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Abstract: Thermodynamic processes with free energy parameters are often used in algorithms that solve the free energy 
minimization problem to predict secondary structures of single RNA sequences. While results from these algorithms are 
promising, an observation is that single sequence-based methods have moderate accuracy and more information is needed 
to improve on RNA secondary structure prediction, such as covariance scores obtained from multiple sequence alignments. 
We present in this paper a new approach to predicting the consensus secondary structure of a set of aligned RNA sequences 
via pseudo-energy minimization. Our tool, called RSpredict, takes into account sequence covariation and employs effective 
heuristics for accuracy improvement. RSpredict accepts, as input data, a multiple sequence alignment in FASTA or ClustalW 
format and outputs the consensus secondary structure of the input sequences in both the Vienna style Dot Bracket format 
and the Connectivity Table format. Our method was compared with some widely used tools including KNetFold, Pfold and 
RNAalifold. A comprehensive test on different datasets including Rfam sequence alignments and a multiple sequence align-
ment obtained from our study on the Drosophila X chromosome reveals that RSpredict is competitive with the existing 
tools on the tested datasets. RSpredict is freely available online as a web server and also as a jar fi le for download at http://
datalab.njit.edu/biology/RSpredict.

Keywords: RNA secondary structure prediction, Drosophila secondary structure, Rfam sequence alignments, normalized 
energy

Introduction
RNA secondary structure prediction has been studied for quite awhile. Many minimum free energy 
(MFE) methods have been developed for predicting the secondary structures of single RNA sequences, 
such as mfold,1 RNAfold,2 MPGAfold,3 as well as recent tools presented in the literature.4 However, 
the accuracy of predicted structures is far from perfect. Recently, a new concept of normalized free 
energy for predicting the secondary structures of single RNA sequences was introduced.5 The normal-
ized free energy of an RNA substructure is the free energy of that substructure divided by the length of 
its underlying sequence. A dynamic programming algorithm, called Densityfold, was developed, which 
delocalizes the thermodynamic cost of computing RNA substructures and improves on secondary 
structure prediction via normalized energy minimization.5 Here, we extend the concept used in 
Densityfold and present a new tool, called RSpredict, for RNA secondary structure prediction. RSpredict 
computes the RNA structure with minimum normalized energy based on the loop decomposition 
scheme used in the nearest neighbor energy model.6–8 The new tool focuses on the loops in an RNA 
secondary structure, whereas Densityfold considers RNA substructures where a substructure may con-
tain several loops.

To understand the difference between the two tools, see Figure 1. In the fi gure, the substructure 
S contains six loops, denoted as L1, L2, L3, L4, L5, L6. RSpredict calculates the normalized free energy 
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of the substructure S, denoted NE(S), by taking the 
sum of the normalized energies of the six loops. 
That is, 
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E(Li) is the free energy of loop Li and |Li| is the 
length of Li, i.e. the number of nucleotides in Li. 
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Figure 1. Illustration of the loops and substructures in an RNA secondary structure. Each loop has at least one base pair. A stem consists 
of two or more consecutive stacks shown in the fi gure.
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On the other hand, Densityfold computes the 
normalized free energy of the substructure S as the 
sum of normalized energies of all its substructures 
including S. Referring to Figure 1, we see that S has 
six substructures, denoted as S1 = S, S2, S3, S4, S5, 
S6, where S1 = {L1, L2, L3, L4, L5, L6}, S2 = {L2, L3, 
L4, L5, L6}, S3 = {L3, L4, L5, L6}, S4 = {L4, L5, L6}, 
S5 = {L5, L6}, S6 = {L6}. Therefore the normalized 
energy of the substructure S is
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E(Si) is the free energy of substructure Si and |Si| 
is the number of nucleotides in Si. The difference 
in the normalized energy computation leads to a 
new algorithm for RSpredict, which is different 
from the algorithm used by Densityfold.

While the normalized energy model creates a 
foundation for RNA secondary structure predic-
tion, there are many limitations in Densityfold, 
just like in all other single sequence-based MFE 
methods. Optimal structures predicted by these 
methods do not necessarily represent real structures. 
This happens due to several reasons. The thermo-
dynamic model may not be accurate. The bases of 
structural RNAs may be chemically modifi ed and 
these processes are not included in the prediction 
model. Finally, some functional RNAs may not 
have stable secondary structures. Thus, a more 
reliable approach is to use comparative analysis to 
compute consensus secondary structures from 
multiple related RNA sequences.

In general, there are three strategies with the 
comparative approach. The fi rst strategy is to pre-
dict the secondary structures of individual RNA 
sequences separately and then align the structures. 
Tools such as STRUCTURELAB9 and RADAR6 
are based on this strategy. The second strategy 
predicts common secondary structures of two or 
more RNA sequences through simultaneous align-
ment and consensus structure inference. Tools 
based on this strategy include RNAscf,10 Dynalign,11 
stemloc,12 and CARNAC.13 These tools utilize 
either folding free energy change parameters or 
stochastic context-free grammars (SCFGs) and are 
considered derivations of Sankoff’s method.14

The third strategy is to fold multiple sequence 
alignments. RNAalifold15,16 uses a dynamic 
programming algorithm to compute the consensus 
secondary structure with minimum free energy 
by taking into account thermodynamic stability, 
sequence covariation together with RIBOSUM-
like scoring matrices. Pfold17 is a SCFG algorithm 
that produces a prior probability distribution of 
RNA structures. A maximum likelihood approach 
is used to estimate a phylogenetic tree for predict-
ing the most likely structure for input sequences. 
A limitation of Pfold is that it does not run on 
alignments of more than 40 sequences and in some 
cases produces no structures due to under-fl ow 
errors. Maximum weighted matching (MWM), 
based on a graph-theoretical approach and devel-
oped by Cary and Stormo18 and Tabaska et al,19 
is able to predict common secondary structures 
allowing pseudoknots. KNetFold20 is a recently 
published machine learning method, implemented 
using a hierarchical network of k-nearest neighbor 
classifi ers that analyzes the base pairings of align-
ment columns in the input sequences through their 
mutual information, Watson-Crick base pairing 
rules and thermodynamic base pair propensity 
derived from RNAfold.2 The method proposed in 
this paper, RSpredict, joins the many tools using 
the third strategy; it accepts a multiple alignment 
of RNA sequences as input data and predicts the 
consensus secondary structure for the input 
sequences by minimizing their pseudo-energy, 
which takes into account both the normalized 
free energy and covariance scores of the input 
sequences.

The rest of the paper is organized as follows. 
We fi rst describe the implementation and algorithms 
used by RSpredict, and analyze the time complexity 
of the algorithms. We then present experimental 
results of running the RSpredict tool as well as 
comparison with the existing tools. The experi-
ments were performed on a variety of datasets. 
Finally we discuss some properties of RSpredict, 
possible ways to improve the tool and point out 
some directions for future research.

