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Abstract: Estrogen is a well-known risk factor for breast cancer. Current models of breast cancer risk prediction are based 
on cumulative estrogen exposure but do not directly refl ect mammary estrogen metabolism or address genetic variability 
between women in exposure to carcinogenic estrogen metabolites. We are proposing a mathematical model that forecasts 
breast cancer risk for a woman based on three factors: (1) estimated estrogen exposure, (2) kinetic analysis of the oxidative 
estrogen metabolism pathway in the breast, and (3) enzyme genotypes responsible for inherited differences in the production 
of carcinogenic metabolites. The model incorporates the main components of mammary estrogen metabolism, i.e. the con-
version of 17β-estradiol (E2) by the phase I and II enzymes cytochrome P450 (CYP) 1A1 and 1B1, catechol-O-methyltransferase 
(COMT), and glutathione S-transferase P1 (GSTP1) into reactive metabolites, including catechol estrogens and estrogen 
quinones, such as E2-3,4-Q which can damage DNA. Each of the four genes is genotyped and the SNP data used to derive 
the haplotype confi guration for each subject. The model then utilizes the kinetic and genotypic data to calculate the amount 
of E2-3,4-Q carcinogen as ultimate risk factor for each woman. The proposed model extends existing models by combining 
the traditional “phenotypic” measures of estrogen exposure with genotypic data associated with the metabolic fate of E2  as 
determined by critical phase I and II enzymes. Instead of providing a general risk estimate our model would predict the risk 
for each individual woman based on her age, reproductive experiences as well as her genotypic profi le.
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Introduction
Estrogens have long been recognized as the primary risk factor for the development of breast cancer.1,2 
Epidemiologic studies have indicated that breast cancer risk is higher in women with early menarche 
and late menopause, who have longer exposure to estrogens.3 A pooled analysis of nine prospective 
studies found that circulating estrogen levels were directly related to risk of breast cancer in postmeno-
pausal women.4 Based on these data, current models of breast cancer risk prediction are mainly based 
on cumulative estrogen exposure and include such factors as age, age at menarche, and age at fi rst live 
birth;5,6 (www.cancer.gov/bcrisktool). While all these studies implicate estrogens as risk factor for the 
development of breast cancer, they leave open two important questions that need to be answered to 
advance from an empirical, global risk assessment to a truly etiological, individualized assessment. The 
questions are: (1) How do estrogens cause breast cancer? and (2) Since all women are exposed to estro-
gens, how do we better delineate risk? To close these gaps in our knowledge we need to explain 
mechanisms of estrogen carcinogenesis and inter-individual risk variation and our approach is to exam-
ine the dynamics of a pathway for estrogen metabolism and use its prediction of the level of DNA 
corrupting compounds as a predictor of breast cancer risk.

Carcinogenesis is usually viewed as a stepwise process beginning with genotoxic effects (initiation) 
followed by enhanced cell proliferation (promotion). The main estrogen, 17β-estradiol (E2 ), is a substrate 
for the phase I enzymes, cytochrome P450 (CYP) 1A1 and 1B1 and a ligand for the estrogen receptor. 
In its dual role of substrate and ligand, E2 has been implicated in the development of breast cancer by 
simultaneously causing DNA damage via its oxidation products, the 2-OH and 4-OH catechol estrogens, 
and by stimulating cell proliferation and gene expression via the estrogen receptor. Thus, E2 and its oxidative 
metabolites are unique carcinogens that affect both tumor initiation and promotion.7–9

As shown in Figure 1, E2 is oxidized to catechol estrogens by CYP1A1 and CYP1B1. These enzymes 
further oxidize the catechol estrogens to semiquinones and quinones. The highly reactive estrogen 
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quinones form Michael addition products with 
deoxyribonucleosides.10–12 Thus, estrogen quinones 
share a common feature of many chemical 
carcinogens, i.e. the ability to covalently modify 
DNA.13–16 Furthermore, estrogen semiquinones 
and quinones undergo redox-cycling, which results 
in the production of reactive oxygen species that 
can cause oxidative DNA damage.17–19

