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Abstract: Microarray technology has been widely applied to the analysis of many malignancies, however, integrative 
analyses across multiple studies are rarely investigated. In this study we performed a meta-analysis on the expression 
profiles of four published studies analyzing organ donor, benign tissues adjacent to tumor and tumor tissues from 
liver, prostate, lung and bladder samples. We identified 99 distinct multi-cancer biomarkers in the comparison of all 
three tissues in liver and prostate and 44 in the comparison of normal versus tumor in liver, prostate and lung. The 
bladder samples appeared to have a different list of biomarkers from the other three cancer types. The identified 
multi-cancer biomarkers achieved high accuracy similar to using whole genome in the within-cancer-type prediction. 
They also performed superior than the one using whole genome in inter-cancer-type prediction. To test the validity 
of the multi-cancer biomarkers, 23 independent prostate cancer samples were evaluated and 96% accuracy was achieved 
in inter-study prediction from the original prostate, liver and lung cancer data sets respectively. The result suggests 
that the compact lists of multi-cancer biomarkers are important in cancer development and represent the common 
signatures of malignancies of multiple cancer types. Pathway analysis revealed important tumorogenesis functional 
categories.
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Introduction
Human malignancies remain one of the leading causes of mortality in the United States. Uncontrolled 
growth, reduced ability to undergo apoptosis and the ability to metastasize are some of the important 
features of malignancies, regardless of origins of tissues. There are multiple mechanisms underlying 
the phenotype of cancer. The alterations of cell growth and cell death signaling pathway due to mutation 
and inactivation of tumor suppressor genes and/or amplifi cation and activation of proto-oncogenes have 
been thought to be the primary causes of carcinogenesis.1 Abnormalities of the same signaling pathways 
can be found in multiple types of human cancers, while a tumor may contain multiple abnormalities in 
signaling. Overlapping these abnormalities among multiple types of tumors may shed light on some 
key alterations of carcinogenesis.

Prostate cancer is second only to skin cancer as the most commonly diagnosed malignancy in 
American men: at current rates of diagnosis, one man in six will be diagnosed with the disease during 
his lifetime.2 Even though nutritional and environmental etiology has been implicated for prostate 
cancer development, such link has yet to be fi rmly established in general population. Some studies 
suggested that up to 80% of men age older than 80 were found to contain pathologically recognizable 
prostate cancer, while rarely any man younger than 40 developed the same disease. This argues against 
any singular specifi c etiology responsible for prostate cancer besides aging. Histologically, prostate 
cancer cells closely interact with their neighbor stromal cells to form some distinctive architectural 
patterns that make up the basis of Gleason’s grading.3 The clinical courses of most prostate cancers 
are long, and some are life-threatening. Hepatocellular carcinoma, on the other hand, is quite the 
opposite. It is not age related, and is tightly linked to cancer etiologies such as alcohol, hepatitis B 
or C virus or certain toxins. Hepatocellular carcinoma is distinctive in its well confi ned nodular 
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architecture. The clinical courses of most of the 
hepatocellular carcinomas are short and the 
fatality is high. Most of the lung cancers, with the 
exception of small cell carcinoma, are also 
associated with distinctive etiologies, such as 
smoking or chronic exposure to certain type of 
carcinogens. The urothelial carcinoma of the 
urinary bladder, however, is primarily idiopathic 
or viral related. Since these four types of cancer 
are so far apart in etiology, morphology and 
clinical courses, any common ground between 
these tumors could be interpreted as a likely 
common pathway of carcinogenesis.

In the literature, microarray technology has been 
widely applied to the analysis of many malignancies, 
including the four cancer types mentioned above. 
However, meta-analysis to integrate multiple 
studies has rarely been investigated. Segel et al.4 
proposed a systematic approach to incorporate 
1,975 arrays in 22 tumor types and constructed a 
large gene module map. The resulting module map 
was, however, too complex to follow up and the 
modules were based on 2,849 known biologically 
meaningful gene sets instead of learning new sets 
of multi-cancer biomarkers. The gene matching of 
heterogeneous array types also potentially 
deteriorate the analysis accuracy. In this report, we 
performed a meta-analysis on 455 arrays collected 
from four microarray studies in Affymetrix U95Av2 
platform: 94 samples of liver tissue5 (43 liver 
cancer, 30 hepatic tissues adjacent to liver cancer, 
21 normal liver from organ donors), 148 samples 
of prostate tissues6 (66 prostate cancer, 59 prostate 
tissues adjacent to prostate cancer and 23 organ 
donors), 151 samples of lung tissues7 (134 tumors 
and 17 normal lung tissues) and 62 urinary bladder 
tissues8 (5 normal and 57 tumors). The use of com-
mon array platform has avoided the problem of 
incorrect gene matching and gene annotation, a 
common cause to deteriorate the performance of 
meta-analysis in microarray.9 We performed two 
batches of analyses. In batch I, all three tissue types 
in liver and prostate were analyzed using analysis 
of variance (ANOVA) model. In batch II, normal 
and tumor tissues in all four cancer types were 
included and t-test was used to identify multi-cancer 
biomarkers (see Table 1 for data description). The 
identifi ed biomarkers were found to have high 
predictability in both within-cancer-type (i.e. 
cross-validation within a single cancer type) and 
inter-cancer-type (i.e. prediction model trained in 
one cancer type and used to predict another cancer 