Methods
RSpredict, which can be freely downloaded from 
http://datalab.njit.edu/biology/RSpredict, was 
implemented in the Java programming language. 
The program accepts, as input data, a multiple 
sequence alignment in FASTA or ClustalW format 
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and outputs the consensus secondary structure of 
the input sequences in both the Vienna style Dot 
Bracket format16 and the Connectivity Table 
format.21 Below, we describe the normalized energy 
model adopted by RSpredict. We then present a 
dynamic programming algorithm for folding a 
single RNA sequence via normalized energy 
minimization. Next, we describe techniques for 
calculating covariance scores based on the input 
alignment. Finally we summarize the algorithms 
used by RSpredict, combining both the folding 
technique and the covariance scores obtained from 
the input alignment, and show its time complexity.

Folding of a single RNA sequence
We represent an RNA secondary structure as a fully 
decomposed set of loops.6–8 In general, a loop L 
can be one of the following (Fig. 1):
i. a hairpin loop (which is a loop enclosed by 

only one base pair; the smallest possible hair-
pin loop consists of 3 nucleotides enclosed by 
a base pair);

ii. a stack, composed of two consecutive base 
pairs;

iii. a bulge loop, if two base pairs are separated 
only on one side by one or more unpaired 
bases;

iv. an internal loop, if two base pairs are sepa-
rated by one or more unpaired bases on both 
sides;

v. a multibranched loop, if more than two base 
pairs are separated by zero or more unpaired 
bases in the loop.

We now introduce some terms and defi nitions. 
Let S be an RNA sequence consisting of nucleo-
tides or bases A, U, C, G. S [i] denotes the base at 
position i of the sequence S and S [i, j] is the sub-
sequence starting at position i and ending at posi-
tion j in S. A base pair between nucleotides at 
positions i and j is denoted as (i, j) or (S [i], S [ j]), 
and its enclosed sequence is S [i, j]. Given a loop 
L in the secondary structure R of sequence S, the 
base pair (i*, j*) in L is called the exterior pair of 
L if S [i*] (S [ j*], respectively) is closest to the 5′ 
(3′, respectively) end of R among all nucleotides 
in L. All other non-exterior base pairs in L are 
called interior pairs of L. The length of L is the 
number of nucleotides in L. Note that two loops 
may overlap on a base pair. For example, the inte-
rior pair of a stack may be the exterior pair of 
another stack, or the exterior pair of a hairpin loop. 

Also note that a bulge or an internal loop has 
exactly one exterior pair and one interior pair.

We use the normalized energy concept as 
follows. Given a secondary structure R, every base 
pair (i, j) in R is the exterior pair of some loop L. 
We assign (i, j) and L a normalized energy, which 
is the free energy of loop L divided by the length 
of L. The set of free energy parameters for non-
multibranched loops used in our algorithm is 
acquired from Mathews et al.8 The free energy of 
a multibranched loop is computed based on the 
approach adopted by mfold,1 which is a linear 
function of the number of unpaired bases and the 
number of base pairs inside the loop, namely 
a b n c n+ × + ×1 2, where a, b, c are constants, n1 is the 
number of unpaired bases and n2 is the number of 
base pairs inside the multibranched loop. We adopt 
the loop decomposition scheme used in the nearest 
neighbor energy model developed by Mathews 
et al. 8 The secondary structure R contains multiple 
loop components and the normalized energies of 
the loop components are additive based on our 
defi nition of the normalized energy of a structure, 
as explained in the beginning of the Introduction 
section and illustrated in Figure 1. Our folding 
algorithm computes the total normalized energy of 
R by summing up all normalized energies of the 
loops in R. Thus, the RNA folding problem can be 
formalized as follows. Given an RNA sequence S, 
fi nd the set of base pairs (i, j) and loops with (i, j) 
as exterior pairs, such that the total normalized 
energy of the loops (or equivalently, the exterior 
pairs) is minimized. The set of base pairs consti-
tutes the optimal secondary structure of S.

When generalizing the folding of a single 
sequence to the prediction of the consensus struc-
ture of a multiple sequence alignment, we intro-
duce the notion of refi ned alignments. At times, an 
input alignment may have some columns each of 
which contains more than 75% gaps. Some tools 
including RSpredict delete these columns to get a 
refi ned alignment;17 some tools simply use the 
original input alignment as the refi ned alignment. 
Suppose the original input alignment Ao has N 
sequences and no columns, and the refi ned align-
ment A has N sequences and n columns, n � no. 
Formally, the consensus structure of the refi ned 
alignment A is a secondary structure R together 
with its sequence S such that each base pair (S [i], 
S [  j]), 1 � i � j � n, in R corresponds to the pair 
of columns i, j in the alignment A, and each base 
S [i], 1 � i � n, is the representative base of the 
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ith column in the alignment A. There are several 
ways to choose the representative base. For 
example, S [i] could be the most frequently occur-
ring nucleotide, excluding gaps, in the ith column 
of the alignment A. Furthermore, there is an energy 
measure value associated with each base pair (S [i], 
S [ j]) or more precisely its corresponding column 
pair (i, j), such that the total energy measure value 
of all the base pairs in R is minimized. The con-
sensus secondary structure of the original input 
alignment Ao is defi ned as the structure Ro, obtained 
from R, as follows: (i) the base (base pair, respec-
tively) for column Co (column pair (Co1, Co2), 

respectively) in Ao is identical to the base (base 
pair, respectively) for the corresponding column 
C (column pair (C1, C2), respectively) in A if Co 
((Co1, Co2), respectively) is not deleted when get-
ting A from Ao; (ii) unpaired gaps are inserted into 
R, such that each gap corresponds to a column that 
is deleted when getting A from Ao (see Fig. 2).

In what follows, we fi rst present an algorithm 
for folding a single RNA sequence based on the 
normalized energy concept described here. We then 
generalize the algorithm to predict the consensus 
secondary structure for a set of aligned RNA 
sequences.

Figure 2. Illustration of the consensus structure defi nition used by RSpredict. Here, the RSpredict algorithm transforms the original input 
alignment Ao to a refi ned alignment A by deleting the fourth column (the column in red) of Ao. The algorithm predicts the consensus structure 
of the refi ned alignment A. Then the algorithm generates the consensus structure of Ao by inserting an unpaired gap to the fourth position 
of the consensus structure of A. The numbers inside parentheses in the refi ned alignment A represent the original column numbers in Ao.
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Algorithm
The functions and parameters used in our algorithm 
are defi ned below where S[i, j] is a subsequence 
of S and R [i, j] is the optimal secondary structure 
of S [i, j]:
i. NE (i, j) is the total normalized energy of all 

loops in R[i, j], where nucleotides at positions 
i, j may or may not form a base pair.

ii. NEP (i, j) is the total normalized energy of all 
loops in R [i, j] if nucleotides at positions i, j 
form a base pair.

