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Abstract: In this report, we revisited simple features that allow the classification of coding sequences (CDS) from non-coding DNA. 
The spectrum of codon usage of our sequence sample is large and suggests that these features are universal. The features that we 
investigated combine (i) the stop codon distribution, (ii) the product of purine probabilities in the three positions of nucleotide triplets, 
(iii) the product of Cytosine, Guanine, Adenine probabilities in 1st, 2nd, 3rd position of triplets, respectively, (iv) the product of G and C 
probabilities in 1st and 2nd position of triplets. These features are a natural consequence of the physico-chemical properties of proteins 
and their combination is successful in classifying CDS and non-coding DNA (introns) with a success rate 95% above 350 bp. The 
coding strand and coding frame are implicitly deduced when the sequences are classified as coding.
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Introduction
Since amino acids are encoded by codons, which are 
triplets of nucleotides (A, C, G or T, i.e. adenine, 
cytosine, guanine and thymine, respectively), coding 
DNA is necessarily a multiple of three nucleotides. 
Therefore, should a stretch of DNA start and end with 
stop codons (TAA, TAG, TGA) separated by a whole 
number of nucleotide triplets, the question arises as to 
whether this DNA stretch is coding or not. Hereafter, 
we will refer to these DNA stretches as “open reading 
frames” (ORF).

ORFs are expected to be shorter in DNA sequences 
with AT (Adenine + Thymine) levels 50% for the 
obvious reason that A and T are more frequent in 
stop codons than G. Since there are three stop codons 
and 61 amino acid codons, (3:61) a stop codon occurs 
with a probability of approximately one in twenty 
(1:20). Furthermore, given three base pairs per codon, 
this should lead to one stop codon every sixty base 
pairs, in which A, C, G or T are equally likely to occur. 
Therefore, one would expect the ORF size to be around 
60 bp. Of course, the frequency of stop codons may 
vary significantly depending upon the local nucleotide 
composition (see below in the section of Results). 
However, one could say that the probability of an 
ORF being a coding sequence increases with its size. 
Most proteins are larger than 100 codons (300 bp) 
and their ORFs should be, therefore, relatively easy to 
classify. Unfortunately, the coding sequences (CDS) 
of eukaryotes are split up by the non-coding DNA of 
introns leaving coding stretches (exons) 300 bp.

The physico-chemical constraints on proteins 
induce specific usage of nucleic triplets that can be 
efficiently detected by Markov Models.1 Investigating 
the evolutionary origin of the genetic code, Ikehara 
et al2 showed that it may have originated from a 
four-amino acid system, the GNC code. This GNC 
code (G for guanine, N for any of the 4 nucleotides, 
C for cytosine) is able to encode GADV-proteins 
(G for glycine, A for alanine, D for aspartic acid, 
V for valine) with appropriate three-dimensional 
structures, being water soluble globular proteins 
(hydropathy, α-helix, β-sheet, and β-turn) and also 
having catalytic activities.3 According to Ikehara 
et al,2 this primitive code would have evolved first 
in a code with 16 codons and ten amino acids, the so 
called SNS (S for strong: G or C) and then in the RNY 

(R for purines, Y for pyrimidines) ancestral codon 
suggested by Shepherd.4 Consequently, the coding 
DNA is characterized by at least two fundamental 
features: (i) the absence of the in-frame stop codon 
and (ii) a higher purine frequency in 1st position of 
codons4 that we called the ‘purine bias’ (Rrr).