Support for the carcinogenic activity of 
estrogens and their oxidative products, the cate-
chol estrogens, comes from experiments in animal 
models. Treatment with either E2 or the 2-OH or 
4-OH catechol estrogens caused kidney cancer in 
male Syrian hamsters and endometrial cancer in 
female CD1 mice, the latter compounds being the 
most carcinogenic agents.20–22 However, there is 
no animal model for estrogen-induced breast 
cancer and even in the hamster and mouse models 
the precise mechanism of DNA damage is 
uncertain. Thus, there is a need to understand 
estrogen metabolism in the human breast in order 
to elucidate the role of endogenous and exogenous 
estrogens in mammary carcinogenesis. To advance 
this understanding requires not only characterization 
of the various estrogen metabolites but equally 
important, a precise defi nition of the responsible 
enzymes. Several investigators have proposed a 
qualitative model of mammary estrogen 
metabolism regulated by oxidizing phase I and 
conjugating phase II enzymes.23,24 The oxidative 
estrogen metabolism pathway starts with E2 and 
E1, which are oxidized to the 2-OH and 4-OH 
catechol estrogens by the phase I enzymes 
CYP1A1 and CYP1B1.25,26 As described above, 
the P450-mediated estrogen metabolism is 
expected to lead to the formation of both estrogen 
and oxidative DNA adducts, all of which have 
been shown to possess mutagenic potential.27,28 It 
is postulated that the genotoxicity of the oxidative 
estrogen metabolism pathway is mitigated 
by alternate reactions of the metabolites with 
phase II enzymes. Specifi cally, catechol-O-methyl 
transferase (COMT) catalyzes the methylation of 
catechol estrogens to methoxy estrogens, which 
lowers the catechol estrogens available for 
conversion to estrogen quinones.29,30 In turn, 
the estrogen quinones undergo conjugation 
with glutathione (GSH) via the catalytic action 
of glutathione S-transferase GSTP1.31,32 The 
formation of GSH-estrogen conjugates would 
reduce the level of estrogen quinones and thereby 
lower the potential for DNA damage.

The current models of mammary estrogen 
metabolism have limitations. Firstly, only single 
enzymes, e.g. CYP1B1 and COMT, have been 
analyzed to date with simple substrate-product 
kinetics, which clearly generates an incomplete 
picture of the metabolic pathway. Secondly, while 
the model incorporates the functional roles of the 
phase I and II enzymes, it does so only qualitatively 
and it remains uncertain how the enzymes interact 
quantitatively. Third, each of the phase I and II 
enzymes contains genetic polymorphisms.26,29,33,34 
Studies from several laboratories have examined 
the functional implications of the polymorphisms 
on estrogen metabolism, again focusing on single 
enzymes.26,29,30,35,36 Thus, the multitude of potential 
kinetic reactions resulting from the complex 
genetic variations of the phase I and II enzymes is 
completely outside the scope of the current model 
of estrogen metabolism. In contrast to the relatively 
small number of functional studies of estrogen 
metabolism, multiple epidemiological studies have 
investigated breast cancer risk in relation to genetic 
variation in the critical enzymes involved in 
estrogen metabolism with inconsistent fi ndings.37,38 
A drawback of any purely genetic assessment is 
the lack of information about functional interactions 
inherent in complex metabolic pathways such as 
the estrogen metabolism pathway. Thus, such 
studies cannot assess the underlying metabolic 
interactions in the pathway.39,40 A pathway-based 
functional and quantitative approach is necessary 
to overcome the current limitation in genotype 
assessment.

We have developed an experimental in vitro 
model of mammary estrogen metabolism, in which 
we combined purified, recombinant phase I 
enzymes CYP1A1 and CYP1B1 with the phase II 
enzymes COMT and GSTP1 to determine how E2 
is metabolized.41 We employed both gas and liquid 
chromatography with mass spectrometry (GC/MS 
and LC/MS) to measure the parent hormone E2 as 
well as eight metabolites, i.e. the catechol estrogens, 
methoxyestrogens, and estrogen-GSH conjugates. 
With this important experimental data, an in silico 
model of the metabolic pathway has been 
developed.42