type) prediction via leave-one-out cross validation. 
Further pathway enrichment analysis identifi ed 
statistically signifi cant function categories of the 
biomarkers. Validation of the 47 batch II multi-
cancer biomarkers on an independent 23 prostate 
tissues yielded 96% accuracy in inter-study 
prediction from the original prostate, liver and 
lung cancer data sets respectively, showing the 
robustness of the multi-cancer biomarkers and their 
implications to common carcinogenesis of multiple 
cancer types.

Materials and Methods
Data and preprocessing
We collected four published microarray data sets5–8 
to perform meta-analysis on prostate, liver, lung 
and bladder samples. A total of 455 U95Av2 arrays 
were analyzed (94 liver, 148 prostate, 151 lung 
and 62 bladder tissues) with each covering 
12,625 genes and EST sequences. The common 
array platform eliminated technical diffi culties 
including gene matching and inter-platform dis-
crepancies. In liver and prostate data sets, three 
types of samples were collected: organ donor (N), 
normal tissues adjacent to tumor (A) and tumor 
tissues (T). In lung and bladder tissues, only organ 
donor and tumor tissues were available. We 
analyzed the data through two batches of analyses. 
In the fi rst batch, both liver and prostate data sets 
with all three tissues were included. The expression 
patterns across the three types of samples were the 
major targets for investigation. In the second batch, 
data of all four organ types were included and only 
normal and tumor samples were compared. For 
details see Table 1.

The raw data (CEL fi les) were preprocessed in 
each cancer type separately using dChip software 
for array quality assessment, normalization, expres-
sion intensity extraction and log-transformation 
(base 2). Genes of low information content in each 
data set were fi ltered respectively and the union 
gene set of the four data sets was retrieved for 
further analysis. Specifi cally, in each data set, the 
top 50% genes with the largest average intensities 
were fi rst selected. Among them the top 50% genes 
with the largest standard deviations were further 
identifi ed, resulting in 25% genes (3,156 genes) 
selected in each data set. The union list of these 
most informative 25% genes in four data sets was 
used for subsequent downstream analysis (a total 
of 5,917 genes). The expression intensities in each 
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sample column of each data set are standardized 
to have zero mean and unit variance so that data 
sets of different cancer types are comparable.

Biomarker selection by ANOVA 
and t-test
In batch I analysis, ANOVA model was fi tted for 
the organ donor (N), adjacent to tumor (A) and 
tumor (T) samples with a β parameter for fi eld effect 
and a γ  parameter for tumor effect. Stepwise algo-
rithm was used to select the best regression model. 
The ANOVA model is described in the following:

 Y F Tin i i in i in in= + ⋅ + ⋅ +α β γ ε  

where i = 1, … 5917 for all the genes, n = 1, … 94 
for liver samples and n = 1, … 148 for prostate 
samples. The fi eld effect binary covariate Fin = 1 for 
A or T group; Fin = 0 for N group. The tumor effect 
covariate Tin = 1 for T group; Tin = 0 for N or T group. 
Field effect is defi ned as the expression difference 
between normal tissues (N) compared to tissues 
adjacent to tumor (A) and tumor tissue (T). Tumor 
effect is defi ned as a further difference between A and T. 
Genes satisfying the following criteria were selected: 
(a) statistical signifi cance: adjusted q-value for the 
final stepwise-selected ANOVA model after 
Benjamini-Hochberg correction is less than 0.05 (i.e. 
to control false discovery rate smaller than 0.05); 
(b) biological signifi cance: fi eld effect or tumor 
effect is larger than 0.4 (correspond to ∼32% 
fold change). The fi eld effect and tumor effect 
parameter β and γ both have three possibilities- 
positive, negative and no change -, resulting in eight 