Next, we investigated the contribution both of 
Rrr bias and also of stop codon distribution in the 
classification of coding vs non-coding ORFs. Our 
methodology is designed for the diagnosis of coding 
ORFs in small DNA sequences in the size range 200 
to 1000 bp with the assumption that they contain 
a single coding region. Larger sequences where 
multiple coding regions are expected would need to 
be investigated with a sliding window. The procedure 
involves four steps: (i) Extracting all ORFs from the 
six frames of a given DNA fragment. (ii) Attributing a 
putative coding strand to these ORFs. (iii) Eliminating 
those ORFs without the purine bias of CDSs. (iv) 
Selecting the largest of these ORFs and declaring it 
as CDS. To eliminate false positives due to very small 
ORFs, we filtered them out by setting a minimal size 
threshold. Consequently, ORFs are simply classified 
as non-coding when they do not match the Rrr bias 
above a given size threshold.

Exploring CDSs and introns among six model 
species covering the whole spectrum of codon usage 
in eukaryotes, we found that the strand diagnosis 
is 95% at 350 bp and that the success rate of 
the coding diagnosis is 98%. However, we found 
that 18% of the CDSs whose size is 350 bp may 
not be detected. Tightening up our classification for 
“true” coding DNA is possible, but would affect the 
number of ORFs effectively retrieved.

Materials and Methods
Coding features
We revisited the contribution of purines to coding 
sequences (CDS) by computing the relative 
frequency of the four nucleotides Adenine, Cytosine, 
Guanine and Thymine (A, C, G and T) in the three 
positions of triplets and the six frames (the three 
frames on both plus and minus strands). All relative 
frequencies of this study were calculated as the ratio 
of a given occurrence to the number of contiguous 
triplet N = n/3 where n is the nucleotide number in the 
sequence. The relative nucleotide frequencies were 
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denoted Pi with i ∈{A, C, G, T}. The contribution of 
purines (A and G) was evaluated in the three positions 
j ∈{1, 2, 3} of triplets by computing both the sum 
(PA1 + PG1, PA2 + PG2, PA3 + PG3 that we noted AG1, AG2, 
AG3, respectively, in the following) and the product 
(PA1PG1, PA2PG2, PA3PG3) of their relative frequencies 
over the six frames k ∈{-1, -2, -3, +1, +2, +3}. We 
also computed the relative frequency of stop codons 
TAA, TAG, TGA (PSTOP) and the product of relative 
frequencies of C, G and A in the three consecutive 
positions of triplets, i.e. (PC1PG2PA3), (PG1PA2PC3), and 
(PA1PC2PG3 ), over the six frames.

Using the frequencies just described, we set up five 
features for the diagnosis of coding ORFs as follows: 
(i) The quantity  f1 = 1- PSTOP. If we consider the 
example of a coding sequence,  f1 is equal to 1 in frame 
k = +1 since there is no in-frame stop codon within 
the coding frame of a coding sequences and since we 
defined the ORF as a DNA stretch between two stop 
codons separated by a whole number of nucleotide 
triplets, or alternatively as a DNA stretch between a 
sequence extremity and a stop codon separated by a 
whole number of nucleotide triplets. By contrast,  f1 is 
expected 1 in non-coding frames because there is 
no constraint against stop codons in these frames. The 
value of  f1 in non-coding frames is expected to decrease 
with the size of the coding sequence at a rate that is 
proportional to its AT level. (ii) We also found that 
the statements PC1PG2PA3  PG1PA2PC3 and PC1PG2PA3  
PA1PC2PG3 are generally true (93% of the cases) in 
frame k = +1. Therefore, the features f2 = 1-PC1PG2PA3 
and  f3 = PG1PA2PC3 - PC1PG2PA3 + PA1PC2PG3 - PC1PG2PA3 
are also positive and maximum in most coding frames 
(see below). (iii) As stated above, the coding sequences 
are characterized by a purines bias.4 Therefore, one 
has PA1PG1  PA2PG2 and PA1PG1  PA3PG3 in frame 
k = +1 and the quantity f4= PA1PG1 - PA2PG2+ PA1PG1-
PA3PG3 should be positive and have its maximum in 
frame k = +1. (iv) A significant proportion of GC-rich 
CDSs are deprived of a stop codon on more than one 
frame over large sequence sizes (300 bp). However, 
most CDSs with GC  55% are also PG1PC1  PG2PC2 
(see below). We took this into account by calculating 
the feature  f5 = PG1PC1 - PG2PC2.