Methods
A mathematical model for the estrogen metabo-
lism pathway that is shown in Figure 1 can 
be constructed using some basic assumptions 
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Figure 1. Oxidative estrogen metabolism causes DNA adduct formation. The estrogen metabolism pathway is regulated by oxidizing phase I 
and conjugating phase II enzymes. CYP1A1 and CYP1B1 catalyze the oxidation of E2 to catechol estrogens 2-OHE2 and 4-OHE2. The 
catechol estrogens are either methylated by COMT to methoxyestrogens (2-MeOE2, 2-OH-3-MeOE2, 4-MeOE2) or further oxidized by CYPs 
to semiquinones (E2-2,3-SQ, E2-3,4-SQ) and quinones (E2-2,3-Q, E2-3,4-Q). The estrogen quinones are conjugated by GSTP1 to GSH-
conjugates (2-OHE2-1-SG, 2-OHE2-4-SG, 4-OHE2-2-SG). Alternatively, the quinones can form quinone-DNA adducts (e.g. 4-OHE2-N7-guanine, 
2-OHE2-N2-deoxyguano sine) or cause oxidative adducts (e.g. 8-OH-deoxyguanosine) via reactive oxygen species resulting from redox-
cycling between semiquinones and quinones. The three adducts and their estrone (E1) and adenine counterparts have been identifi ed in 
human breast tissues.56,57 Recently, we demonstrated experimentally that CYP1B1-mediated oxidation of E2 in the presence of deoxyguano-
sine caused the formation of the 4-OHE2-N7-guanine adduct.48 Our results provide direct evidence that metabolism of the parent hormone 
can initiate DNA damage.
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about the kinetics of the reactions in this 
figure. We assume that each reaction in the 
pathway (A B→ , a generic step in the pathway) 
is an enzyme-catalyzed reaction of the form: 
A E

k

k
C

k
B E+ +⎯ →⎯← ⎯⎯ ⎯ →⎯1

2

3  where E  denotes  the 
enzyme, C is the enzyme-substrate complex, and 
ki, i = 1,2,3, are the rate constants of the reaction. 
For these types of reaction we approximate the 
kinetics using the quasi-steady state assumption:
C E A K A K k k km m= + = +* ( ), ( ) ,2 3 1  where E* is 
the initial enzyme concentration. We can “prove” 
this approximation by looking at the differential 
equations for A E C B E

k

k
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conservation laws:
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With the conservation laws, we can reduce the 
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We now assume that the reaction has progressed 
to the state that
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Hence, the formation of B(t) is approxi-
mately given by dB dt k E A K Am≈ +( ) =3 0  
k E A K Acat m* ( )+  where  kcat = k3 and E* = E0 is the 
initial enzyme level.

More information about the quasi-steady 
state approximation can be found in Parl et al.43 
Using this approach for the individual reactions 
in Figure 1, we can write down to a system of 
nonlinear, ordinary differential equations for 
the concentrations of the compounds in the 
pathway:
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Here kcat j
 and Kmj

 are constants and Eenzyme are 
the enzyme levels in the reactions. There are parts 
of the pathway for which kinetic data is not available. 
In particular, rate constants are not known for the 
reactions: 2 2 3 2 32 2 2- - - - -OHE E SQ E Q→ →, ,  and 
4 3 4 3 42 2 2- - - - -OHE E SQ E Q→ →, ,  reactions. Our 
fi rst simplifi cation is to collapse these reaction 

to single reactions, 2 2 32 2- - -OHE E Q→ ,  and
4 3 42 2- - -OHE E Q→ , ,  respectively. The next 
simplification is to assume that each of these 
quinone production reactions ( )OHE EQk ij

2 2→  
satisfy dynamics of the form: dEQ dtij

2 =  
V OHE K OHE

Q Q

k
m

k
max ( ) ( )2 2

σ σ+  where   V
Qmax ,  

KmQ
 and σ are constants. For the mathematical 
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model to be a tractable computational model of the 
metabolism pathway, it is necessary to have 
estimates of these unknown constants. We next 
look at a technique for estimating α β, , ,maxV

Q1
 

V K
Q mQmax , ,

2 1 and KmQ2
.

Experimental values for rate constants of the 
CYP1A1, CYP1B1, COMT, and GSTP1 catalyzed 
reactions are available.26,29,32,41,42 Furthermore, 
the concentrations over time for each non-quinone 
compound in the complete pathway have 
been measured for a particular starting concen-
tration of E2 i.e. E E2 20

0
( ) = .41 Using this data, a 

searching algorithm was written in Mathematica 
(Wolfram Research, Inc.) to fi nd values for V

Qmax , 
KmQ

 and σ  in each of the two quinones reac-
tions that fi t the experimental data in a certain 
metric using numerical solutions of the differen-
tial equation system. The constants, α β, , ,maxV

Q1

V K
Q mQmax , ,

2 1
 and KmQ2

, were obtained in this 
manner.