 

E i j i j i j i j
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J
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The denominator in Equation (2) is 4 because 
there are four nucleotides in the stack. In (4), n1 is 
the number of unpaired bases and n2 is the number 
of base pairs in the multibranched loop. Using 
Equations (1), (2), (3) and (4), the total normalized 
energy of all loops in R[i, j] where (i, j) is a base 
pair is computed by Equation (5):

That is, the normalized energy NEp (i,  j) is 
calculated by taking the minimum of the following 
four cases:
i. (i, j) is the exterior pair of a hairpin, in which case 

the normalized energy NEP (i,  j) equals EH (i,  j), 
which is the normalized energy of the hairpin;

ii. (i, j) is the exterior pair of a stack, in which case 
NEP (i,  j) equals the normalized energy of the 
stack, i.e. ES (i,  j), plus NEP (i + 1,  j − 1);

iii. (i, j) is the exterior pair of a bulge or an internal 
loop, in which case NEP (i,  j) equals the 
minimum of the normalized energy of the 
bulge or internal loop EB (i,  j, i′,  j′) plus NEP 
(i′, j′ ) for all i � i′ � j′ � j;

iv. (i,  j) is the exterior pair of a multibranched 
loop, in which case NEP (i,  j) equals the minimum 
of the normalized energy of the multi branched loop 
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iii. eH (i, j) (EH (i, j), respectively) is the free energy 
(normalized energy, respectively) of the 
hairpin with exterior pair (i, j).

iv. es (i, j) (ES (i, j), respectively) is the free 
energy (normalized energy, respectively) of the 
stack with exterior pair (i, j) and interior pair 
(i + 1, j − 1).

v. eB (i, j, i′, j′ ) (EB (i, j, i′, j′ ), respectively) is the 
free energy (normalized energy, respectively) 
of the bulge or internal loop with exterior pair 
(i, j) and interior pair (i', j' ).
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That is, the normalized energy NE(i,  j) is 
computed by taking the minimum of the following 
four cases:

i. the total normalized energy of all loops in the 
optimal secondary structure R[i, j − 1] of 
subsequence S [i, j − 1] (Fig. 3a);

ii. the total normalized energy of all loops in the 
optimal secondary structure R[i + 1, j] of 
subsequence S [i + 1,  j] (Fig. 3b);

iii. the total normalized energy of all loops in the 
optimal secondary structure R[i, j] of subse-
quence S [i,  j], where S [i] and S [ j] form a base 
pair (Fig. 3c);

iv. the minimum of NE(i, k – 1) plus NE(k, j) for 
all i � k � j (Fig. 3d).

Note that case (iii) of Equation (6) is not 
considered when the nucleotides at positions i, j 
are forbidden to form a base pair, i.e. (S [i], S [ j]) 
is a non-standard base pair. A standard base pair is 
any of the following: (A, U), (U, A), (G, C), (C, G), 
(G, U), (U, G); all other base pairs are non-
standard.

Complexity
In calculating the time complexity of the folding 
algorithm, there is a need to check for 
fi nding the optimal ′ ′ < ′ < ′ <i j i i j j, , ,  in case 
(iii) (the optimal ′ ′ ′ ′ ′ ′ < ′ < ′i j i j i j i i jk k1 2 2 11 1, , , , ..., , ,  
< ′ < ′ < < ′ < ′ <i j i j jk k2 2 � ,  in case (iv), respec-
tively) of Equation (5). Letting n be the number 
of nucleotides in the given sequence S, this 
checking would require O(n4) time in case (iii) and 
O(n(k + 2)) time in case (iv). This time complexity 
can be reduced by adopting the following 
implementation strategy.

We introduce two entries to be updated based 
on the cases in Equation (6):
i.  U(i, j), which is the number of unpaired bases 

adjacent to S [i], S [ j], i � j, where S [i], S [ j] 
may or may not form a base pair;

ii. H(i, j), which is the set of exterior pairs (p, q), 
i � p � q �  j, in the optimal secondary structure 
of subsequence S [i, j] if S [i], S [ j] do not form 
a base pair, or simply the set of (i, j) if S [i], S [ j] 
form a base pair (recall that an interior pair of 
some loop is the exterior pair of another loop).

NE(i,j)

NEp(i,j)

NE(k,j)NE(i,k–1)

NE(i,j)

NE(i,j)NE(i,j)

NE(i,j–1) NE(i+1,j)

i j

j

j

ji k

i

i i+1j–1

k–1

A) B)

D)

C)

Figure 3. Illustration of the four cases in Equation (6). A) NE(i, j) equals NE(i, j−1) which is the total normalized energy of all loops in the 
optimal secondary structure R[i, j − 1] of subsequence S[i, j − 1]. B) NE(i, j) equals NE(i + 1, j) which is the total normalized energy of all 
loops in the optimal secondary structure R[i + 1, j] of subsequence S[i + 1, j]. C) NE(i, j) equals NEP(i, j) which is the total normalized energy 
of all loops in the optimal secondary structure R[i, j] of subsequence S[i, j], where S[i] and S[ j] form a base pair. D) NE(i, j) equals the 
minimum of NE(i, k − 1) plus NE(k, j) for all i < k < j. The dashed line between two nucleotides means that the two nucleotides may or may 
not form a base pair. The solid line between two nucleotides means that the two nucleotides form a base pair.
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Depending on which case in Equation (6) yields 
the value of NE(i, j), we have:
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can be combined and expressed by a single formula 
as follows:

calculate NEP (i, j) for all 1 � i � j � n, where n is 
the number of nucleotides in the given sequence S. 
The space complexity of the folding algorithm is 
O(n2), since all energy values are stored in two 
dimensional tables. The normalized energy of the 
optimal secondary structure R for the sequence S 
equals NE(1, n).

Calculation of covariance scores
When applying the above folding algorithm to a 
multiple sequence alignment Ao, we take into con-
sideration the correlation between columns of the 
alignment. In many cases, the sequences in the 
alignment may have highly varying lengths. 
We refi ne the alignment Ao by deleting columns 

where Z H i h H h j= + − ∪ −( , ) ( , ).1 1 1  Thus, it 
takes linear time to fi nd the optimal h, i � h � j, 
that minimizes the above formula. Once the opti-
mal h value is found, it takes constant time to fi nd 
the optimal i′,  j′ if H i h H h j( , ) ( , )+ − ∪ − =1 1 1  
{( , )},′ ′i j  or the optimal ′ ′ ′ ′ ′ ′i j i j i jk k1 1 2 2, , , , ..., ,  
if   H i h H h j i j i j( , ) ( , ) {( , ), ( , ), ...,+ − ∪ − = ′ ′ ′ ′1 1 1 1 1 2 2
( , )}.′ ′i jk k  Therefore, it takes linear time to compute 

containing more than 75% gaps to get a refi ned 
alignment A.17 We will use this refi ned alignment 
throughout the rest of this subsection.