patterns as described in Figure 1A. Figures 1B and 
1C show the number of genes selected in liver and 
prostate samples respectively and their distribution 
in the eight pattern categories. The intersection of 
selected ANOVA genes in liver and prostate with 
concordant pattern categories were used to construct 
prediction model for within-cancer-type (Liv→Liv 
and Pro→Pro) and inter-cancer-type (Liv→Pro and 
Pro→Liv) analysis. To summarize a list of gene 
markers in batch I for further analysis, genes selected 
in more than 70% of the times in leave-one-out cross 
validation (see section below for more detail) in the 
above procedure were identifi ed as the “batch I 
multi-cancer biomarkers” (batchI-MBs).

In the batch II analysis, similar gene selection 
procedure was performed. Instead of ANOVA, 
simple t-test was performed to distinguish normal 
and tumor. Given the comparison of a pair of cancer 
types (e.g. liver vs. lung), genes satisfying the two 
criteria used in batch I were fi rst selected and the 
intersection of the gene lists obtained from the two 
compared cancer types were identifi ed. Among 
them, genes with concordant differential expression 
direction (up- or down-regulation) were used to 
construct prediction model for within-cancer-type 
(Liv→Liv and Lun→Lun) and inter-cancer-type 
(Liv→Lun and Lun→Liv) analysis. Leave-one-out 
cross validation was similarly performed. For each 
pair of cancer type comparison, gene lists of more 
than 70% appearance in the leave-one-out 
cross validation signatures were identifi ed and 
were denoted as “liv-pro-MBs” (i.e. multi-
cancer biomarkers in liver-prostate comparison), 
“liv-lun-MBs” etc. The intersection genes of 
“liv-pro-MBs”, “liv-lun-MBs” and “pro-lun-MBs” 
are denoted as “batchII-MBs” (See Fig. 4; bladder 

Table 1. Overview of data sets used in batch I and batch II analyses.

Batch I Analysis
Organ donor (N) Adjacent to tumor (A) Tumor (T) Total

Liver 21 30 43 94
Prostate 23 59 66 148

Batch II Analysis
Organ donor (N) Tumor (T) Total

Liver 21 43 64
Prostate 23 66 89
Lung 17 134 151
Bladder 5 57 62
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Figure 1. ANOVA model for batch I analysis: (A) Eight categories of ANOVA patterns used to select multi-cancer biomarkers. N denotes 
normal, A tissue adjacent to cancer, and T tumor sample. (B) Venn diagram representation of the number of ANOVA genes found to be 
signifi cantly altered in liver and prostate tissues when comparing N, A and T groups. (C) Bar graph of genes that were altered in liver (1854), 
prostate (1139) or both tissue samples with same pattern (111). (D) Histogram of correlations of N-A-T patterns across prostate and liver of 
the 520 common ANOVA genes.

cancer data appear to generate a very different 
biomarker list than that from liver, prostate and 
lung data, as will be describe later).

Gene-specifi c scaling 
in inter-cancer-type classifi cation
Figure 2 demonstrates expression patterns of one 
selected gene for each of the eight pattern categories 
(the category (N = T) � A had no gene and is 
omitted). We observed that gene-specifi c scaling 
was needed for many of the biomarkers so the 

prediction information could be carried across 
organs. For example in “APBA2BP”, the expression 
of group A is consistently greater than N and group 
T is further greater than A in both liver and prostate 
samples. However, the levels of expression 
intensities in liver and prostate are in different scale 
even though all the liver and prostate samples are 
preprocessed and properly normalized across data 
sets. This phenomenon may be due to differential 
sample preparation, tissue physiology and/or 
hybridization conditions in different studies. As a 
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result, we conducted gene-specifi c scaling in all 
inter-cancer-type classifi cation. Conceptually the 
scaling parameters are estimated so that the gene 
vectors in each study are standardized to mean 0 
and standard deviation 1. However, since each 
study has a different ratio of normal versus tumor 
samples, we performed a bootstrap sampling before 
scaling so that the gene vectors were standardized 
under a synthetic condition that groups (N, A and T) 
are of equal sample size in each study (see Appen-
dix for more details).