Results
Figure 2 shows comparisons between the model 
(solid curves) and the data41 over a simulation 
covering 30 minutes for some of the components 
in the pathway. These simulations used the esti-
mates for α β, , ,maxV

Q1
  V K

Q mQmax , ,
2 1  and KmQ2

 calcu-
lated above as well as the published values of the 
other kinetic parameters. In the simulations of the 
pathway it was assumed that initially all quantities 
are zero, except for E E2 20

0
( ) = . Enzyme concentra-

tions used in the simulation are consistent with 
those reported previously.41

Having all of the parameters of the system, one 
can view the model as giving functional relations 
between E2(t) and the estrogen quinone concentra-
tions: EQ t2

23( )  and EQ t2
34 ( ). Figure 3 shows the 

time-wise buildup and decay of the estrogen 
quinones. In an attempt to give a simple measure 
of the quinone concentrations over the course of 
time, we introduce the Area Under the Curve (AUC) 
metric: AUC EQ t dk

kT= ∫ 20
( )  where k = 23, 24 and 

T = 30 min. It is possible to introduce other mea-
sures e.g. EQ EQ tij

t T

ij
2

0
2max max ( )=

≤ ≤
 which is the highest 

concentration achieved during the time interval 
[0, T]. We have chosen the AUC metric because it 
incorporates both concentration level and time.

The mathematical model for the estrogen metab-
olism pathway provides a relationship between an 
input E2 and two outputs AUC23 and AUC24. It can 
also be view as connecting the area under the curve 
outcomes to the kinetic parameters, kcat and Km, 
embedded in the model. The model permits one to 
analyze the behavior of the area under curve vari-
ables as functions of the kinetic parameters, either 
for a single step in the pathway or a combination 
of steps. This analysis allows one to view how 
variations in the kinetic parameters, which are the 
result of polymorphism of the enzymes, affect the 
area under the curve outcomes.

Each of the phase I and II enzymes involved in 
estrogen metabolism possesses genetic variants that 
(a) are associated with altered enzyme function and 
(b) occur in a sizable portion of the population.38,44 
We and others have determined the enzymatic rate 
constants (kcat and Km) of the common CYP1A1, 

0.8

2-OHE
2

2-OHE
2
-1-SG 2-OHE

2
-4-SG 4-OHE

2
-2-SG

4-OHE
2

4-MeOE
2

0.6

0.4

0.2

1.5

0.5

1
1.5

0.5

0.4

0.20.1
0.01

1

10 20 30
t

10 20 30
t

10 20 30
t

10 20 30
t

10 20 30
t

10 20 30
t

. . .

.
.

. . .

.

.

.
. . .

.

.
.

.

. . .

.

.
.

.
. .

.

. .
.

.
.

Figure 2. Comparison of mathematical model with experimental data. The red curves are plots of the solutions to the nonlinear system of 
differential equations and the blue dots are experimental data.41 As shown, the model allowed simulations of all reactions in the pathway, 
which agreed well with the experimentally determined results.42
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CYP1B1, and COMT variants and compared their 
activity to the respective wild-type enzymes.26,29,32,45,46 
These studies were limited to individual enzyme 
reactions and did not take the entire estrogen 
metabolism pathway into account. To obtain a more 
realistic and inclusive view of estrogen metabolism 
in the female population, we utilized the model to 
simulate how variations in the kinetic parameters 
resulting from polymorphisms of the enzymes 
impact the metabolite concentrations. We examined 
4 CYP1A1, 16 CYP1B1, and 2 COMT alleles. Thus, 
our simulations are based on the examination of 
4.16.2 = 128 genetic combinations to demonstrate 
the utility of the model. Although each of the 
metabolites can be modeled, we concentrated our 
analysis on the catechols and quinones because of 
their documented carcinogenic activity.15,22