Covariance score
We use the covariance score introduced by RNAa-
lifold15 to quantify the relationship between two 

NEP (i,  j) in Equation (5). Hence, the time complexity 
of the folding algorithm is O(n3) since we need to 
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columns in the refi ned alignment. Let fij(XY) be 
the frequency of fi nding both base X in column i 
and base Y in column j, where X, Y are in the 
same row of the refi ned alignment. We exclude the 
occurrences of gaps in column i or column j 
when calculating  fij(XY). The covariation measure 
for columns i, j, denoted Cij, is calculated by 
Equation (9):

C

f XY D XY X Y f X Y

ij

ij ij ij
XY X Y=

′ ′ ′ ′∑
′ ′

( ) ( , ) ( )
,

2
 (9)

Here, Dij(XY, X′Y' ) is the Hamming distance 
between the two base pairs (X, Y) and (X ′, Y ′) if 
both of the base pairs are standard base pairs, or 0 
otherwise. The Hamming distance between (X, Y) 
and (X ′, Y ′) is calculated as follows:

D XY X Y X X Y Yij ( , ) ( , ) ( , )′ ′ = − ′ − ′2 δ δ  (10)

where

 δ ( , )
,

X X
X X

′ =
= ′⎧

⎨
⎩

1

0

if

otherwise.
 (11)

Observe that the information acquired from the 
two base pairs (X, Y ) and (X ′, Y ′) is the same as 
that from (X ′, Y ′) and (X, Y ). Thus, we divide the 
numerator in Equation (9) by 2 so as to obtain the 
non-redundant mutual information between 
column i and column j in the refi ned alignment.

For every pair of columns i, j in the refi ned align-
ment, the covariance score of the two columns 
i and j, denoted Covij, is calculated in Equation (12):

 Cov C c NFij ij ij= + ×1  (12)

Here, Cij is as defi ned in Equation (9), c1 is a 
user-defi ned coeffi cient (in the study presented 
here, c1 has a value of −1), and

 NF
NC

Nij
ij=  (13)

where N is the total number of sequences and NCij 
is the total number of confl icting sequences in the 
refi ned alignment. A confl icting sequence is one 
that has a gap in column i or column j, or has a 
non-standard base pair in the columns i, j of the 
refi ned alignment. A sequence with gaps in both 
columns i, j is not confl icting.

Pairing threshold
We say that column i and column j in the refi ned 
alignment can possibly form a base pair if their 
covariance score is greater than or equal to a pair-
ing threshold; otherwise, column i and column 
j are forbidden to form a base pair. The pairing 
threshold, η, used in RSpredict is calculated as 
follows.

It is known that, on average, 54% of the 
nucleotides in an RNA sequence S are involved 
in the base pairs of its secondary structure.22 We 
use this information to calculate an alignment-
dependent pairing threshold, observing that the 
base pairs in the consensus secondary structure 
of a sequence alignment represent the column 
pairs with the highest covariance scores. Given 
that different structures contain different num-
bers of base pairs, we consider two different 
percentages of columns, namely, 30% and 65%, 
in the sequence alignment. For each percent-
age p, there are at most Tp possible base pairs, 
where

 T
p n p n

P = × × × −( ) ( )1

2
 (14)

and n is the number of columns in the sequence 
alignment.

Now, we calculate the covariance scores of all 
pairs of columns in the given refi ned alignment, 
and sort the covariance scores in descending 
order. We then select the top Tp largest covariance 
scores and store the covariance scores in the set 
STp. Thus, the set ST0.65 contains the top larg-
est covariance scores that involve 65% of the 
columns in the refi ned alignment; the set ST0.30 
contains the top largest covariance scores that 
involve 30% of the columns in the refi ned align-
ment; and ST0.65\ST0.30 is the set difference that 
contains covariance scores in ST0.65 but not in 
ST0.30 (see Fig. 4). The pairing threshold η used 
in RSpredict is calculated as the average of the 

T0.30

ST0.30

T0.65

ST0.65

Figure 4. Illustration of the pairing threshold computation. The pairing 
threshold used in RSpredict is computed as the average of the 
covariance scores inside the red shaded area.
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covariance scores in ST0.65\ST0.30, as shown in 
Equation (15):

 η =
∑

∈
Cov

ST ST

ij
Cov ST STij ( \ )

\
. .

. .

0 65 0 30

0 65 0 30

 (15)

where the denominator is the cardinality of the set 
difference ST ST0 65 0 30. . .\

If the covariance score of columns i and j is 
greater than or equal to η, then column i and 
column j can possibly form a base pair, and we 
refer to (i, j) as a pairing column. If the covariance 
score of the columns i and j is less than η, we will 
check the covariance scores of the immediate 
neighboring column pairs of i, j to see if they are 
above a user-defi ned threshold20 (in the study pre-
sented here, this threshold is set to 0). The imme-
diate neighboring column pairs of i, j are i + 1, j −1 
and i − 1, j + 1. If the covariance scores of both of 
the immediate neighboring column pairs of i, j are 
greater than or equal to max{η, 0}, then (i, j) is 
still considered as a paring column.

Algorithms for RSpredict
Given a refi ned multiple sequence alignment A with 
N sequences, let (i, j) be a pairing column in A. Let 
X Yi

S
j
S( , respectively) be the nucleotide at position 

i (j, respectively) of the sequence S in the alignment 
A. ( , )X Yi

S
j
S  must be the exterior pair of some loop 

L in S. We use e X Yi
S

j
S( , )  to represent the free 

energy of that loop L. If ( , )X Yi
S

j
S  is a nonstandard 

base pair, e X Yi
S

j
S( , )  = 0. We assign the pairing 

column (i, j) a pseudo-energy value eij where

 e
N

e X Y c Covij i
s

j
s

ij
s A

= + ×∑
∈

1
2( , )  (16)

Here, c2 is a user-defi ned coeffi cient (in the 
study presented here, c2 = −1). Thus, every pairing 
column in the refi ned alignment A has a pseudo-
energy value. We then apply the minimum normal-
ized energy folding algorithm described in the 
beginning of this section to the refi ned alignment A, 
treating each pairing column in A as a possible base 
pair considered in the folding algorithm.

Notice that when calculating the normalized 
energy for the loop L, the sequence S is in the 
refi ned alignment A, which may have fewer columns 
than the original input alignment Ao (cf. Fig. 2). 
RSpredict computes all normalized energies based 

on the refi ned alignment, and the program uses loop 
lengths from the refi ned alignment A rather than the 
original input alignment Ao. Let R be the consensus 
secondary structure, computed by RSpredict, for 
the refi ned alignment A. We obtain the consensus 
structure Ro of the original input alignment Ao by 
inserting unpaired gaps to the positions in R whose 
corresponding columns are deleted when getting A 
from Ao (cf. Fig. 2). The following summarizes the 
algorithms for RSpredict:
1. Input an alignment Ao in FASTA or ClustalW 

format.
2. Delete the columns with more than 75% gaps 

from Ao to obtain a refi ned alignment A.
3. Compute the pseudo-energy eij for every pair-

ing column (i, j) in A as in Equation (16).
4. Run the minimum normalized energy folding 

algorithm on A, using the pseudo-energy values 
obtained from Step (3) to produce the consensus 
secondary structure R of the refi ned align-
ment A. The base at position i of the consensus 
secondary structure R is the most frequently 
occurring nucleotide, excluding gaps, in the ith 
column of the refi ned alignment A.

