued X-tree if, after ordering of the taxa, the variables values 
can be embedded into a function with at most a local maximum and a local minimum, and crossing any horizontal line at most twice. 
In real applications, the order of the taxa best satisfying the above conditions can be obtained using the Minimum Contradiction 
method. This approach is applied to 2 sets of continuous characters. The first set corresponds to craniofacial landmarks in Hominids. 
The contradiction matrix is used to identify possible tree structures and some alternatives when they exist. We explain how to discover 
the main structuring characters in a tree. The second set consists of a sample of 100 galaxies. In that second example one shows how to 
discretize the continuous variables describing physical properties of the galaxies without disrupting the underlying tree structure.

Keywords: phylogeny, continuous characters, minimum contradiction, galaxies, hominids

http://www.la-press.com
http://www.creativecommons.org/licenses/by/2.0
http://www.la-press.com
http://www.la-press.com
mailto:thuillweb@hotmail.com


Thuillard and Fraix-Burnet

34	 Evolutionary Bioinformatics 2009:5 

1. Introduction
Maximum parsimony and distance-based approaches 
are the most popular methods to produce phylogenetic 
trees. Whereas most studies use discrete characters, 
there is a growing need for applying phylogenetic 
methods to continuous characters. Examples of 
continuous data include gene expressions,1 gene 
frequencies,2,3 phenotypic characters4 or some 
morphologic characters.5,6

The simplest method to deal with continuous 
characters using maximal parsimony consists of 
discretizing the characters into a number of states 
small enough to be processed by the software. Recent 
software programs such as TNT (Tree analysis 
using New Technology)7 or CoMET (Continuous-
character Model Evaluation and Testing Model)8 use 
developments of the contrast method to deal with 
continuous characters. These methods assume that 
the characters evolve at comparable rates according 
to a Brownian motion, an assumption that is often 
difficult to verify.4,9 Distance-based methods are 
applied to both discrete and continuous input data. 
Compared to character-based approaches, distance-
based approaches are quite fast and furnish in many 
instances quite reasonable results. As pointed out by 
Felsenstein,9 the amount of information that is lost 
when using a distance-based algorithm compared to a 
character-based approach is often surprisingly small. 
The use of continuous characters in distance-based 
methods may at first glance be less problematic than 
in character-based methods, since algorithms like the 
Neighbour-Joining work identically on discrete or 
continuous characters. However, here too it is often not 
easy to determine if the data can be described by a tree. 
When does a set of continuous characters describe a 
split network or an X-tree? The article furnishes some 
new insights on that question. It explains when a set 
of continuous characters can be described exactly by a 
split network or a valued X-tree. In real applications, 
the distance matrix corresponds only approximately 
to a split network or a tree topology. An adequate 
method is necessary to quantify to what extent the 
distance matrix corresponds to a split network or a 
tree. The Minimum Contradiction method can be 
used for that purpose.10–12

The paper is organized as follows. Section 2 
succinctly presents the Minimum Contradiction 
method. It explains why some inequalities, called 

Kalmanson inequalities, are central to phylogenies. 
Section 3 extends the Minimum Contradiction method 
to a set of continuous characters. Section 4 furnishes the 
conditions under which a set of continuous characters 
can be described by a tree or a phylogenetic network. 
Section 5 presents an application of the algorithms in 
morphometrics using a set of faciocranial characters 
of hominids. Section 6 presents preliminary results 
on the evolution of a number of physical characters in 
galaxies. It illustrates how the Minimum Contradiction 
approach can be applied to discover structuring 
characters.

2. Ordering the Taxa on a Tree  
or a Split Network
A valued X-tree T is a graph with X the set of 
leaves and a unique path between any two distinct 
vertices x and y, with internal vertices of at most 
degree 3. A circular order on an X-tree corresponds 
to an indexing of the n leaves according to a circular 
(clockwise or anti-clockwise) scanning of the 
leaves in T.13 Figure 1 shows a tree and an indexing 
of the taxa that corresponds to a circular order. 
For taxa indexed according to a circular order the 
distance matrix Yi j

n
,  fulfils the so-called Kalmanson 

inequalities:14

	 Y Yi j
n

i k
n

, , ,Y Yk j
n

k i
n

, ,  ( i j k  )  with 

Y d d di j
n

i n j n i j, , , ,/ ( )= ⋅ + -1 2 .� (1)

with di,j the pairwise distance between taxa i and j. 
As depicted in Figure 1, the matrix element Yi j

n
,  is 

the distance between a reference node n and the path 
i-j. The diagonal elements Y di i

n
i n, ,=  correspond to 

the pairwise distance between the reference node 
and the taxon i. The distance matrix Yi j

n
,  has the 

property that the distance diminishes away from the 
diagonal.14 This property is visualized in Figure 1. If 
the values of the distance matrix are represented by 
different levels of gray, the level of gray is shading 
away from the diagonal. This property of the matrix 
characterizes a Kalmanson matrix and an order 
satisfying all Kalmanson inequalities is called a 
perfect order.