Classifi cation method 
and leave-one-out cross validation
PAM (Prediction Analysis of Microarray) was 
used to construct the prediction models in this 
paper.10 The method has been found effective in 

many microarray prediction analyses and has the 
merit that gene selection is embedded in 
the method. When “all genes” are used, the 
predictive genes are automatically chosen from 
the total of 5,917 genes to construct the prediction 
model. When “common signatures” are used, the 
common biomarkers are selected according to the 
description in the section “Biomarker selection 
by ANOVA and t-test” and no gene selection is 
further performed in PAM. Results of both gene 
selection procedures are reported and compared. 
To avoid over-fi tting in the evaluation of cross-
predictability of the multi-cancer biomarkers, we 
conducted rigorous leave-one-out cross validation 
(see the prediction scheme in Figs. 3A and 3B), 
i.e. the left out sample does not participate in the 
selection of marker genes.
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Figure 2. Expression patterns of selected representative genes in liver and prostate samples. Selected genes of seven pattern 
categories from the 111 common concordant ANOVA genes in liver and prostate samples. Global sample normalization has been performed 
across prostate and liver data sets. It is clearly seen that although all these biomarkers demonstrate concordant patterns across prostate 
and liver, many of them (APBA2BP, SLC39A14, AGT, TOP2A and B2M) are at different expression level and direct application of a prediction 
model developed in one data set will likely perform poor in the other data set.
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Confusion matrix and prediction index
In the literature, the overall accuracies from 
different methods are usually reported to compare 
performance. It is, however, often a misleading 
index in practice. Supplementary Table 1 demon-
strates an example. Among 42 tumor patients, one 
false negative was made and among six normal 
patients, fi ve false positives were made. The overall 
accuracy is pretty high (87.5%) but it is a result of 
predicting almost all tissues as tumor with high 
sensitivity (97.6%) but extremely low specifi city 

(16.7%). A standard alternative to this situation may 
be the AUC (area under ROC curve) index by 
varying classifi cation threshold in the classifi cation 
rule. This measure is, however, not readily available 
for classical methods like KNN and SVM. Even 
for methods that can calculate AUC, the measure 
is very unstable for small sample size. In this paper, 
we report the confusion matrixes that convey the 
entire prediction results in the appendix. A 2 × 2 
table is used to summarize the number of patients 
in true and predicted status of normal or tumor 
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Figure 3. Schemes of leave-one-out cross validation or external validation for batchI-MBs and batchII-MBs. Upper: scheme for leave-
one-out cross validation to evaluate the procedure of selecting batchI-MBs and batchII-MBs. The test sample is fi rst left aside. The remaining 
samples are used for selecting multi-cancer biomarkers and constructing the prediction model to be used to evaluate the set-aside test 
sample. This scheme is used to evaluate procedures of selecting both batchI-MBs and batchII-MBs to generate Table 2 and Table 3. (A) an 
example to evaluate liv→liv in Table 2 (B) an example to evaluate pro→liv in Table 2. Lower: scheme for external validation of batchII-MBs 
by 23 independent prostate cancer samples. (C) external evaluation of the prediction model based on liver data and batchII-MBs (EV_liv→
pro). (D) external evaluation of the prediction model based on the old prostate data and batchII-MBs (EV_pro→pro).
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groups. The two off-diagonal numbers represent 
the false positives and false negatives in the 
prediction and their sum represent to total errors 
made (see Supplement Table 1). We then further 
summarize the prediction results by a prediction 
performance index (PPI) that is defi ned as the 
average of sensitivity and specifi city, to be used 
throughout this paper for performance evaluation.

Pathway analysis
For each gene list of multi-cancer biomarkers, the 
gene ontology (GO) database was used for pathway 
enrichment analysis. For each GO term, a Fisher’s 
exact test was performed to determine the enrich-
ment of the gene list and a p-value was generated.11 
We performed this analysis in batchI-MBs, batchII-
MBs and all pairwise comparison multi-cancer 
biomarkers in batch II (liv-pro-MBs, liv-lun-pro-
MBs etc). The p-value results were summarized in 
a heatmap (Fig. 5).