5. Map the consensus structure R back to the 
original alignment Ao by inserting unpaired 
gaps to the positions of R whose corresponding 
columns are deleted in Step (2).

Notice that Equation (6) is used to compute the 
NE values only. To generate the optimal structure R 
in Step (4), we maintain a stack of pointers that point 
to the substructures of loops with minimum normal-
ized energy as we compute the NE values. Once all 
the NE values are calculated and the normalized 
energy of the optimal secondary structure R is 
obtained, we pop up the pointers from the stack to 
extract the optimal predicted structure. In Step (5), 
we map the bases (base pairs, respectively) for the 
columns (column pairs, respectively) in A to their 
corresponding columns (column pairs, respectively) 
in Ao. For example, consider Figure 2 again. In the 
fi gure, the refi ned alignment A is obtained by delet-
ing column 4 from the original input alignment Ao. 
The bases for columns 1, 2, 3, 4 in A are mapped to 
columns 1, 2, 3, 5 in Ao. The base pair between 
column 1 and column 9 in A becomes the base pair 
between column 1 and column 10 in Ao; the base 
pair between column 2 and column 8 in A becomes 
the base pair between column 2 and column 9 in Ao. 
An unpaired gap is inserted to the position corre-
sponding to the deleted column 4 in Ao.
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Let N be the number of sequences and no be the 
number of columns in the input alignment Ao. 
Step (2) takes O(Nno) time and space. Step (3) takes 
O n( )o

2  time and space. Step (4) takes O n( )o
3  time 

and O n( )o
2  space. Step (5) takes O(no) time and 

space. Therefore, the time complexity of RSpredict 
is O Nn n( ),o + o

3  which is approximately O n( )o
3  as 

N is usually much smaller than no, and the space 
complexity of RSpredict is O Nn n( ),o o+ 2  which is 
approximately O n( ).o

2

Results
We conducted a series of experiments to evaluate 
the performance of RSpredict and compared it with 
three related tools including KNetFold, Pfold and 
RNAalifold. We tested these tools on Rfam23 
sequence alignments with different similarities. The 
Rfam sequence alignments come with consensus 
structures. For evaluation purposes, we used the 
Rfam consensus structures as reference structures 
and compared them against the consensus struc-
tures predicted by the four tools. The similarity of 
a sequence alignment is determined by the average 
pairwise sequence identity (APSI) of that align-
ment. In the study presented here, a sequence 
alignment is of high similarity if its APSI value is 
greater than 75%, is of medium similarity if its 
APSI value is between 55% and 75%, or is of low 
similarity if its APSI value is less than 55%. 
The data sets used in testing included 20 Rfam 
sequence alignments of high similarity and 36 Rfam 
sequence alignments of low and medium similarity. 
These data sets were chosen to form a collection 
of sequence alignments with different (low, medium 
and high) APSI values, different numbers of 
sequences, as well as different sequence alignment 
lengths. More specifi cally, the data sets contained 
sequence alignments that ranged in size from 2 to 
160 sequences, in length from 33 to 262 nucleotides 
and had APSI values ranging from 42% to 99%. 
We also tested the tools on a multiple sequence 
alignment obtained from our study on the Drosophila 
X chromosome.24,25 The Drosophila data set has a 
reference structure, obtained from biochemical and 
other methods that are different from the algorithms 
used in the tools under analysis.

The performance measures used in our study 
include sensitivity (SN) and selectivity (SL),20 where

 
SN

TP

TP FN
=

+  
(17)

 
SL

TP

TP FP
=

+ −( )ξ  
(18)

Here TP is the number of correctly predicted 
base pairs (“true positives”), FN is the number of 
base pairs in a reference structure that were not pre-
dicted (“false negatives”) and FP is the number of 
incorrectly predicted base pairs (“false positives”). 
False positives are classifi ed as inconsistent, con-
tradicting or compatible.20 In predicting the con-
sensus secondary structure for a multiple sequence 
alignment, a predicted base pair (i, j) is inconsistent 
if column i in the alignment is paired with column 
q, q ≠ j, or column j is paired with column p, p ≠ i, 
and p, q form a base pair in the reference structure 
of the alignment. A base pair (i, j) is contradicting 
if there exists a base pair (p, q) in the reference 
structure of the alignment, such that i � p � j � q 
or p � i � q � j. A base pair (i, j) is compatible if 
it is a false positive but is neither inconsistent nor 
contradicting. The ξ in SL represents the number 
of compatible base pairs, which are considered 
neutral with respect to algorithmic accuracy. There-
fore ξ is subtracted from FP. Finally, we used the 
Matthews correlation coefficient (MCC) to 
combine the sensitivity and selectivity, where MCC 
is approximated to the geometric mean of the two 
measures, i.e. MCC SN SL≈ × .  The larger 
MCC, SN, SL values a tool has, the better perfor-
mance that tool achieves and the more accurate 
that tool is.

Performance evaluation on Rfam 
alignments of high similarity
The fi rst data set consisted of seed alignments of 
high similarity taken from 20 families in Rfam. 
The APSI values of these seed alignments ranged 
from 77% to 99%. The alignments ranged in size 
from 2 to 160 sequences and in length from 33 to 
159 nucleotides. Table 1 presents details concern-
ing the 20 families and their seed alignments.

All four tools including RSpredict, KNetFold, 
RNAalifold and Pfold were tested on this data set. 
Table 2 presents the values of Matthews correlation 
coeffi cient (MCC), sensitivity (SN) and selectivity 
(SL), as well as their mean and standard deviation 
for each of the four tools. Figure 5 compares the 
four tools based on these values. We use ROC 
(receiver operating characteristic) plots to simul-
taneously display both sensitivity and selectivity 
for each tool.
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It can be seen from Table 2 and Figure 5 that 
RSpredict performed the best. The Pfold tool had 
good performance in selectivity but did not perform 
well in sensitivity and as a result in Matthews cor-
relation coeffi cient. It also suffered from a size 
limitation (the Pfold web server can accept a mul-
tiple alignment of up to 40 sequences). Only 17 out 
of the 20 sequence alignments used in the experi-
ment were accepted by the Pfold server; the other 
three alignments (RF00386, RF00041 and RF00389) 
had more than 40 sequences and therefore could 
not be run on the Pfold server. RSpredict had stable 
performance with the best mean 0.85 (standard 
deviation 0.16, respectively) in MCC, while the 
other methods’ MCC values varied a lot and had 
means (standard deviations, respectively) ranging 
from 0.71 to 0.82 (0.24 to 0.28, respectively).