In real applications, the distance matrix Yi j
n
,  often 

only partially fulfils the inequalities corresponding to 
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a perfect order. The contradiction on the order of the 
taxa can be defined as
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The best order of a distance matrix is, by 
definition, the order minimizing the contradiction. 
The ordered matrix Yi j

n
,  corresponding to the best 

order is defined as the minimum contradiction 
matrix for the reference taxon n. For a perfectly 
ordered X-tree, the contradiction C is zero. A high 
contradiction value C is the indication of a distance 
matrix deviating significantly from an X-tree. Bandelt 
and Dress15 have shown that if a distance matrix 
di,j fulfils Kalmanson inequalities, then the distance 
matrix can be exactly represented by a split network 
or by an X-tree. A split network can be regarded as 
a generalization of trees. A split is a partition of the 
taxa into two disjoint sets that is realized by removing 
the edges relating the two sets. (For an introduction 
to split networks, see).16 Kalmanson inequalities are 
related to a number of interesting mathematical results. 
Kalmanson inequalities relate phylogenetic trees and 
split networks to the travelling salesman problem. 
Let us recall that the travelling salesman problem 
is a fundamental problem in computer science. The 
problem’s formulation is quite simple. A travelling 
salesman must visit a number of cities and return to its 
point of departure. The problem consists of finding the 
order of the cities that minimizes the total travelling 
distance D d dn i i

i n
= + ∑ +

= -
, ,

,...,( )
1 1

1 1
with di,j the distance 

between the city i and j. The travelling salesman is one 
of the most studied problem in computational science 
as it is the prototype of a difficult problem. For all 
known algorithms, the maximum computing time to 
solve the travelling salesman problem increases very 
rapidly with the number of cities. In other words, 
the solution of the travelling salesman problem for a 
large number of cities generally requires a very large 
computing power. Already for a few hundreds cities, 
only approximate solutions can be obtained by the 
largest computers. Not all TSP problems are difficult 
to solve. For instance, the TSP is easy to solve when 
the cities are on a convex hull in the Euclidean plane. 
In order to be on a convex hull, the cities must be 
orderable so that the following inequalities hold: 
d d d di j k n i k j n, , , ,+ +  and d d d di n j k i j k n, , , ,+ +  with 
1   i j k n. 14 These inequalities are equivalent 
to the Kalmanson inequalities (1): Y Yi j

n

i k

n

, , ; Y Yk j
n

k i
n

, ,  
(i  j  k  n). The solution to the TSP corresponds 
to the order of the cities on the convex hull.

If one leaves aside Euclidian geometry, other 
metrics fulfil Kalmanson inequalities. Kalmanson 
inequalities are also satisfied by taxa on an X-tree 
or a split network. If the taxa are circularly ordered, 
then the Kalmanson inequalities are fulfilled. As 
developed in a number of publications,17–19 perfect 
order corresponds in X-trees and split networks to a 
solution of the travelling salesman problem (TSP) for 
both the distance matrices di,j and Yi, jn .

In the next section we show that for trees and 
split networks as well, the Kalmanson inequalities 
are related to convexity. This result furnishes a 
new perspective on when trees and phylogenetic 
networks can be used to describe a set of continuous 
characters.

3. Kalmanson Inequalities on a Single 
Continuous Character
As of today, it is still not really clear when the use of 
continuous characters in distance-based phylogenetic 
studies is a valid approach. To clarify that problem, 
we will first consider a single character.