The procedure of coding ORF diagnosis described 
here involves the following steps: (i) the diagnosis of 
the coding strand, (ii) the identification of the ORFs that 

have a purine bias similar to that of CDSs and (iii) the 
extraction of the largest of these putative coding ORFs.

Strand classification
We tested the success rate of coding strand 
classification on the 5' and 3' sides of CDSs. For this, 
we extracted sequence pieces whose sizes varied 
between 50 and 600 bp from both CDS extremities. 
We then calculated the quantity S =  f1 + f2 for all 
ORFs over the six frames of each of these CDS 
pieces. The sequences corresponding to frames 
k = -1, -2, -3 (the minus strand) were converted in 
their equivalent k = +1, +2, +3 in order to evaluate all 
sequences in their 5'-3' orientation. An ORF from the 
plus strand was considered potentially coding when 
the maximum of S was found for a frame of the plus 
strand, i.e. frames +1, +2, +3. Similarly, an ORF from 
the minus strand was considered potentially coding 
when the maximum of S was found for a frame of the 
minus strand, i.e. frames -1, -2, -3. When an ORF 
from the plus strand corresponded to the maximum of 
S for a frame of the minus strand, i.e. -1, -2, -3, and 
vice versa, the ORF was eliminated from the list.

Coding vs. non-coding classification
The ORFs selected as described above must then be 
confirmed for their coding potential. We classified a 
sequence as coding or non-coding (intron) by scoring 
the purine bias. For this, we calculated the maximum 
of the quantity C = f1 + f3 + f4 over the six frames k. 
When C was higher than a threshold the sequence 
was classified coding, when lower, non-coding. The 
threshold value was found to be 1.05.

We slightly improved the success rate of C in 
GC-rich sequences by calculating the maximum of the 
quantity C =  f1 +  f3 + f4 + f5 over the six frames when 
the GC level of the sequence was 55%, otherwise we 
calculated the maximum of the quantity C =  f1 + f3 + f4, 
as described above.

Minimum ORF size for coding 
diagnosis
Considering a DNA sequence, its largest ORF (LORF) 
is not necessarily the coding one. For instance, 
considering the sequence of an expressed sequence 
tag (EST) from the 3' end of a cDNA, an ORF in 
the 3' UTR (non-coding) can be larger than the piece 
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of coding sequence that it contains. However, the 
largest ORF among the ORFs that are classified 
coding (LcORF) has a higher probability of being 
actually coding. Here, we consider “coding” 
ORFs to be those with the Rrr bias of CDSs. Thus, 
LcORF, (i.e. the largest of the ORFs with Rrr bias) 
has higher probably to represent the actual coding 
ORF of a DNA segment. ORFs containing around 
150 to 200 bp with Rrr bias are relatively common 
in introns. Intronic LcORFs are therefore a potential 
source of false positives. We investigated their size 
distribution in comparison to that of LORFs among 
the six frames of introns. The comparison of LORF 
and LcORF distributions is informative concerning 
the gain in sensitivity that is achieved by taking the 
Rrr bias into account for coding ORF diagnosis. Of 
course, the strategy of selecting the LcORF as the 
only coding ORF candidate eliminates the possibility 
of detecting coding ORFs that would overlap on the 
plus and minus strand. This has been done deliberately 
to simplify the experimentation and does not alter our 
conclusions.