Since women may differ in their combination 
of enzyme variants, they will have different rate 
constants, resulting in differences of 4-OHE2 and  
E2-3,4-Q production. As shown in Figure 3 model-
ing of the 128 haplotype combina tions produced a 
spectrum of catechol and quinone concentrations 
over time, as expressed by a range of AUC values. 
The simulations identifi ed the haplotype combina-
tions producing the highest and lowest AUCs. 
For example, the maximum AUCs for 4-OHE2 
and E2-3,4-Q were produced by the haplotype 
CYP1A1461Asn-462Ile CYP1B148Arg-119Ser-432Val-453Asn-
COMT108Met, which were 2.6- and 4.6-fold higher, 
respectively, than the minimum AUCs produced 
by haplotype CYP1A1461Thr-462Val CYP1B148Gly-119Ala-
432Val-453SerCOMT108Val. While 2.6 to 4.6-fold differ-
ences may not appear large, it is important to 
consider that they impact on lifetime exposure, 
which is consistent with the hormonal risk model 
presented by Pike.2

If a subject’s haplotypes can be resolved for all 
genes (i.e. she has at most one heterozygous SNP 
for each gene), then the in silico model can be used 
directly to derive the E2-3,4-Q production, as 
depicted in Figure 4. When a subject’s haplotype 
confi gurations are uncertain for some genes because 
of the presence of two or more heterozygous SNPs 
(e.g. CYP1B1), we fi rst calculate the distribution 
of all haplotype confi gurations using PHASE47 
(stephenslab.uchicago.edu/software.html). Then 
we derive the E2-3,4-Q production value for each 
haplotype confi guration, and calculate the weighted 
average of all E2-3,4-Q production values, using 
the probabilities of haplotype confi gurations as 
weights. It can be shown that this weighted average 
is the expected E2-3,4-Q production given the 
genotypes. This way, we incorporate information 
from all genotyped SNPs and each haplotype con-
fi guration is apportioned appropriately. Application 
of the model to a breast cancer case-control popu-
lation (438 pre- and postmenopausal women with 
221 invasive breast cancer cases and 217 controls) 
defi ned the estrogen quinone E2-3,4-Q as a potential 
breast cancer risk factor. This exploratory analysis 
identifi ed a subset of women at increased breast 
cancer risk based on their enzyme haplotype and 
consequent E2-3,4-Q production.42 Based on the 
E2-3,4-Q AUC values, cases predominated in the 
top tier of the population. For example, among the 
10 women with the highest E2-3,4-Q values in the 
entire study population, there were nine cases and 
one control (p-value = 0.01). These results suggest 
for the fi rst time the possibility that breast cancer 
risk prediction may be enhanced by incorporation 
of inherited differences in estrogen metabolism.

Obviously, the model requires testing and as a 
fi rst step we have examined the contribution of the 

2

4-OHE
2

E
2
-3, 4Q

1

10 20

A B

30
t t

2

1

10 20 30

Figure 3. Kinetic-genomic modeling of catechol estro gen. (A) 4-OHE2 and estrogen quinone (B) E2-3,4-Q using rate constants for wild-type 
and variant CYP1A1, CYP1B1, and COMT. The Area Under the Curve = AUC represents the metabolite production over time. Only the 
highest, lowest, and wild-type (dotted line) AUCs are shown.42
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estrogen concentration on E2-3,4-Q production and 
the associated breast cancer risk. Numerous 
epidemiological studies have implicated estrogens 
in the development of breast cancer.3 For example, 
a pooled analysis of nine prospective studies of 
serum estrogen levels and breast cancer in 2428 
postmenopausal women revealed a strong association 
of serum E2 concentrations with breast cancer risk.4 
The relative risk of breast cancer for women whose 
free E2 levels were in the top quintile was 2.58 
compared with 1.00 for those women whose levels 
were in the bottom quintile. Since the nine studies 
employed different methods to measure, E2, there 
were considerable differences in the median E2 
values reported. In spite of this variability, the 
median serum  E2 concentrations in seven of the nine 
studies were higher in the case patients than in the 
control subjects. To incorporate the different levels 
into our simulations, we introduced a ratio that is 
defi ned as E E Ecase control

2 2 20 0
Ratio = ( ) ( ).  In Table 1, 

we summarized the median E2 values for the nine 
studies as well as the corresponding cases/controls 
E2 ratios, which ranged from 0.91 to 1.34. These 
ratios appear rather narrow and are of unknown 
biological signifi cance. We used the model and our 
study population to determine whether such seem-
ingly small differences in serum  E2 concentrations 
between cases and controls could infl uence mam-
mary estrogen metabolism suffi ciently to cause 
significant differences in the production of the 
carcinogenic E2-3,4-Q. Since serum E2 was not 
measured in our study population, we used the initial 
level E20

 for the cases and controls from the nine 

prospective studies to calculate the E2-3,4-Q AUC 
for the 294 postmenopausal women in our group. 
There were 144 women with breast cancer and 150 
control subjects with average ages of 65.6 and 
64.9 years and average body mass indices of 25.7 
and 26.0 kg/m2, respectively. In our simulations we 
varied the E2 ratio between cases and controls from 
0.91 to 1.34 and calculated the corresponding E2-3,4-Q 
AUC values. As the E E Ecase control