Let us now discuss the conditions for which a set 
of taxa characterized by a single continuous character 
f1 can be perfectly ordered. Let us define the distance 
di,j between two taxa as di,j = abs(f (i) – f (j)). The taxa 
{1, …, n} are perfectly ordered when the order is such 
that the distance matrix Yi j

n
,  fulfils the Kalmanson 

Figure 1. The distance Y
i j

n

,

= 4
 between a reference taxa n and the path i-j 

on an X-tree fulfils Kalmanson inequalities. If the values of the distance 
matrix Y

i j

n

,

= 4
 are coded in a gray scale, the level of gray decreases as one 

moves away from the diagonal. For more details see Thuillard.10
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inequalities: Y Yi j
n

i k
n

, , ,  Y Yk j
n

k i
n

, ,  ( ).1   i j k n  
Proposition 1 describes the necessary and sufficient 
conditions on the character f1(i) so that the taxa can be 
perfectly ordered.

Proposition 1
A distance matrix Yi j

n
,  is Kalmanson if and only if 

the values f1(i) of a character on an ordered set of taxa 
can be embedded into a continuous function f (x) on 
[1,n]: f x x i f i f i f i x i i( ) ( ) ( ( ) ( )) ( ), [ , ],= - ⋅ + - + ∈ +1 1  
x i n⊂ ℜ ∈ …, { , , }1 with the following properties:

i. �the function f (x) has at most one local maximum 
and one local minimum

ii. �the function f (x) crosses the reference line L(x) = 
f1(n) = const at most once.

Proof
A central distinction can be made between the taxa 
depending on whether the character value is smaller or 
larger than the value of a reference taxon n. The set of 
taxa can be divided into two disjoint sets, the set S of 
taxa with values smaller or equal to the reference value 
f1(n) and the set of taxa L with values larger than the 
reference value (See Fig. 5 for an illustration). Let us 
show that a distance matrix fulfilling the conditions 
i) and ii) is perfectly ordered for any 3 ordered taxa 
i  j  k. We will consider all possible cases.

a) All 3 taxa are in the same set (S or L). The 
distance Yi j

n
,  

between the taxa i and j is given by the 
expression Yi jn,  

= min(|  f1(i) – f1(n)|,|  f1(  j) – f1(n)|). Under 
the conditions in Prop. 1 one has min(|  f1(i) – f1(n)|, 
|  f1(  j) – f1(n)|)  min(| f1(i) – f1(n)|,|  f1(k) – f1(n)|)  and 
consequently Y Yi j

n
i k
n

, , , (i  j  k  n).
b) The taxon i is in one set of taxa and the taxa j, k 

in another set. In that case one has Y Yi j
n

i k
n

, , .= = 0  (For 
an illustration, see Fig. 5 and Eq. 3)

c) Condition ii) prevents the second taxon to be in 
another set than the taxa i and k.

d) If the third taxa is in another set than the taxa 
i, j one has Y Yi j

n
i k
n

, , . = 0  The proof for the second 
inequality Y Yk j

n
k i
n

, ,  (i  j  k  n) is similar.
Let us show that if the conditions of the proposition 

are not fulfilled then Kalmanson inequalities are 
violated. If the function f(x) has two maxima (or 
2 minima) corresponding to the taxa i and k, then 
there exists a taxa j with Y Yi j

n
i k
n

, ,  and consequently 
the Kalmanson inequalities are not fulfilled. A similar 

inequality holds if the function f(x) does not satisfy 
condition ii).

Figure 3 illustrates Prop. 1 with a simple example. 
The matrix Yi jn,  is depicted using a colour coding. 
Large values are coded red, while small values of Yi jn,  
correspond to small values. The distance matrix is 
perfectly ordered; the values of Yi jn,  decrease away from 
the diagonal as prescribed by the Kalmanson inequalities. 
Two clusters are observed, the first cluster corresponds 
to values smaller than the reference value, the second 
cluster to values larger than the reference value.

The results on a single character can be easily 
generalized to several characters as the sum of perfectly 
ordered matrices Y Y fi j

n
i j
n

m
m

m

, ,

max

( )= ∑
=1

is also perfectly 
ordered. This follows directly from the Kalmanson 
inequalities. If each character is Kalmanson, then 
Y f Y fi j
n

m i k
n

m, ,( ) ( )  and Y f Y fk j
n

m k i
n

m, ,( ) ( )  (i  j  k  n), 
and therefore Yi jn,  is perfectly ordered.