Algorithm
The procedure outlined above can be summarized in 
the following algorithm:

1.	 Load the sequence,
2.	 Scan the three frames in the “+” and “-” (the 

complementary) strands,
3.	 Construct a table with the ORFs of the three frames 

by splitting the corresponding sequence according 
to stop codons for “+” e “-” strands,

4.	 For each strand, scan the ORF table and:
	 •	 measure the ORF size,
	 •	� if the ORF is larger than the selected size 

threshold:
	 	� calculate the f1,  f2,  f3,  f4, and  f5 in the six 

frames of the ORF under analysis,
	 	� search among the six frames the one that 

corresponds to the maximum of S,
	 	� if the maximum occur for a frame 3, the 

strand is declared “+”,
	 	� continue if the strand is declared “+”, 

otherwise analyze the next ORF,
	 	� if GCORF55%
	 	� if C1  1.05, the ORF is declared 

“coding”,

	 	 if GCORF  55%

	 	� if C2  1.05, the ORF is declared “coding”,
5.	� Chose the largest (LcORF) among “+” and “-” 

ORFs.

Sequence material
Given that this study tends to be a reference case, 
we built datasets with CDSs of six model species 
covering the complete range of GC levels in 3rd 
positions of codons (GC3) and sequence complexity 
in eukaryotes. We chose GC3 as a criterion to evaluate 
codon usage diversity. Because of degeneration in 
the genetic code affecting 3rd position of codons, it is 
here that both variation in GC and also codon usage 
is the most extensive. Codon usage has been proven 
to interfere with the efficiency of gene prediction. 
It is the main factor explaining why algorithms based 
on machine learning must be trained. Therefore, a 
fundamental issue in gene prediction concerns the 
degree of codon variation which exists between 
species, as seen in these reference sequences. To 
avoid interferences with false positives of predicted 
genes, we filtered out the CDSs that were not 
experimentally validated through a peer reviewed 
publication in order to avoid the possible contribution 
of annotation errors.

Among the species considered here, Plasmodium 
falciparum (CDS = 197, GC3 = 0%–30%) is extremely 
GC-poor5 while Chlamydomonas reinhardtii (CDS = 102, 
GC3 = 60%–100%) is extremely GC-rich.6 These 
two species stand at opposite ends of the spectrum of 
eukaryote GC3 variation. Arabidopsis thaliana (CDS 
= 1,206, GC3 = 25%–65%) has a genome whose 
GC level7 is representative of core dicots8 while 
Oryza sativa (CDS = 401, GC3 = 25%–100%) is a 
species representative of Gramineae. The common 
ancestor of this plant family underwent a transition 
of nucleotide composition.8,9 The consequence of this 
transition is that the genes of this species are shared 
in two classes with two different codon usages. This 
feature confounds gene prediction in this species.9,10 
D. melanogaster (CDS = 1,262, GC3 = 40%–85%) is 
a species that also underwent a transition of nucleotide 
composition among insects.11 Finally, H. sapiens 
(CDS = 1,199, GC3 = 30%–90%) is representative of 
warm-blooded vertebrates.12 Because of the transition 
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of nucleotide composition that occurred in mammals, 
the genes of H. sapiens are shared in five different 
classes.13 Another important sequence feature for 
the purpose of gene prediction is sequence entropy14 
since its increase may lead to decrease the level of 
the Rrr bias.

Complete nuclear CDSs of the above species were 
retrieved from GenBank (release 137, August 15th, 
2003) and filtered according to Carels et al9 in order 
to eliminate redundancy and potentially false positive 
or doubtful genes resulting from wrong in silico 
predictions. The sequences all started with ATG and 
ended with a stop codon and none included in-frame 
internal stop codon.

We also built datasets of CDS fragments (frame + 1) 
of the six model species with fixed sizes of 50, 100, 
150, 200, 250, 300, 350, 400, 450, 500, 550, 600 bp 
extending from (i) the first ATG until the desired 
sequence size and from (ii) the 3' side (next to the stop 
codon, but excluding it).