2 2 20 0
Ratio = ( ) ( ).

varied, the fraction of cases in the top E2-3,4-Q AUC 
values of the women also changed. With an  E2 Ratio 
of  0.908 (Rancho Bernardo), only 31 women in the 
top AUC cases and controls had breast cancer com-
pared to 65 women (Washington Country) at 1.06 
(p = 0.037) and 102 (SOF) at 1.34 (p � 0.00001). 
The results of these simulations demonstrate that 
relatively small changes in the concentration of the 
parent hormone E2 result in markedly increased 
production of the carcinogenic estrogen quinone 
metabolite, E2-3,4-Q, which, in turn, is refl ected in 
a higher fraction of women with breast cancer in the 
top tier of our study population. Thus, testing of our 
model with estrogen concentrations reported in the 
literature confi rms the striking infl uence of serum 
E2 concentrations on breast cancer risk. Importantly, 
the model offers a risk assessment of individual 
women by combining the hormone level with the 
genotype.

Discussion
A strength of the in silico model is that it can 
incorporate each woman’s actual lifetime endog-
enous and exogenous estrogen exposures, in 

Haplotype configuration

CYP1A1:h1,1/h1,2

CYP1B1:h2,1/h2,2

COMT:h3,1/h3,2

GSTP1:h4,1/h4,2

In silico model

CYP1A1
kcat1, Km1

Km2kcat2,

kcat1, Km1
Km2kcat2,

kcat1, Km1
Km2

E2-3,4-Q
production

kcat2,

kcat1, Km1
Km2kcat2,

CYP1B1

COMT

GSTP1

Figure 4. Utilization of in silico model to derive E2-3,4-Q production. Each of the four genes is genotyped for all subjects and the SNP 
genotype data used to derive the haploype confi guration for each subject. The model then calculates the E2-3,4-Q production for each 
haplotype confi guration as well as the weighted average of all E2-3,4-Q production values, using the probabilities of haplotype confi gurations 
as weights.
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addition to her genotype, when predicting cumula-
tive E2-3,4-Q exposure. This is schematically 
shown in Figure 5, which displays the interaction 
of estrogens, enzyme genotypes, and resulting 
E2-3,4-Q production as a three-dimensional graph. 
The graph is built on the two-dimensional Figure 3, 
in which we used a fi xed E2 level to model the  
E2-3,4-Q AUC for wild-type and variant enzyme 
genotypes and displayed only the lowest, highest, 
and wild-type E2-3,4-Q AUCs. In the three-dimen-
sional graph, we plot the available genotypes, from 
lowest to highest, separated into quintiles based on 
their respective E2-3,4-Q production. A new com-
ponent in the three-dimensional graph is the 
variation in E2 concentration. As illustrated in 
the overall pathway in Figure 1 and in experi-
mental studies, the input concentration of the parent 
hormone E2 determines the output concen tration of 
the oxidative metabolites, such as 4-OHE2 and 
E2-3,4-Q.26,29,32,45,48 Thus, in the graph we display 
estrogen exposure in quintiles. Estrogen exposure 
can be represented by actual E2 values, measured 
in pmol/L, in combination with semiquantitative 
estimates each woman’s overall exposure to estro-
gen. The latter is derived by taking into account 
her total years of ovulation as a function of current 
age, age at menarche, age at menopause, numbers 
of full-term pregnancies and lactation experience 

for each, and the dosage and duration of the use 
of exogenous estrogens. With regard to exoge-
nous estrogens, all estrogens including equine 
estrogens used in hormone replacement therapy 
are metabolized via the same CYP-mediated 
oxidative pathway to generate catechols and 
quinones, which, in turn, cause DNA damage. 
For example, cell culture experiments showed 
that 4-OH-equilenin via its quinone induced DNA 
damage in breast cancer cell lines and cellular 
transformation in vitro.49,50 Thus, as far as the 
model is concerned, exogenous and endogenous 
estrogens can be combined although their precise 
contribution to estrogen exposure and the produc-
tion of carcinogenic metabolites is presently 
unknown.