We are now ready to discuss the connection between 
Kalmanson inequalities and convexity in phylogenies. 
The tree metrics case is different from the Euclidean 
metrics described in Figure 2. In an Euclidean metrics, 
Kalmanson inequalities are fulfilled if the points (cities) 
are on a convex hull, while for split networks and trees 
the hull must be orthogonally convex. In an Euclidean 
metrics, a set Z n⊂ ℜ  is defined to be orthogonally 
convex if, for every line that is parallel to one of the axes 
of the Cartesian coordinate system, the intersection of 
Z with the line is empty, a point, or a single interval.

Figure 2. The travelling salesman problem (TSP) can be easily solved 
if the points are on a convex hull in the Euclidean plane. Points on a 
convex hull fulfil the Kalmanson inequalities.
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Corollary 2
If the taxa {1, …, n} are ordered so that the distance 
matrices Yi jn,  associated to the 2 characters f1 and 
f2 are perfectly ordered, then the closed circuit {(f1(1), 
f2(1), …, (f1(n), f2(n)} relating each two consecutive 
points by an edge is on an orthogonal convex hull.

Proof
Proposition 1 for a single character is equivalent 
to the following proposition: if the distance matrix  
Yi j
n
, associated to a character f1 is Kalmanson, then 

any horizontal line crosses the function f(x) at most 
once (see Fig. 3 for an illustration). It follows that 
any horizontal or vertical line in the Euclidian plane 
intersects the closed curve {(f1(1), f2(1), …, (f1(n), 
f2(n)} at most twice. (The intersection of the line 
with Z is either a single interval or a point or empty 
(no crossing)). Let us point out that Corollary 2 
describes a sufficient but not necessary condition to 
obtain a perfectly ordered matrix Yi jn, .

Corollary 2 can be extended to higher dimensions. 
The geometry, associated to trees and split networks 

built on a set of  perfectly ordered characters, corresponds 
to an orthogonally convex hull.

4. How to Build a Tree or a 
Phylogenetic Network from Single 
Continuous Characters?
In the previous section we have explained when a 
set of characters on a set of taxa fulfils Kalmanson 
inequalities and can be described by a tree or a split 
network. In this section, we explicitly show how the 
branches of the trees evolve when several characters 
are combined. For a single character, the taxa can 
be ordered so as to fulfil the conditions of Prop. 1. 
The resulting tree is a line tree. In a line tree, all taxa 
are on a single path and one has

	

0 i S j S i L j L

Y f i f n f j f n

Y

i j
n

i i
n

∈ ∉ ∈ ∉

= - -

=

, ,

( ( ) ( ) , ( ) ( ) )

( ,

,

,

or

min

min YY otherwisej j
n
, ) 	

(3)

Figure 5 shows an example of a line tree with 
perfectly ordered taxa.
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Figure 3. Top: The taxa are ordered so that the characters f1(i) on the taxa {1, …, i, …, n} can be embedded in a function f(x) fulfilling proposition 1. Bottom: 
Distance matrix Y

i j

n

,  
with a colour coding. Larger values are coded red, small values blue. The order is perfect (C = 0 in Eq. 2).
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f1(i
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d
i,j = abs ( f

1
(i  − f

1

nY
i,j = 1/2.(d

i,n + d
j,n − d

i,j)

j))( ) )

Figure 5. The tree associated to a single character is a line tree. In a line tree, all taxa are on the same path.

At least two independent characters are necessary 
to generate a tree that is not a line tree. An independent 
character can be defined as follows.

Definition 1
Two characters f1 and f2 are independent if there exists at 
least 2 taxa i and j (i  j  n) so that 0 Y Y Yi j

n
i i
n

j j
n

, ,,,  
with Y Y f Y fi j

n
i j
n

i j
n

, , ,( ) ( )= +1 2 .

Proposition 3
If two characters f1 and f2 are independent, then 
the distance matrix Y Y f Y fi j

n
i j
n

i j
n

, , ,( ) ( )= +1 2  does not 
correspond to a line tree.

Proof
A line tree is so that either Yi j

n
, = 0 or Y Y Yi j

n
i i
n

j j
n

, , ,( , ).= min  
By definition two independent characters do not 
fulfil either equality.

Figure 6a shows 3 examples of independent 
characters. If two characters are independent and the 
taxa are perfectly ordered on both f1 and f2, then the 
distance matrix corresponds to a split network or an 
X-tree different from a line tree. Let us discuss the 
first example in Figure 6. Without restriction, let us 
assume that for the reference taxon n, f1(n) = f2(n) = 0. 
The distance matrix elements are given by

The expression reduces to 
Y

f i f i f j f i

f j f i f j f ji j
n
,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
=

+ +
+ +











1 2 1 2

1 2 1 2

 and one has 0Yi j
n
,

Y Yi i
n

j j
n

, ,, . The distance matrix describes the X-tree in 
Figure 6b. Two examples of characters that are not 
independent are given in Figure 6c.