We tested the success rate of exon/intron 
classification with the CDS samples just described 
and the samples of intron sequences of A. thaliana 
(n = 5,301), D. melanogaster (n = 18,749), H. sapiens 
(n = 2,030) retrieved from http://hsc.utoledo.edu/
bioinfo/eid/index.html. Intron datasets were built by 
cutting pieces of fixed size of 50, 100, 150, 200, 250, 
300, 350, 400, 450, 500, 550, 600 bp extending from 
the 5' side to the desired sequence size.

Results
According to Shepherd,4 we found that the purine 
level is the highest, on average, in the 1st position of 
codons of all six species (data not shown). Therefore, 
we denoted this purine bias by Rrr. However, the 
difference between the product of purine probabilities 
in 1st and 2nd positions was higher than that between 
the sum (%) of these probabilities.

The product of purine probabilities was, on average, 
PA1PG1 = 0.09 and PA2PG2 = 0.05. Both values are 
remarkably conserved among distant species whatever 
their average GC level (Fig. 1). Two peaks of purine 
distribution in 3rd position of codons were found for 
rice (Fig. 1A). One, centered on PA3PG3 = 0.015, is 
characteristic of extremely GC-rich genomes such as 
C. reinhardtii (Fig. 1E). The second peak centered 
on PA3PG3 = 0.050, is common to the other genomes 
(Table 1). Table 1 shows that the product of purine 

probabilities in 3rd codon position is close to 0 for 
extremely GC-rich CDSs.

Despite its extremely high AT composition, 
P. falciparum also shows the Rrr bias (Fig. 1F). The 
Rrr bias promotes purine compensation between the 
three positions of codons (Table 2). The intensity of 
these compensations changes according to the species. 
It is interesting to note that in contrast to A, G does 
not show correlation between 1st and 2nd positions of 
codons in any of the six species.

In agreement to Figure 2, PA1 and PG1 are relatively 
constant over species except in P. falciparum where 
both purines obviously compensate each other. The 
absence of correlation between  PA1 and PG1 in H. sapiens 
and D. melanogaster (Table 2) is not surprising since 
their distributions overlap closely. The correlation 
between PA1 and PA2 is more surprising since they also 
overlap closely. This shows that the correlation can 
be significant over a very small range of variation 
in base composition. By contrast, the absence of 
correlation between PG1 and PG2 is surprising since 
the relationship between these two bases is such that 
PG2 is lower than PG1 in every species. The difference 
between PG1 and PG2 is larger than that between PA1 
and PA2 (Fig. 2). We also found negative correlations 
between PA1PG1 and GC3 (-0.37), on the one hand, 
and between AG1 and GC3 (-0.35), on the other 
hand. The major contribution to these correlations 
is due to A1 since the correlation between PA1 and 
GC3 was -0.57 while that between PG1 and GC3 
was 0.20. The negative correlation of purines in 1st 
position of codons and GC3 shows that the purine 
bias Rrr tends to be weaker for GC-rich genes. Other 
interesting regularities that can be derived from 
Figure 2 are that PC1, PG2 and PA3 are lower than their 
respective probabilities in other positions of codons. 
A3 is clearly compensated by C3 as appears from 
negative correlation between A3 and C3 (r = -0.9, 
data not shown). This is shown at Figure 3 where the 
overlap between PC1PG2PA3, PG1PA2PC3 and PA1PC2PG3 
is only 7% of the CDSs of the six species considered 
together. This property of CDS is the consequence of 
the Rrr bias. It is essential for the diagnosis of the 
coding strand in GC-rich sequences. However, it must 
be used in combination with stop codon distribution 
to allow sufficient success rate (see below).

The bias in stop codon distribution introduced 
by the coding frame is not satisfactory for a secure 
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diagnosis of the coding strand when GC-rich CDSs 
are small (Fig. 4). The success rate of coding strand 
diagnosis using stop codons only depends on the 
average level of AT. Short GC-rich sequences 
(O. sativa and C. reinhardtii) can be deprived of stop 
codon in non-coding frames as well. Therefore, the 
quantity S = f1 + f2 allows much more accurate coding 
strand diagnosis S = f1 (Fig. 5).