In designing Figure 5, we assumed that the dif-
ference in estrogen exposure between individual 
women is no more than twofold, with the quintiles 
1.0, 1.25, 1.5, 1.75, 2.0. We chose this two-fold 
difference based on the range of median serum E2 
values seen in post-menopausal women4 and the 
variation in mammary tissue E2 concentrations.5 
This range is conservative since up to fi vefold 
differences have been reported.52 Regardless of 
the scale used for the estrogen exposure axis, 
the production of carcinogenic E2-3,4-Q would 
be expected to be greater in women with more 

Table 1. Correlation of postmenopausal serum estradiol concentration by study and case-control status with 
breast cancer risk. Controls (m in number) and cases (n in number) are individuals with the top AUC values 
(m + n) in the simulation model. The case-control data is from42 and the E2 Ratio is taken from a reanalysis of 
nine pooled prospective studies.4 The ratio of all centers is the average ratio of the nine centers.

Study, country Estradiol pmol/L m n n/(m + n)
 Cases Controls Ratio Cases Controls % Cases p-value
Columbia, MO United States 55.1 51.4 1.07 63 42 60.0 0.034
Guernsey, United Kingdom 45.5 35.0 1.30 100 4 96.2 �0.001
Nurses’ Health Study, United 
States

29.4 25.7 1.14 77 31 71.3 �0.001

NYU WHS, United States 134 101 1.33 102 4 96.2 �0.001
ORDET, Italy 21.9 21.7 1.01 59 55 51.7 �0.1
Rancho Bernardo, 
United States

36.7 40.4 0.908 31 73 29.8 �0.1

RERF, Japan 63.1 64.5 0.978 39 69 36.1 �0.1
SOF, United States 29.4 22.0 1.34 102 4 96.2 �0.001
Washington Country, 
United States

62.4 58.7 1.06 65 44 59.6 0.037

Average of all centers 1.126 78 35 69.0 �0.001
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endogenous (more ovulatory cycles) or exogenous 
(hormone replacement therapy, oral contraceptives) 
estrogen exposure. It is evident from Figure 5 that 
our in silico model extends existing models by 
combining the traditional “phenotypic” measures 
of estrogen exposure with genotypic data. It is also 
evident from the 3D graph that the combined 
phenotypic and genotypic data appear to have not 
just an additive, but also a multiplicative effect on 
E2-3,4-Q production.

Current models of breast cancer risk prediction 
are mainly based on cumulative estrogen exposure 
but do not refl ect mammary estrogen metabolism;16 
(www.cancer.gov/bcrisktool). Moreover, they do not 
address genetic variability between women in expo-
sure to estrogen metabolites. Our model addresses 
the unique genetic trait of each woman and combines 
the genetic information with the metabolomic infor-
mation in order to predict individual-level mammary 
estrogen metabolism. Some genetic traits are cur-
rently available in the patient care setting, such as 
BRCA and CYP2D6 testing. The availability of 
rapid genetic testing for BRCA1 and BRCA2 muta-
tions has made it possible to follow unaffected car-
riers in greater numbers and to search for inherited 

mutations in women with a severe family history of 
breast cancer. The potential effect of CYP2D6 
genetic variants on clinical response to tamoxifen 
treatment in breast cancer patients has gained much 
interest.53 The Food and Drug Administration recom-
mended an update in the tamoxifen package insert 
in 2006 to refl ect the increased risk of breast cancer 
recurrence in postmenopausal estrogen receptor-
positive patients, who are CYP2D6 poor metaboliz-
ers. Thus, the CYP2D6 genotype has the potential 
to become a useful predictive marker for tamoxifen 
response. Certain characteristics are benefi cial for a 
marker to become successful clinically.54 Testing of 
this marker should be cost-effective as well as easy 
to apply in daily practice, both of which are increas-
ingly realized for DNA analysis. Thus, analysis of 
multiple genes encoding the enzymes in the estrogen 
metabolism pathway can readily be achieved. 
Estrogen is a universal breast cancer risk factor; by 
helping to defi ne high-risk subgroups, the proposed 
model should advance the overall goal of reducing 
breast cancer mortality through improved screening 
and the early detection and treatment of disease. 
Rates of obesity, an important source of estrogen 
after menopause are on the rise in most of the world, 