Figure 7 is another illustration of Proposition 3 for 
two characters on perfectly ordered taxa. The ordered 
matrix Y Y f Y fi j

n
i j
n

i j
n

, , ,( ) ( )= +1 2  is perfectly ordered. 

f2(i

f2(i

f1(i

f2(i

(f1(n), f2(n))

)

)

)

)

Figure 4. The values of two characters that are perfectly ordered are on an orthogonal convex hull. Two examples of an orthogonal convex hulls.

Y
f i f i f i f j f i f j

f ii j
n
,

( ) ( ) ( ( ), ( )) ( ( ), ( ))

( (
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+ +1 2 1 1 2 2

1

min min

min )), ( )) ( ( ), ( )) ( ) ( )
.

f j f i f j f j f j1 2 2 1 2+ +








min
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Figure 6. A) Examples of independent characters, B) X-tree corresponding to the first two examples, C) The characters f1 and f2 are not independent.
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Figure 7. The distance matrix Y
i j

n

,
 (Fig. 7c) corresponding to two dependent characters f1(i) and f2(i) (Fig. 7a,b). The distance matrix corresponds to a split 

network (Fig. 7d). The split network is obtained with Splits Tree.16 The contradiction on the order of the taxa is zero (C = 0 in Eq. 2)

http://www.la-press.com


Thuillard and Fraix-Burnet

40	 Evolutionary Bioinformatics 2009:5 

In this example, the distance matrix is described by a 
split network and not by an X-tree (A tree is a special 
case among split networks).10

5. Classification of Hominids Fossil 
Specimens
The Minimum Contradiction on continuous characters 
was tested on a set of independently analyzed data 
representing craniofacial properties of hominid fossils. 
The results obtained with the Minimum Contradiction 
Method are compared to those obtained with TNT in 
a recent article in Nature. González-José et al6 have 
analysed sets of craniofacial landmarks representing 
the flexure of the cranial base, facial retraction, 
neurocranial globularity, and masticatory apparatus. 
Phylogenetic relationships among Homo species 
and hominid taxa were obtained with the maximum 
parsimony module for continuous characters in TNT. 
The reader is referred to González-José et al6 for the 
details on the extraction of the data.

Similarly to González-José et al, we have 
preprocessed the 4 sets of landmarks with the 
Generalized Procrustes Analysis in Morphologika.20 
The Generalized Procrustes analysis is a 

superimposition method that rotates, scales and 
translates the landmarks to adjust for isometric effects 
of size and orientation. The distance between two 
taxa is computed as the sum of the absolute difference 
between each Procrustes coordinate. The best circular 
order was subsequently obtained by minimizing 
the contradiction C in Eq. (1).11 Figure 8 shows the 
minimum contradiction matrix using Gorilla gorilla 
as reference taxon. Gorilla gorilla is taken as the 
reference taxon in order to be able to compare the 
results with González-José et al.

The matrix Yi jn,  is depicted using a colour coding. 
Large values are coded red, while blue corresponds to 
small values of Yi jn, . The minimum contradiction matrix 
can be described as a split network. The order of the 
taxa is quite compatible with the maximum parsimony 
tree of González-José et al. A number of contradictions 
to perfect order are observed for instance H. sapiens 
vs. H. ergaster. As an example, let us describe how 
the contradiction between H. sapiens and H. ergaster 
can be extracted from Figure 8. The value Y n

9 16,  is 
coded in orange (45 on the right scale). The element 
Y n
9 16, is larger than for instance Y n

9 13,  (Yellow = 41) or 
Y n
14 16,  = 42. This corresponds to a contradiction as 