Performance evaluation on Rfam 
alignments of medium and low similarity
In the second experiment, we compared RSpredict 
with the other three methods on multiple sequence 

alignments of low and medium similarity. The test 
dataset included seed alignments of 36 families 
taken from Rfam.23 The average pairwise sequence 
identity (APSI) values of the seed alignments 
ranged from 42% to 75%, the number of sequences 
in the alignments ranged from 3 to 114, and the 
alignment lengths ranged from 43 to 262 nucleo-
tides. Table 3 presents details concerning the 
36 families and their seed alignments.

Table 4 presents the values of Matthews cor-
relation coeffi cient (MCC), sensitivity (SN) and 
selectivity (SL), respectively, as well as their mean 
and standard deviation for each of the four tools. 
Figure 6 shows ROC (receiver operating charac-
teristic) plots, which simultaneously display both 
sensitivity and selectivity for each tool.

Comparing Table 2 and Table 4, we see that 
the methods under analysis generally performed 
better on sequence alignments of medium and low 
similarity than on sequence alignments of high 
similarity. RSpredict outperformed the other three 
methods based on the three performance measures 
used in the experiment. The tool achieved a high 

Table 1. The accession number, description, number of sequences, and length of the seed alignment of each of 
the 20 families used in the experiment.

Accession Description Number 
of seqs

Length APSI

RF00460 U1A polyadenylation inhibition element (PIE) 8 75 77%
RF00326 Small nucleolar RNA Z155 8 81 79%
RF00560 Small nucleolar RNA SNORA17 38 132 82%
RF00453 Cardiovirus cis-acting replication element (CRE) 12 33 82%
RF00386 Enterovirus 5’ cloverleaf cis-acting replication element 160 91 83%
RF00421 Small nucleolar RNA SNORA32 9 122 84%
RF00302 Small nucleolar RNA SNORA65 8 130 84%
RF00465 Japanese encephalitis virus (JEV) hairpin structure 20 60 86%
RF00501 Rotavirus cis-acting replication element (CRE) 14 68 87%
RF00041 Enteroviral 3' UTR element 60 123 87%
RF00575 Small nucleolar RNA SNORD70 4 88 89%
RF00362 Pospiviroid RY motif stem loop 16 79 92%
RF00105 Small nucleolar RNA SNORD115 23 82 92%
RF00467 Rous sarcoma virus (RSV) primer binding site (PBS) 23 75 93%
RF00389 Bamboo mosaic virus satellite RNA cis-regulatory element 42 159 93%
RF00384 Poxvirus AX element late mRNA cis-regulatory element 7 62 93%
RF00098 Snake H/ACA box small nucleolar RNA 22 150 93%
RF00607 Small Nucleolar RNA SNORD98 2 67 98%
RF00320 Small nucleolar RNA Z185 2 86 98%
RF00318 Small nucleolar RNA Z175 3 81 99%

The seed alignments of the 20 families from Rfam are of high similarity. Their average pairwise sequence identity (APSI) values are shown 
in the last column of the table.
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mean value of 0.94 in MCC, better than those of 
KNetFold (0.86), Pfold (0.88) and RNAalifold 
(0.89). Similar results were observed for sensitiv-
ity and selectivity values. Furthermore, RSpredict 
exhibited stable performance across all the fami-
lies tested in the experiment. The tool had an 
MCC, SN and SL standard deviation of 0.08, 0.09 
and 0.08, respectively. These numbers were bet-
ter than the standard deviation values obtained 
from the other three methods, which ranged from 
0.12 to 0.25. Due to the restriction on the align-
ment size imposed by the Pfold server, only 27 
alignments out of 36 could be run on Pfold. The 
other nine alignments had more than 40 sequences 

and hence could not be accepted by the Pfold 
server.

Performance evaluation 
on the Drosophila dataset
The male-specifi c lethal (MSL) complex, which 
includes two noncoding RNAs on X (roX1 and roX 2 
RNAs), induces histone H4-Lys16 acetylation for 
twofold hypertranscription of the male X chromo-
some in Drosophila melanogaster.24,25 We applied 
all four methods including RSpredict, KNetFold, 
Pfold and RNAalifold to predicting a common sec-
ondary structure of roX 2 RNA. Among the sequences 
of the roX 2 gene (1.4 kb) found from nine different 

Table 2. The MCC, SN and SL values for each method tested in the experiment with sequence alignments of 
high similarity, as well as the mean and standard deviation of the MCC, SN and SL values for each tool under 
analysis.

KNetFold Pfold RNAalifold RSpredict
Accession MCC SN SL MCC SN SL MCC SN SL MCC SN SL
RF00460 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.71 0.67 1.00 1.00 1.00
RF00326 1.00 1.00 1.00 0.71 0.50 1.00 0.91 0.83 1.00 1.00 1.00 1.00
RF00560 0.95 0.91 1.00 0.00 0.00 0.00 0.95 0.91 1.00 0.83 0.77 0.89
RF00453 0.84 0.70 1.00 0.77 0.60 1.00 0.67 0.60 0.75 0.89 0.80 1.00
RF00386 1.00 1.00 1.00 N/A N/A N/A 0.97 0.97 0.97 1.00 1.00 1.00
RF00421 0.79 0.83 0.76 0.81 0.70 0.94 0.79 0.83 0.76 0.79 0.83 0.76
RF00302 0.77 0.75 0.80 0.92 0.84 1.00 0.98 0.97 1.00 0.94 0.91 0.97
RF00465 0.50 0.39 0.64 0.31 0.28 0.36 0.29 0.28 0.31 0.59 0.56 0.63
RF00501 0.12 0.12 0.12 0.54 0.29 1.00 0.94 0.88 1.00 0.78 0.71 0.86
RF00041 0.98 0.97 1.00 N/A N/A N/A 0.95 0.90 1.00 0.82 0.79 0.85
RF00575 0.71 0.77 0.65 0.85 0.73 1.00 0.48 0.55 0.41 0.84 0.82 0.86
RF00362 0.77 0.78 0.75 0.72 0.65 0.79 0.74 0.74 0.74 0.89 0.87 0.91
RF00105 0.47 0.44 0.50 0.60 0.44 0.80 0.60 0.44 0.80 0.50 0.44 0.57
RF00467 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00389 0.61 0.53 0.71 N/A N/A N/A 0.38 0.39 0.36 0.51 0.50 0.51
RF00384 0.94 0.94 0.94 0.77 0.59 1.00 0.94 0.94 0.94 0.91 0.82 1.00
RF00098 0.95 0.90 1.00 0.32 0.15 0.67 0.40 0.36 0.45 0.69 0.67 0.72
RF00607 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00320 0.91 0.83 1.00 0.82 0.67 1.00 0.91 0.83 1.00 1.00 1.00 1.00
RF00318 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0.82 0.79 0.84 0.71 0.61 0.86 0.78 0.76 0.81 0.85 0.82 0.88
Std. Dev. 0.24 0.25 0.23 0.28 0.31 0.28 0.24 0.24 0.24 0.16 0.18 0.16