Figure 5. Three-dimensional graph displaying estrogen metabolomic-genomic model of breast cancer risk. The risk is represented by the 
amount of carcinogenic estrogen quinone, E2-3,4-Q AUC, which is produced by the metabolism of estrogen catalyzed by the enzymes 
CYP1A1, CYP1B1, and COMT. In theory, all enzyme genotype combinations could be plotted. However for clarity, we have plotted repre-
sentative combinations from lowest to highest, separated into quintiles based on their respective E2-3,4-Q production: (1) CYP1A1461Thr-

462ValCYP1B148Gly-119Ala-432Val-453SerCOMT108Val (2) CYP1A1461Thr-462ValCYP1B148Arg-119Ala-432Val-453AsnCOMT108Met, (3) CYP1A1461Thr-462Ile CYP1B1 
48Arg-119Ala-432Val-453SerCOMT108Val, (4) CYP1A1461Thr-462Ile CYP1B148Arg-119Ala-432Val-453SerCOMT108Met, (5) CYP1A1461Asn-462IleCYP1B148Arg-119Ser-432Val-

453AsnCOMT108Met. Following the characterization of GSTP1 variants, we will include GSTP1 genotype data in the model. Cumulative estrogen 
exposure is displayed in quintiles. Actual E2 values, measured in pmol/L, could be plotted, in combination with semi-quantitative estimates 
of each woman’s overall exposure to estrogen. The latter is derived by taking into account her total years of ovulation as a function of current 
age, age at menarche, age at menopause, numbers of full-term pregnancies and lactation experience for each, and the dosage and duration 
of the use of exogenous estrogens. (The authors acknowledge work of Eric Parl in the design and preparation of this fi gure).
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underscoring the importance of establishing the 
impact of estrogen metabolites on breast cancer risk 
before and after menopause. Women who carry a 
germline mutation of BRCA1 frequently develop 
breast cancer at an early age. However, in any given 
kindred the age of onset can vary substantially and 
an important unresolved question is the extent to 
which other risk factors modify the cancer risk in 
carriers. Estrogen exposure appears to play an impor-
tant role since prophylactic oophorectomy is associ-
ated with a signifi cant reduction in the risk of breast 
cancer.55 A practical clinical application of the model 
in the premenopausal age group would be the 
differentiation of BRCA1 carriers into low- and 
high-risk based on their genetic profi le of estrogen 
metabolism. Another clinical application of the 
model would be in the postmenopausal age group 
with the distinction of low- and high-risk women. 
The former could benefi t from hormone replacement 
therapy whereas the latter should avoid such 
treatment.

In summary, our in silico model integrates 
pathway-specifi c genetic testing with diverse types 
of data and for the fi rst time offers the opportunity 
to combine exposure, metabolic, and genetic data 
in assessing estrogens in relation to breast cancer 
risk. In order to achieve such comprehensive risk 
assessment, the model will require extensive 
validation.
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Nomenclature

Symbol Quantity Symbol Quantity
  E2 17β-estradiol E E E ECYP A CYP B COMT GSTP1 1 1 1 1, , , Enzyme Concentrations

OHE2
2 2-OHE2-catechol estrogen k icati

, , ...,=1 14 Rate Constants

OHE2
4 4-OHE2-catechol estrogen K imi

, , , , ...,1 2 14 Rate Constants

MeOHE2
2 2-MeOE2-methoxyestrogen k and k1 2

Rate Constants for 
decay of Quinones

MeOHE2
23 2-OH-3-MeOE2-methoxyestrogen α βand Hill exponents

MeOHE2
4 4-MeOE2-methoxyestrogen V V K K

Q Q Q Qm mmax max, , ,
1 2 1 2

Rate Constants for 
Quinone Formation

OHE SG2
21 2-OHE2-1-SG-GSH-conjugate

OHE SG2
24 2-OHE2-4-SG-GSH-conjugate

OHE SG2
42 4-OHE2-2-SG-GSH-conjugate

EQ2
23 E2-2,3-Q-quinone

EQ2
34 E2-3,4-Q-quinone

  t time

EQ dt
T

2
34

0
∫ Area under the Curve (AUC)
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