19. Pan troglodytes

2. Australopithecus afarensis
1. P. aethiopicus

3. P. boisei (KNMER-406)
4. Paranthropus boisei (OH 5)
5. A. africanus

7. Homo rudolfensis
6. H. habilis

9. H.ergaster
8. H. erectus/H. ergaster (D2700)

10. H. erectus
11. H. rhodesiensis

15. H. heidelbergensis (Steinheim)
16. H. sapiens

14. H. neanderthalensis (La Chapelle aux
      Saints)

13. H. neanderthalensis (Gibraltar)
12. H. neanderthalensis (La Ferrassie)
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Figure 8. Minimum contradiction matrix Y
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on a set of 20 hominid taxa using Gorilla gorilla as reference taxon n.
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Table 1. Circular order obtained with the Minimum Contradiction and the Maximum Parsimony approach on a set of 
craniofacial landmarks of hominids (Maximum Parsimony order adapted from González-José et al).6

Minimum contradiction Maximum parsimony
  0. Gorilla gorilla Gorilla gorilla
  1. P. aethiopicus P. aethiopicus
  2. Australopithecus afarensis Australopithecus afarensis
  3. P. boisei (KNMER-406) P. boisei (KNMER-406)
  4. Paranthropus boisei (OH 5) Paranthropus boisei
  5. A. africanus A. africanus (OH 5)
  6. H. habilis H. habilis
  7. Homo rudolfensis Homo rudolfensis
  8. H. erectus/H. ergaster (D2700) H. erectus/H. ergaster (D2700)
  9. H. ergaster H. ergaster
10. H. erectus H. erectus
11. H. rhodesiensis H. rhodesiensis
12. H. neanderthalensis (La Ferrassie) H. sapiens
13. H. neanderthalensis (Gibraltar) H. neanderthalensis (La Ferrassie)
14. H. neanderthalensis (La Chapelle aux Saints) H. neanderthalensis (La Chapelle aux Saints)
15. H. heidelbergensis (Steinheim) H. neanderthalensis (Gibraltar)
16. H. sapiens H. heidelbergensis (Atapuerca)
17. H. heidelbergensis (Atapuerca) H. heidelbergensis (Steinheim)
18. P. robustus P. robustus
19. Pan troglodytes Pan troglodytes

according to the Kalmanson inequalities, one should 
have Y Yn n

9 16 9 13, ,  and Y Yn n
9 16 14 16, , . Contradictions in Yi jn,  

correspond to deviations from a tree or a split network 
structure possibly caused by homoplasies or lateral 
transfers in genetic sequences.11

Table 1 shows the best order obtained with the 
minimum contradiction approach and the order 
of the taxa on the maximum parsimony tree. 
(The best order is a circular order and Gorilla 
gorilla is adjacent to both P. aethiopicus and Pan 
troglodytes.) Except for H. sapiens the specimens 
are very similarly ordered. The 2 main branches 
of the maximum parsimony tree are indicated by a 
colour in the Table 1.

Let us illustrate with an example the possibilities 
offered by the Minimum Contradiction Method to 
analyze phylogenetic data. In Figure 8, the largest 
values of Yi jn,  for i = H. habilis and H. rudolfensis 
correspond to j = H. ergaster and H. sapiens (Yi jn, : 
yellow = 41). Grouping H. habilis and H. rudolfensis 
with the other Homo taxa is therefore a possibility. 
On the other hand Yi jn,  has comparable values within 
the cluster H. habilis, H. rudolfensis, A. africanus, 

P. boisei (KNMER-406), and Paranthropus boisei 
(OH 5). This offers a second interpretation, namely 
that H. habilis and H. rudolfensis are related to non 
Homo taxa. In order to proceed with the analysis, some 
definitions have to be introduced. Two consecutive 
taxa with different character values define a cut. Two 
cuts in a circular order define a split. A character is 
said to support a set of splits, corresponding to all 
possible pairs of cuts, if after discretization of the 
character’s values the taxa are perfectly ordered. (As 
a side remark, let us mention the connection existing 
between the definition of a continuous character 
supporting a split and the convexity of character 
states in a (non-valued) X-tree. If a character supports 
a split on a valued X-tree then the character states 
after discretization are convex).21

Contrarily to González-José et al our analysis 
is done without using a Principal Components 
Analysis (PCA). This simplifies considerably the 
interpretation of the results. Landmarks satisfying 
to a good approximation Prop. 1 can be identified 
quite simply. Once those characters are identified, 
one can discover which splits are supported by each 
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Figure 9. Examples showing how characters supporting well a split can be identified using Prop. 1 in this article. The order is the same as in Table I. 
A) The character “Facial retraction: landmark 9” supports the split between Homo without H. habilis and H. rudolfensis and the other taxa. B) Split for the 
character “Facial retraction: landmark 9”.