The best MCC value for each family, and the best mean and standard deviation are highlighted in bold. Note that only 17 out of the 20 
sequence alignments in this experiment were accepted as input to the Pfold server. The other three (RF00386, RF00041 and RF00389) had 
more than 40 sequences and therefore could not be run on the server. Note also that RSpredict has the best standard deviation in MCC, 
SN and SL respectively compared with the other three tools. This shows that RSpredict has stable performance across all the families tested 
in the experiment.
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Drosophila species, an evolutionarily conserved 
functional domain (71 nt) was characterized and 
predicted as a stem-loop structure by RSpredict, 
KNetFold and RNAalifold respectively (Figs. 7a, 7b 
and 7d respectively). This result affi rmed what our 
lab experiments revealed.24 Pfold predicted a less 
accurate structure with a shorter stem (Fig. 7c).

Discussion
In this paper we presented a software tool, called 
RSpredict, capable of predicting the consensus sec-
ondary structure for a set of aligned RNA sequences 
via pseudo-energy minimization. Our experimen-
tal results showed that RSpredict is competitive 
with some widely used tools including RNAali-
fold and Pfold on tested datasets, suggesting that 
RSpredict can be a choice when biologists need 
to predict RNA secondary structures of multiple 
sequence alignments. Notice that RSpredict differs 
from our previously developed KNetFold20 in that 
KNetFold is a machine learning method that relies 
on pre-compiled training data derived from exist-
ing RNA secondary structures. RSpredict, on the 
other hand, is based on a dynamic programming 

algorithm for folding sequences and does not 
utilize training data.

RSpredict adopts the normalized energy concept 
originated from Densityfold, whose web server is 
named alteRNA.5 We described the difference 
between RSpredict and Densityfold in the begin-
ning of the Introduction section. Unlike RSpredict 
that predicts consensus structures for multiple 
sequence alignments, alteRNA predicts secondary 
structures for single sequences. Thus, one cannot 
do a direct comparison of performance between 
the two tools. We implemented the idea in alteRNA 
in a program that uses the same covariance scores 
as RSpredict to predict consensus structures for 
multiple sequence alignments. The performance 
of this program is inferior to those of the four tools 
studied in the paper.

RSpredict contains two user-defi ned parameters, 
c1 in Equation (12) and c2 in Equation (16). In the 
study presented here, both c1 and c2 were fi xed 
at −1. Changing the value of c1 or c2 would affect 
the accuracy of the predicted structure. More 
specifi cally, when c1 is smaller than -1, the accuracy 
degrades slowly. When c1 is set to 0, the predicted 
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Figure 5. Comparison of the SN and SL values of the four tools under analysis on the seed alignments of high similarity taken from the 20 
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Table 3. The accession number, description, number of sequences, and length of the seed alignment of each of 
the 36 families used in the experiment.

Accession Description Number
of seqs

Length APSI

RF00230 T-box leader 103 262 42%
RF00080 yybP-ykoY leader 50 131 44%
RF00515 PyrR binding site 72 125 47%
RF00557 Ribosomal protein L10 leader 66 149 48%
RF00504 Glycine riboswitch 93 111 50%
RF00029 Group II catalytic intron 114 94 52%
RF00458 Cripavirus internal ribosome entry site (IRES) 7 203 54%
RF00559 Ribosomal protein L21 leader 33 81 54%
RF00234 glmS glucosamine-6-phosphate activated ribozyme 11 218 55%
RF00556 Ribosomal protein L19 leader 24 43 55%
RF00519 suhB 13 80 56%
RF00379 ydaO/yuaA leader 25 150 58%
RF00380 ykoK leader 36 172 59%
RF00445 mir-399 microRNA precursor family 13 119 59%
RF00522 PreQ1 riboswitch 22 47 59%
RF00095 Pyrococcus C/D box small nucleolar RNA 25 59 60%
RF00442 ykkC-yxkD leader 11 111 60%
RF00430 Small nucleolar RNA SNORA54 5 134 60%
RF00521 SAM riboswitch (alpha-proteobacteria) 12 79 61%
RF00049 Small nucleolar RNA SNORD36 20 82 63%
RF00513 Tryptophan operon leader 11 100 63%
RF00309 Small nucleolar RNA snR60/Z15/Z230/Z193/J17 23 106 63%
RF00451 mir-395 microRNA precursor family 21 112 64%
RF00464 mir-92 microRNA precursor family 33 80 64%
RF00507 Coronavirus frameshifting stimulation element 23 85 66%
RF00388 Qa RNA 5 103 70%
RF00357 Small nucleolar RNA R44/J54/Z268 family 19 105 70%
RF00434 Luteovirus cap-independent translation element (BTE) 17 108 71%
RF00525 Flavivirus DB element 111 76 71%
RF00581 Small nucleolar SNORD12/SNORD106 8 91 71%
RF00238 ctRNA 48 88 72%
RF00477 Small nucleolar RNA snR66 5 105 72%
RF00608 Small Nucleolar RNA SNORD99 3 80 72%
RF00468 Hepatitis C virus stem-loop VII 110 66 74%
RF00489 ctRNA 14 80 74%
RF00113 QUAD RNA 14 150 75%
The seed alignments of the 36 families from Rfam are of low and medium similarity. Their average pairwise sequence identity (APSI) values 
are shown in the last column of the table.
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Table 4. The MCC, SN and SL values for each method tested in the experiment with sequence alignments of 
low and medium similarity, as well as the mean and standard deviation of the MCC, SN and SL values for each 
tool under analysis.