However, the power of this simple function for 
the classification of exons and introns is low (data 
not shown). We found a solution to this problem by 
measuring the asymmetry introduced by the Rrr bias. 
The asymmetry of GC-poor CDSs (GC  55%) can 
be scored with the quantity C = f1 + f3 + f4. When 
CDSs are GC-rich (GC  55%) as occurs in O. sativa 
and C. reinhardtii, a success rate higher by 4%–5% (data 
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not shown) is obtained with the quantity C = f1 + f3 + 
f4 + f5 (Figs. 6, 7). Figure 6 shows the performance of 
the classification of introns and CDSs with increasing 
sequence size. Three different intron sources were 
plotted in Figure 6: A. thaliana, H. sapiens and 
D. melanogaster. The intron distribution of A. thaliana 
is the most homogeneous among the three and, 
therefore, A. thaliana is the species with the highest 
success rate of intron/exon classification among the 
three species tested. For the purpose of clarity, we 
group the CDSs of the six species all together. The 
overlapping area (Fig. 6) concerns the sequences for 
which the intron/exon classification cannot be trusted. 
The classification threshold can be chosen according 
to two strategies: optimize the error rate or maximize 
true positives. Considering Figure 6, the plain vertical 
line is for the threshold at 1.05 (see also Fig. 7). With 
a threshold of 1.05, the proportion of exons that are 
classified as introns (false negatives) is 10% at 200 bp 

and 7% at 600 bp. On the other hand, the proportion 
of introns that are classified as exons (false positives) 
is between 8% (A. thaliana) and ~15% (H. sapiens, 
D. melanogaster) at 200 bp and between 0 and 3% at 
600 bp (Fig. 7). The error due to false positives decreases 
more rapidly than that due to false negatives.

We found that the largest orf (lorf) in introns 
of a. thaliana, d. melanogaster and h. sapiens are 
between 200 and 250 bp, on average (Fig. 8). The 
distribution of the largest orfs showing the purine 
bias (lcorf) peaks at 100 bp in all three species 
and trails off towards ~300 bp in arabidopsis and 
drosophila. In humans, the lcorf distribution 
trails until ~400 bp (the bar at 500 bp in the 
lorf distribution most probably indicating the 
dataset contamination by cdss. According to this 
speculation, the contamination rate could be as high 
as 8%). If we consider 2.5% as an acceptable rate of 
false positives in intron/exon classification, lcorfs 

Table 1. Product of purine probabilities in the three positions of codons.

Species Sz1 PA1PG1 σA1G1
2 PA2PG2 σA2G2 PA3PG3 σA3G3 ∆AG1, 2

3 ∆AG2, 3

O. sativa 401 0.091 0.016 0.054 0.012 0.036 0.020 0.037 0.018
  GC-poor 227 0.095 0.014 0.055 0.012 0.050 0.013 0.040 0.005
  GC-rich 174 0.086 0.016 0.054 0.013 0.018 0.012 0.032 0.036
A. thaliana 1206 0.093 0.013 0.055 0.013 0.055 0.011 0.038 0.000
H. sapiens 1199 0.084 0.017 0.058 0.013 0.048 0.015 0.026 0.010
D. melanogaster 1262 0.086 0.013 0.058 0.012 0.045 0.013 0.028 0.013
C. reinhardtii 102 0.084 0.013 0.051 0.012 0.017 0.013 0.033 0.034
P. falciparum 197 0.107 0.017 0.052 0.010 0.033 0.010 0.055 0.019
1Sz is the sample size of coding sequences.
2σ is the standard deviation for the product of probabilities of the nucleotide pair under consideration.
3∆ is the difference of σ between two positions of codons.

Table 2. Correlations between purine probabilities at one or two position(s) of codons.