character. Figure 9 shows a character that supports 
the second interpretation of Figure 8. The landmark 
9 (Facial retraction) supports a split between Homo 
without H. habilis and H. rudolfensis and the other 
taxa. In that example, both interpretations are equally 
valid.22

The level of contradiction can be used as an 
objective criterion to choose the reference node. As 
discussed in details in Thuillard,11,12 the reference 
node is an important choice in the presence of 
contradictions. In our example, the normalized 
level of contradiction is about 30% lower with Pan 
troglodytes as reference taxon. This suggests that Pan 
troglodytes is a better choice than Gorilla gorilla as 
a reference taxon. Figure 10 shows quite interestingly 
that the ambiguity concerning H. habilis is removed 
with Pan troglodytes as reference taxon. H. habilis 
belongs clearly to Homo. In summary, with the data 
analyzed here, H. habilis shares some characters with 
non Homo, but has a majority of characters shared 

with other Homo specimen, predominantly H. erectus/
H. ergaster.

A deeper analysis of the above results would go 
much beyond the goal of this section. In this section 
we wanted to illustrate how information can be 
extracted from a minimum contradiction analysis on 
continuous variables.

6. Galaxies
The second example, illustrating the continuous 
minimum contradiction approach, shows how a 
character-based phylogenetic tree can be inferred from 
a distance matrix. A standard approach to constructing 
phylogenetic trees from continuous variables consists 
of discretizing the variables and to run a maximum 
parsimony software treating the discretized variables 
as characters. The difficulty with that approach is that 
the discretization may easily disrupt an underlying 
tree structure. This problem is particularly acute 
when 2-states characters are used. The Minimum 
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Contradiction Method can be applied to remedy 
that problem. For illustration, we have taken from 
Ogando et al23 a sample of 100 galaxies described 
by some observables and derived quantities. In this 
section, our goal is to illustrate how the Minimum 
Contradiction approach can be used in practice, in 
particular to discover structuring characters. The 
astrophysical implications are out of the scope of 
the present work. It will be presented in subsequent 
papers together with more in-depth analysis. In 
practice, identifying a priori characters that behave 
like on Figure 7a is difficult. For complex objects in 
evolution, this would require some good knowledge 
of the evolution of the characters together with some 
ideas about the correct phylogeny or at least a rough 
evolutionary classification. In astrophysics, the study 
of galaxy evolution has not yet reached this point.24–27 
However, we want to show here how the approach 
presented in this paper can be extremely valuable 
even in cases with very little a priori hints.

In this example, three variables are selected: Brie, 
B–R, and OIII. Brie measures the surface brightness 
of the galaxy, on a negative logarithm scale. B–R 
is the difference between the B- and R-magnitudes: 
a high B–R indicates a red object (old stars and/or 
high metallicity), while a low B-R indicates a blue 
object (young stars and/or low metallicity). There is 
no a priori direct physical connections between the 

three variables. High OIII (star formation) could be 
expected to correspond to low B–R (young stars). As 
shown in Figure 11, that is not always true, due in 
large part to the dependence of B–R on the metallicity 
of the stars.

After ordering, a number of clusters are clearly 
recognized. The galaxies associated to the discrete 
character “High Brie” are far from being perfectly 
ordered. The data cannot be described well with 
either a split network or a tree. This problem can be 
solved by discretizing the variables. In Figure 11b, 
the 3 ordered variables are represented together with 
a discretization of the input variable using threshold 
values (dashed lines). Discretization removes most 
contradictions on the order (In order to see it, let us 
consider the character Brie. Let us code Brie High as 
1 and Brie low as 0. The discretized function fulfils 
Prop. 1 as it has only a minimum and any horizontal 
line crosses the discretized function at most twice). 
The distance matrix corresponds well to a split 
network. The split network can be represented, in 
first approximation, by an X-tree. To do so let us 
move the boundary (dashed line) separating “low” 
from “high Brie” slightly to the right. The main 
split in the tree corresponds to the “High Brie” and 
“Low Brie” branches. Each branch is split into two 
other branches defined by the character states, “low 
OIII”, “High OIII” for “Low Brie” and “low B–R”, 

Figure 10. Minimum contradiction matrix Y
i j

n

,
 on a set of 20 hominid taxa using Pan troglodytes as reference taxon n.
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2. Australopithecus afarensis
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5. Paranthropus boisei (OH 5)
6. A. africanus
7. Homo rudolfensis
8. H. habilis
9. H. ergaster