KNetFold Pfold RNAalifold RSpredict
Accession MCC SN SL MCC SN SL MCC SN SL MCC SN SL
RF00230 0.76 0.71 0.82 N/A N/A N/A 0.69 0.60 0.79 0.83 0.83 0.83
RF00080 0.87 0.91 0.83 N/A N/A N/A 0.90 0.81 1.00 0.97 0.94 1.00
RF00515 0.84 0.71 1.00 N/A N/A N/A 0.81 0.66 1.00 0.96 0.93 1.00
RF00557 1.00 1.00 1.00 N/A N/A N/A 0.97 0.94 1.00 0.97 0.94 1.00
RF00504 0.93 0.91 0.95 N/A N/A N/A 0.93 0.91 0.95 0.93 0.91 0.95
RF00029 1.00 1.00 1.00 N/A N/A N/A 1.00 1.00 1.00 1.00 1.00 1.00
RF00458 0.51 0.34 0.75 0.94 0.91 0.98 0.97 0.95 0.98 0.76 0.77 0.74
RF00559 0.71 0.67 0.75 0.94 0.89 1.00 0.78 0.61 1.00 0.91 0.83 1.00
RF00234 0.92 0.84 1.00 0.94 0.89 1.00 0.97 0.97 0.97 1.00 1.00 1.00
RF00556 0.89 0.80 1.00 0.89 0.80 1.00 0.89 0.80 1.00 0.89 0.80 1.00
RF00519 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00379 0.98 0.96 1.00 0.96 0.92 1.00 0.98 0.96 1.00 0.94 0.92 0.96
RF00380 0.83 0.81 0.85 0.86 0.79 0.93 0.84 0.81 0.87 0.82 0.79 0.84
RF00445 1.00 1.00 1.00 0.94 0.89 1.00 0.96 0.93 1.00 1.00 1.00 1.00
RF00522 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00095 0.82 0.67 1.00 0.82 0.67 1.00 0.00 0.00 0.00 1.00 1.00 1.00
RF00442 1.00 1.00 1.00 0.97 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00430 0.97 0.93 1.00 1.00 1.00 1.00 0.98 0.97 1.00 0.93 0.93 0.93
RF00521 1.00 1.00 1.00 0.83 0.83 0.83 1.00 1.00 1.00 1.00 1.00 1.00
RF00049 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00513 0.83 0.83 0.83 0.63 0.54 0.72 0.91 0.83 1.00 0.84 0.75 0.95
RF00309 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00451 0.97 0.97 0.97 0.62 0.53 0.73 0.86 0.80 0.92 1.00 1.00 1.00
RF00464 0.94 0.88 1.00 0.53 0.35 0.82 0.94 0.88 1.00 0.92 0.85 1.00
RF00507 1.00 1.00 1.00 0.90 0.82 1.00 0.95 0.91 1.00 1.00 1.00 1.00
RF00388 1.00 1.00 1.00 0.91 0.82 1.00 1.00 1.00 1.00 0.99 0.97 1.00
RF00357 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00434 0.70 0.62 0.78 0.50 0.45 0.57 0.82 0.76 0.88 0.85 0.79 0.92
RF00525 0.94 0.89 1.00 N/A N/A N/A 0.94 0.89 1.00 0.92 0.94 0.89
RF00581 0.94 0.89 1.00 0.94 0.89 1.00 1.00 1.00 1.00 0.94 0.89 1.00
RF00238 1.00 1.00 1.00 N/A N/A N/A 0.91 0.83 1.00 0.89 0.83 0.95
RF00477 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00
RF00608 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF00468 0.65 0.65 0.65 N/A N/A N/A 0.94 0.94 0.94 0.65 0.65 0.65
RF00489 0.96 0.92 1.00 0.92 0.85 1.00 0.96 0.92 1.00 0.96 0.92 1.00
RF00113 0.85 0.83 0.87 0.79 0.79 0.79 0.98 0.96 1.00 0.98 0.96 1.00
Mean 0.86 0.83 0.89 0.88 0.84 0.94 0.89 0.85 0.93 0.94 0.92 0.96
Std. Dev. 0.24 0.25 0.24 0.15 0.18 0.12 0.23 0.24 0.23 0.08 0.09 0.08

The best MCC value for each family, and the best mean and standard deviation are highlighted in bold. Note that RSpredict has the best 
standard deviation in MCC, SN and SL respectively compared with the other three tools. This shows that RSpredict has stable performance 
across all the families tested in the experiment.
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consensus structures are less accurate than when c1 
is set to −1. This shows the impact that confl icting 
sequences in an alignment have on consensus 
structure prediction, since when c1 is 0, there is no 
weight for the confl icting sequences in covari-
ance score calculation. When c1 is set to a positive 
number, RSpredict generates less accurate consen-
sus structures. The same behavior was observed for 
c2. In practice, if a few more base pairs are predicted 
or omitted, given that all the others are in the right 
places, the predicted structure would not be optimal, 
i.e. its pseudo-energy would not be minimized.  A tool 
predicting fewer base pairs would have a lower 
sensitivity value whereas a tool predicting more 
base pairs might have a lower selectivity value.

It was observed that the accuracy of the 
consensus structures produced by RSpredict varies 
with sequence lengths, though there is no clear 
trend between the accuracy and the lengths. For 
example, referring to Tables 3 and 4, the seed align-
ment of RF00230 (RF00559 and RF00468, 
respectively) has a length of 262 nt (81 nt and 66 nt, 

respectively) and MCC value of 0.83 (0.91 and 
0.65, respectively), showing no direct relationship 
between the alignment length and the MCC.

Finally, we compared the computational time 
required by the four tools studied in the paper. Pfold 
and KNetFold are available as web servers. We 
submitted the same multiple alignments having a 
length of 100 nt, 200 nt and 300 nt, respectively to 
each of the four web servers. Results were reported 
back by KNetFold (Pfold, RNAalifold, RSpredict, 
respectively) in 605, 660, 1125 seconds (10, 15, 
33 seconds, 9, 10, 11 seconds, 9, 19, 76 seconds, 
respectively). While the speed of a web server also 
depends on network traffi c and server workload, 
these timing data give an estimate of how fast each 
tool can run. The RSpredict program needs 0.3 MB 
RAM (1.3 MB and 2.9 MB, respectively) to perform 
the computation for the input alignment whose 
length is 100 nt (200 nt and 300 nt, respectively) 
measured on a PC with Intel(R) Core(TM)2 Duo CPU 
(2.19 GHz/ 2.00 GB RAM/Microsoft Windows XP). 
The RSpredict web server can accept multiple 
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Figure 6. Comparison of the SN and SL values of the four tools under analysis on the seed alignments of low and medium similarity taken 
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alignments with at most 200 sequences in size and 
at most 500 nucleotides in length, though the down-
loadable version does not have this restriction.

All the four tools studied in this paper take mul-
tiple sequence alignments as input data. We are 
looking into algorithms for enhancing the quality of 
multiple sequence alignments so as to improve on 
secondary structure prediction. One approach is to 
take into consideration the effect of base-pair 
covariation in the alignment process, like the Murlet 
tool.26 There are other approaches for obtaining bet-
ter sequence alignments. For example, BlockMSA27 
uses a combination of a biclustering algorithm and 
a divide-and-conquer technique. Groups of similar 
sequences are found and subsequences within them 
are locally aligned. The fi nal alignment is obtained 
by dividing both the set of sequences and their con-
tents.27 Other ways to improve the prediction accu-
racy include the utilization of evolutionary 
information, more sophisticated models of covari-
ance scoring, and training data for more accurate 
pairing thresholds. Finally, by integrating our previ-
ously developed RADAR server6 with RSpredict, 
we plan to offer our software as a suite of tools to 
the user as done in some recent work.28
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