Species Sz1 PA1,PA2 PA1,PA3 PG1,PG2 PG1,PG3 PA1,PG1 PA2,PG2 PA3,PG3 PA1,PG2 PA1,PG3

O. sativa 401 0.442 0.45 0.21 0.27 -0.50 -0.38 -0.74 -0.35 -0.43
A. thaliana 1206 0.43 0.16 0.12 0.11 -0.40 -0.26 -0.22 -0.10 -0.10
H. sapiens 1199 0.44 0.51 0.17 0.23 -0.35 -0.47 -0.80 -0.50 -0.50
D. melanogaster 1262 0.13 0.32 0.00 0.10 -0.34 -0.40 -0.68 -0.18 -0.29
C. reinhardtii 102 0.30 -0.30 0.30 0.33 -0.49 -0.32 0.04 -0.24 -0.19
P. falciparum 197 0.52 -0.06 0.10 -0.22 -0.59 -0.71 -0.16 -0.26 0.14
1Sz is the sample size of coding sequences.
2All the values 0.20 or -0.20 were statistically significant at P  0.001. The values 0.40 were placed on gray background to facilitate table analysis.
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H. sapiens (3), D. melanogaster (4), C. reinhardtii (5) and P. falciparum (6).
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from a. thaliana can be considered coding in 97% 
of the cases provided that they are 300 bp (Fig. 8). 
The size threshold for LcORFs of A. thaliana under 
the success rate of 95% is ~240 bp, which results 

in a gain of ~60 bp in sensitivity. According to the 
same criteria, the size threshold above which LcORF 
classification is reached with a 95% success rate is 
(i) between 150 and 200 bp for P. falciparum and 
C. reinhardtii, (ii) 300 bp for D. melanogaster and 
(iii) 350 bp for H. sapiens.

Discussion
The methodology presented here is an attempt to 
understand the features of coding sequences that allow 
their classification independently of the species.

We investigated a set of model species that cover the 
entire range of codon usage and sequence complexity in 
eukaryotes. The unicellular Plasmodium falciparum is 
extremely rich in AT while Chlamydomonas reinhardtii 
is, by contrast, extremely rich in GC. This warrants the 
coverage of the complete codon usage. Arabidopsis 
thaliana has an average base composition that is 
representative of the dicots and monocot plant species. 
Rice is representative of the Gramineae family that 
has the particularity of having two gene classes one 
with a codon usage typical of angiosperms in general 
and one that is extremely GC-rich as in C. reinhardtii.6 
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Drosophila melanogaster and Homo sapiens are two 
species that demonstrate a compositional transition in 
their respective common ancestor.11,12 For this reason, 
they are expected to be more heterogeneous in their 
sequences.

Despite the enormous genetic distance between 
these species, we found a common model for their 
coding sequence (CDS). The model is based on the 
stop codon distribution and on the purine bias (Rrr) 
in CDSs. The purine bias has been claimed to be a 
universal feature of CDSs4 that could help to classify 
them in the process of gene finding. However, the 
purine bias has also the corollary that PC1 PG2 PA3 
reaches its minimum value in the coding frame of 
CDSs. As far as we know, this feature has not been 
described before, but it is essential for the successful 
diagnosis of CDSs using the purine bias as proposed 
by Shepherd.4 The PC1PG2PA3 bias results from the 
nucleotide compensations that occur in the CDSs 
with the effect of generating a higher abundance 
of purine in 1st position of codons than in the two 
other positions (Rrr). The compensation occurs 
in such a way that A1 is more abundant in AT-rich 
(P. falciparum) and G1 is more abundant in GC-rich 
(C. reinhardtii) genomes. This is obvious from the 
negative correlation (-0.57) between A1 and GC3 
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Figure 7. Relationship between false positives (In) and false negatives 
(CDS) at sequence sizes between 200 and 500 bp for the thresholds 
of classification at 1.05. The introns (In) in this plot are from A. thaliana 
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because they are classified as non-coding while in fact they are.