External evaluation of batchII-MBs 
by independent prostate data
A data set of 23 prostate cancer samples performed 
in an independent lab12 was used for external 
validation of the batchII-MBs. A toltal of 47 batchII-
MBs were identifi ed from the normal and tumor 
samples in liver, prostate and lung data sets. To 
evaluate the robustness and inter-cancer-type cross-
predictability, a prediction model based on the 
47 batchII-MBs in the normal and tumor samples of 
liver data set was constructed and was used to 
evaluate the 23 external prostate cancer samples (see 
“EV_liv→pro in Fig. 3C). The evaluation of 
prediction model generated by the old prostate data 
is denoted by “EV_pro→pro” in Figure 3D. Similarly 
we also perform “EV_lun→pro” evaluation. The 
data preprocessing of the 23 new samples was 
conducted similarly to the four analyzed data sets 
and simple constant normalization was adopted 
against the original prostate data set. Additional 
gene-wise normalization against the original prostate 
is also applied so the liver and lung data sets can be 
used to predict the 23 new prostate samples.

Results
To identify common signature genes among four 
types of malignancies, we started with the prostate 
and liver data sets in batch I analysis because of 
more balanced numbers of tumor and normal 
samples and availability of benign tissues adjacent 
to tumor. In this analysis, 1,854 genes from liver 

data set and 1,139 genes from the prostate data set 
were found to fi t the ANOVA model and meet the 
gene selection criteria. Among these genes, 
520 genes were common in both organs (Venn 
diagram in Fig. 1B). The histogram of correlations 
of N vs A vs T patterns (average intensities of each 
group) across two organs in each gene is shown in 
Figure 1D. Majority of the genes were highly 
correlated across prostate and liver but surprisingly 
113 genes presented strong negative correlation 
(�−0.7), which may refl ect the differences in tissue 
types. The 520 selected genes were categorized into 
eight patterns as demonstrated in Figure 1A. These 
patterns represent either tumor specifi c alteration, 
field effect, or reactive changes. Among these 
520 genes, 111 genes were in the same pattern 
categories in liver and prostate (Fig. 1C) based on 
our defi nition in Figure 1A. Further analysis of 
expression of the 111 genes in both organs indicated 
that even though the expression patterns for these 
genes across N, A and T were identical in both 
organs, the levels of expressions may vary greatly 
(for example, APBA2BP and SLC39A14 in Fig. 2). 
This suggests that direct application of classifi cation 
model constructed in one cancer type may not pre-
dict the histology of tissues in the other cancer type. 
To resolve this problem, an adequate gene-specifi c 
scaling across organs was carried out for the inter-
cancer-type prediction. The gene-specifi c scaling 
procedure described in the Method section and 
Appendix is applied for all analyses hereafter.

We performed leave-one-out cross validation 
throughout the prediction analyses. There are 242 
samples in liver and prostate data sets. Among the 
242 leave-one-out cross validation analysis, a total 
of 109 common biomarkers were identifi ed in more 
than 70% leave-one-out cross validation and all of 
them belong to the 111 gene list using all liver and 
prostate samples described above. These 109 fre-
quently identifi ed biomarkers are named “batchI-
MBs”. 99 (out of 109) were identifi ed as distinct 
multi-cancer biomarkers (Supplement Table 4). 
Subsequently we assessed the cross-predictability 
of the identifi ed biomarkers. When using all genes, 
we observed high PPI between normal and tumor 
comparison (N vs. T) with 96.5% in liver dataset 
and 93.9% prostate dataset while lower accuracy 
was observed between adjacent and tumor (79.9% 
in liver and 71.4% in prostate) (Table 2). When only 
common signature biomarkers were used, the predic-
tion accuracy remained comparable to using all 
genes (N vs. T: 96.5% in liver and 98.8% in prostate; 
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A vs. T: 75.6% in liver and 66.7% in prostate). The 
result suggests that the common signature biomarkers 
carry as good predictive information as the entire 
5,917 genes. We then further conducted inter-
cancer-type classifi cation analysis. We used either 
“all genes” (the entire 5,917 genes) or the common 
signatures to construct a prediction model in one 
cancer type and predict in another cancer type. The 
prediction evaluation was performed in a manner 
of leave-one-out cross validation. We denoted “pros-
tate→liver” as constructing prediction models using 
prostate samples and predicting liver samples. We 
found that prediction with “all genes” did not 
perform well with only 47.4% in liver→prostate 
and 66.3% in prostate→liver among N vs 
T comparison and 55.7% in liver→prostate and 
51.9% in prostate→liver among A vs T comparison. 
On the other hand, the model using common signa-
ture genes achieved much superior performance, 
nearly as good as the within-cancer-type classifi ca-
tion (96.3% in liver→prostate and 93% in prostate→
liver among N vs. T comparison and 65.1% in 
liver→prostate and 74.7% in prostate→liver among 
A vs. T comparison). The results clearly demonstrate 
the cross-predictability of the common signatures.