10. H. erectus/H. ergaster (D2700)
11. H. erectus
12. H. rhodesiensis
13. H. heidelbergensis (steinheim)
14. H. sapiens
15. H. neanderthalensis (La chapelle aux
      saints)
16. H. neanderthalensis (Gibraltar)
17. H. neanderthalenis (La Ferrassie)
18. H. heidelbergensis (Atapuerca)
19. P. robustus

2

2

4

4

6

6

8

8

10

10

10

12

12

14

14

16

16

18

18

20

30

40

50

60

http://www.la-press.com


Thuillard and Fraix-Burnet

44	 Evolutionary Bioinformatics 2009:5 

“High-B–R” for “High-Brie”. The resulting tree is 
shown in Figure 11c.

The main splitting character is Brie for which our 
discretization separates our sample in two roughly 
equal bins. That is not the case for OIII and B-R 
for which low OIII and high B–R are two small and 
distinct groups. All high Brie galaxies are in the 
high OIII bin. Indeed, a low OIII corresponds to 
an absorption feature, while a high OIII indicates 
an emission line due to star formation. As a 
consequence, in this limited sample, low surface 
brightness galaxies (main left branch) do have star 
formation, and some high surface brightness objects 
show only an OIII absorption feature (rightmost 
branch). All high B–R galaxies have high Brie and 
high OIII. This means that in this sample, the red 
objects have a low surface brightness, but they 
have some star formation. They are thus not simply 

ageing galaxies, but probably form stars with high 
metallicity. Conversely, all low OIII galaxies of our 
sample have a low B–R, so that blue objects do not 
necessarily form a lot of stars.

A better understanding of the groupings and 
their physical implications would require the 
investigation of other properties of the objects. The 
relative complexity of the correlations between our 
three characters implies that a correct classification 
cannot be made by dichotomizing the variables 
beforehand. A more objective and multivariate 
point of view is necessary to precise the separating 
value between for instance “high” and “low” as in 
our present study. Indeed, the discretization is here 
used only to depict more easily the multivariate and 
continuous ordering of the objects in the sample. 
Figure 11c is a synthetic classification shown by the 
distance matrix 11b and obtained from the Minimum 

Figure 11. Analysis of 3 selected characters Brie, OIII and B–R on an ensemble of 100 galaxies ordered with the Minimum Contradiction method. 
A) Distance matrix Y

i j

n

,
; B) Character values vs. Galaxies after ordering: Top character Brie, Middle: character OIII, Bottom: Character B–R; C) Tree 

describing approximately the distance matrix after discretization (Solid line in b).
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Contradiction method using fully continuous 
information.

7. Conclusions
The Minimum Contradiction approach furnishes an 
objective justification to using continuous variables 
or characters in phylogenetic studies. Provided the 
taxa can be ordered so that each character fulfils 
the Kalmanson inequalities then there exists a split 
network or a tree representing exactly the distance 
matrix. We have shown that the Kalmanson inequalities 
are fulfilled if  the values of each character can be 
embedded into a function with at most a local maximum 
and a local minimum, and crossing any horizontal 
line at most twice. In practical applications the level 
of contradiction of the minimum contradiction matrix 
furnishes an objective measure of the deviations to a 
tree or split network. This approach was applied to a 
set of continuous characters, representing faciocranial 
landmarks of hominids, already analyzed with a 
maximum parsimony approach.6 While the results are 
found to be very similar to the maximum parsimony 
approach, the Minimum Contradiction method 
furnishes supplementary information: i) Problematic 
relationships between taxa are visualized. ii) Characters 
supporting quite well a split can be discovered as they 
correspond to single characters fulfilling very well the 
Kalmanson inequalities. iii) Our approach can also 
select the best outgroup (reference taxon). The best 
outgroup leads to the order with the smallest level of 
contradiction.

Discovering the structuring characters among a 
set of continuous characters is a notoriously difficult 
task. The search for structuring characters can be 
greatly facilitated by looking for subsets of characters 
that satisfy best the Kalmanson inequalities. This 
approach was applied to a set of 40 characters on 100 
galaxies to extract the structuring characters. Quite 
interestingly, while discretization of continuous 
characters is often problematic, discretization 
with the Minimum Contradiction method can help 
removing contradictions from a split network or tree 
structure.
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