and from the positive correlation between G1 and 
GC3 (0.20). However, whether AT-rich or GC-rich, 
G is more abundant in 1st than in 2nd position of 
codons.2 This can be regarded as a remnant of the 
GNC ancestral codon.2 This feature is essential since 
it is conserved in P. falciparum. However, in the 
particular case of this species a substantial number 
of codons take A1 in place of G1. The absence of 
correlation between PG1 and PG2 by contrast to the 
correlation between (i) PA1 and PA2 and (ii) PA1 PG1 
and PA2PG2 suggests that different constraints act 
on A and G. Reasons for this can be found in the 
universal correlation.15

Actually, Rrr is a feature that allows the measure of 
codon asymmetry in CDSs as does the CSF function.16 
The reason for codon asymmetry in CDSs is not trivial. 
There is the same number of RNN and YNN codons 
in the genetic code. The larger frequency of Rrr in 
CDSs is due to the proteomic code. To sum up, it is 
the consequence of constraints acting on secondary 
and 3D protein structures.17

When used alone, the purine bias Rrr allows 
coding frame detection with only ~84% success rate 
(data not shown). The most important source of frame 
confusion is from frame -1. An explanation for this 
is found in Biro’s review.17 Complementary codons 
often encode complementary amino-acids that are 
involved in 3D protein folding. The balance of sense 
and antisense codons is close to the equilibrium, 
which justifies an error rate of ~15% on the coding 
frame diagnosis by Rrr. For this reason, Rrr should 
be used only for the coding diagnosis and not for the 
strand diagnosis.

In AT-rich sequences, the bias of stop 
codon(s) distribution among frames is sufficient to 
allow the elimination of most frame ambiguities in 
sequences 350 bp. In GC-rich sequences (0.55% GC), 
the introduction of the condition PG1PC1  PG2PC2 in 
combination to the PC1PG2PA3 and stop codon(s) biases 
is necessary. The probability of stop codons is too 
low in GC-rich ORFs ~350 bp to allow unambiguous 
frame diagnosis. Fortunately, PC1PG2PA3 compensates 
for this lack of specificity. In addition, the condition 
PG1PC1  PG2PC2 combined with the conditions 
PA1PG1  PA2PG2 and PA1PG1  PA3PG3 compensates for 
the negative correlation between A1 and GC3 with 
the consequence that the success rate of exon/intron 
classification remains at a high level.
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The purine bias induced by the physico-chemical 
properties of proteins is sufficient to classify CDSs 
from introns with a success rate 95% above 350 bp. 
The threshold of 95% success rate is found at lower 
ORF size in AT-rich sequences. This suggests a 
positive correlation between the exon size and their 
GC level. This correlation has been detected in 
plants18 and vertebrates.19

The different success rates of exon/intron 
classification between A. thaliana, on one hand, 
and H. sapiens, D. melanogaster, on the other hand, 
are apparently due to intrinsic difference of base 
composition. The difference of GC level between 
introns and exons was found to be higher, on 
average, in A. thaliana (5% to 15%–30%),7 than in 
H. sapiens,20 D. melanogaster (5%). In addition, the 
vast majority of plant introns are GC-poor,18 which 
is not the case in H. sapiens and D. melanogaster.

The features analyzed in this study allow an 
improvement to the sensitivity of exon vs intron 
classification by 50 to 150 bp at small ORF sizes 
compared to other methods, i.e. the Average Mutual 
Information from Grosse et al14 and the CSF 
function from Nikolaou and Almirantis,16 which 
claim to be independent of codon usage, and which 
do not need a training step. However, the substantial 
difference is that these aforementioned methods 
predict neither the strand nor the coding frame. 
In consequence, we believe that our method could 

be helpful in the extraction of coding ORFs from 
ESTs and/or from metagenomic reads. It could also 
help in the preparation of training set for ab initio 
gene prediction with machine learning algorithms 
in those genomes for which little information is 
available.
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