Subsequently, we expanded our analysis to 
prostate, lung, liver and bladder data sets (batch 
II analysis) with only normal and tumor tissues to 
test whether common signature genes can be 
found across these four types of cancers. Similar 
analyses were performed except that ANOVA was 
replaced by t-test for two class normal and tumor 
comparison. Each pair of the cancer types was 
analyzed. Similar to batch I analysis, only com-
mon signature genes with consistent regulation 

direction (up-regulation or down-regulation) in 
both cancer types were selected. Table 3 (see also 
Supplement Table 3 for the entire confusion 
matrix results) summarizes the prediction results 
of batch II analysis. Similar to the result of batch 
I analysis, we observed high prediction accuracy 
for within-cancer-type prediction when using all 
genes in PAM (96.5% for liver, 93.9% for prostate, 
90.7% for lung and 88.6% for bladder). The 
prediction models using common signature 
biomarkers generated similar high accuracy 
compared to using all genes (91.7%–97.7% in 
liver, 79.6%−95.6% in prostate, 89.4%–96.0% in 
lung and 97.4%−98.3% in bladder). The result 
confi rms that the common signature biomarkers 
carry as good predictive information as the entire 
5,917 genes. For the inter-cancer-type classifi ca-
tion analysis, we repeatedly found that prediction 
with all genes did not perform well. In contrast, 
using common signature genes achieved much 
superior performance (Table 4). Liver particularly 
seemed to be the most robust either used as train-
ing or test data. Bladder, however, showed slightly 
lower cross-predictability with the other three 
cancer types. The numbers of common signature 
genes of bladder with other cancer types are also 
much smaller. Following the same criterion of 
selecting 70% frequency of being selected as 
common signatures in the cross-validations, we 
identified multi-cancer biomarkers of the 
comparison in each pair of cancer types in Table 4 
(255 liv-pro-MBs, 119 liv-lun-MBs, 288 lun-
pro-MBs, 53 liv-bla-MBs, 10 pro-bla-MBs and 
19 lun-bla-MBs). When all possible pairs of 
comparisons among liver, prostate and lung are 

Table 2. Prediction performance indexes (PPI) in batch I analysis. Pairwise two-group comparisons (N vs. T, N vs. A 
and A vs. T) are performed.

Liver vs. Prostate (Normal vs. Tumor)
liv→liv pro→liv pro→pro liv→pro

All genes 96.5% 66.3% 93.9% 47.4%
Common signature 96.5% 93.0% 98.8% 96.3%

Liver vs. Prostate (Normal vs. Adjacent)
All genes 92.6% 77.9% 96.6% 54.6%
Common signature 98.2% 96.0% 98.3% 96.6%

Liver vs. Prostate (Adjacent vs. Tumor)
All genes 79.9% 51.9% 71.4% 55.7%
Common signature 75.6% 74.7% 66.7% 65.1%
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overlapped (liv-pro-lun-MBs), a number of 47 
genes was identifi ed. After deleting replicates, 44 
(out of 47) distinct multi-cancer biomarkers in 
liver, prostate and lung cancers were identifi ed as 
batchII-MBs (Table 5). However, these common 
signature genes do not overlap with those from 
bladder data set, indicating a lack of common 
signature between these cancers and bladder 
cancer. There are 12 overlapping genes (Fig. 4; 
p � 1E-10 with signifi cantly high overlapping) 
between batchI-MBs and batchII-MBs (marked 
with asterisk in Table 5 and Supplement Table 4). 
Pathway analysis was performed on these multi-
cancer biomarkers indicating that fewer numbers 
of multi-cancer biomarkers and GO terms were 
identifi ed when bladder samples were analyzed 
in the inter-cancer-type prediction.

To validate the robustness and cross-predictability 
of batchII-MBs, a data set of 23 independent 

prostate cancer samples obtained from another 
institute12 was evaluated. The prediction model 
based on the 47 batchII-MBs in the 64 normal and 
tumor liver samples achieved 96% (22/23) accuracy 
in predicting the 23 independent prostate samples 
(the “EV_liv→pro” scheme in Fig. 3C). Evaluation 
of “EV_pro→pro” and “EV_lun→pro” also gave 
the same results (96% accuracy). Since we only 
have tumor samples in the external prostate data, 
there is a potential pitfall that the high accuracy 
may be an accidental result of study discrepancies 
between the new 23 prostate samples and the 
normal and tumor samples in analyzed data sets. 
We performed multi-dimension scaling (MDS) 
plots to visualize the new and old samples and 
excluded this possibility (Fig. 6). The new prostate 
tumor samples are scattered and mixed with the 
old tumors but separated from old normal samples. 
As a result, the high accuracy of the prediction 

Table 3. Prediction performance indexes (PPI) in batch II analysis. The values shaded in grey are summarized 
in Table 4.

Liver vs. Prostate
liv→liv pro→liv pro→pro liv→pro

All genes 96.51% 66.28% 93.94% 47.36%
Common signature 97.67% 97.67% 95.55% 94.14%

Liver vs. Lung
liv→liv lun→liv lun→lun liv→lun

All genes 96.51% 56.98% 90.72% 45.32%
Common signature 95.23% 93.02% 95.94% 94.72%

Lung vs. Prostate
lun→lun pro→lun pro→pro lun→pro

All genes 90.72% 69.03% 93.94% 62.88%
Common signature 94.82% 94.45% 79.61% 72.76%

Liver vs. Bladder
liv→liv bla→liv bla→bla liv→bla

All genes 96.51% 62.79% 88.60% 49.65%
Common signature 91.74% 91.86% 98.25% 98.25%

Prostate vs. Bladder
pro→pro bla→pro bla→bla pro→bla

All genes 93.94% 36.30% 88.60% 42.63%
Common signature 92.92% 86.86% 97.81% 88.25%

Lung vs. Bladder
lun→lun bla→lun bla→bla lun→bla

All genes 90.72% 51.87% 88.60% 50.88%
Common signature 89.38% 85.91% 97.37% 85.61%
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on this new data set is not caused by pure 
“accident.”

Discussion
Meta-analyses have been performed for several 
types of human malignancies.13–18 However, to our 

knowledge, this is the fi rst report showing that a 
microarray gene expression model demonstrates 
inter-cancer predictability between different types 
of cancers using the identified multi-cancer 
biomarkers. These results not only were evaluated 
in cross-validation analysis of existing working 
data sets but also were validated by independent 

Table 4. PPI summary of within-cancer-type and inter-cancer-type predictions in batch II analysis.

Test data
Liver Prostate Lung Bladder

Tr
ai

ni
ng

 
da

ta

Liver 96.5% (69)* 94.1% (225)+ 94.7% (119)+ 98.3% (53)+

Prostate 97.7% (225)+ 93.9% (55)* 94.5% (288)+ 88.3% (10)+

Lung 93.0% (119)+ 72.8% (288)+ 90.7% (57)* 85.6% (19)+

Bladder 91.9% (53)+ 86.9% (10)+ 85.9% (19)+ 88.6% (135)*

*All genes are used in the within-cancer-type prediction to allow PAM for automatic predictive gene selection. Numbers of genes used in 
PAM are shown in parentheses.
+In all inter-cancer-type predictions, only common signature genes are used in PAM and PAM does not perform further gene selection. The 
numbers of genes appeared more than 70% of leave-one-out cross validations are shown in the parentheses (i.e. liv-pro-MBs, liv-lun-MBs 
and pro-lun-MBs).

109
batchl-MBs

109
batchl-MBs

12
common

genes
47

batchll-MBs

pro-lun-MBs
(288)

liv-lun-MBs
(119)

liv-pro-MBs
(225)

47 common signature
(batchll-MBs)

Figure 4. Diagram of batchI-MBs and batchII-MBs and their intersection genes. The 47 batchII-MBs are listed in Table 5 and 109 batchII-MBs 
are listed in Supplement Table 4.
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Table 5. The 44 batchII-MBs overlapped by pair-wise comparisons of liver, prostate and lung data sets (liv-pro-MB, 
liv-lun-MB, pro-lun-MB). The fi rst 12 genes with asterisk overlapped batchI-MBs. The signed mean fold change 
shows mean fold change of tumor versus normal when positive (up-regulation) and normal versus tumor when 
negative (down-regulation).

Probe set ID Gene title Gene 
symbol

Signed mean fold change

Liver Prostate Lung
39597_at* actin binding LIM protein family, member 3 ABLIM3 −2.1 −1.6 −2
37599_at* aldehyde oxidase 1 AOX1 −2.8 −2.6 −1.5
34736_at* cyclin B1 CCNB1 2.3 1.8 1.7
37302_at* centromere protein F, 350/400 ka (mitosin) CENPF 1.9 1.4 1.4
37203_at* carboxylesterase 1 

(monocyte/macrophage serine esterase 1)
CES1 −1.8 −1.7 −3

32168_s_at* Down syndrome critical region gene 1 DSCR1 −2 −1.6 −1.8
34311_at* glutaredoxin (thioltransferase) GLRX −2.5 −1.7 −1.5
1737_s_at* insulin-like growth factor binding protein 4 IGFBP4 −1.8 −2.5 −1.6
609_f_at* metallothionein 1B MT1B −3.6 −2.3 −1.5
36130_f_at* metallothionein 1E MT1E −3.5 −1.9 −1.8
31622_f_at* metallothionein 1F MT1F −2.9 −2.3 −1.8
39594_f_at* metallothionein 1H MT1H −3.2 −2.4 −1.7
35699_at BUB1 budding uninhibited by 

benzimidazoles 1 homolog beta (yeast)
BUB1B 1.5 1.4 1.3

38796_at complement component 1, 
q subcomponent, B chain

C1QB −2.4 −1.4 −2.3

35276_at claudin 4 CLDN4 1.4 2.4 1.4
36668_at cytochrome b5 reductase 3 CYB5R3 −1.4 −1.4 −1.5
33295_at Duffy blood group, chemokine receptor DARC −1.7 −2.9 −1.4
41225_at dual specifi city phosphatase 3 

(vaccinia virus phosphatase VH1−related)
DUSP3 −1.4 −1.4 −1.5

38052_at coagulation factor XIII, A1 polypeptide F13A1 −1.7 −2.1 −1.5
37743_at fasciculation and elongation protein zeta 

1 (zygin I)
FEZ1 −1.5 −1.6 −2

38326_at G0/G1switch 2 G0S2 −3.1 −2.2 −1.7
1597_at growth arrest-specifi c 6 GAS6 −1.6 −2 −1.7
411_i_at interferon induced transmembrane protein 

2 (1–8D)
IFITM2 −1.6 −2 −1.4

37484_at integrin, alpha 1 ITGA1 −1.6 −1.4 −1.3
38116_at KIAA0101 KIAA0101 2.2 1.6 1.3
37883_i_at Hypothetical gene supported by 

AK096951
LOC400879 1.5 1.7 1.4

242_at microtubule-associated protein 4 MAP4 −1.4 −1.6 −1.4
31623_f_at metallothionein 1A MT1A −3.5 −2.6 −1.4
39081_at metallothionein 2A MT2A −2 −2.5 −2.1
37736_at protein-L-isoaspartate (D-aspartate) 

O-methyltransferase
PCMT1 −1.6 −1.3 −1.3

35752_s_at protein S (alpha) PROS1 −2.2 −1.7 −2
(Continued)



68

Tseng et al

Biomarker Insights 2009:4

prostate tissues collected and preprocessed 
separately. This argues strongly in favor of the 
reproducibility of the multi-cancer biomarkers and 
the models. The 44 batchII-MBs appear to represent 
the common gene expression alteration among 
hepatocellular carcinoma, lung and prostate cancer. 
They follow similar patterns of differential 
expression in normal and tumor tissues for prostate, 
lung and liver cancer. Surprisingly, these gene 
signatures predict prostate, lung and hepatocellular 
carcinoma with similarly high accuracy as using 
the entire genome information of 5917 genes in 
each within-cancer-type prediction in prostate, 
lung or liver cancer. This suggests that the 44 genes 
are the major determinant of gene expression 
alteration in these three types of cancers.

Comparing the 44 genes to published poten-
tial biomarker list yielded high overlapping 
(28 overlapped to the 3,312 gene list generated 
in Bhattacharjee et al.7 22 overlapped to the 2,413 
gene list generated in Luo et al.5 16 overlapped 
to the 726 gene list generated in Yu et al.6). The 
high level of inter-organ cancer predictability 
using just 44 genes implies that the core of can-

cer gene alterations may actually be quite small. 
The alterations of the expression of these genes 
could represent the common features of the three 
types of malignancies. None of these genes was, 
however, identifi ed as the most signifi cantly 
altered in bladder cancer suggest the dis-resem-
blance of bladder cancer to these three types of 
cancers. Among these genes includes a interferon 
inducible protein, 1–8D (IFITM2, 411_i_at). This 
gene was a known important mediator of inter-
feron induced in cell growth inhibition and induc-
tion of cell death.19,20 1–8D was down-regulated 
in hepatocellular carcinoma, lung cancer and 
prostate cancer, while pro-growth genes such as 
cyclin B1 (CCNB1, 34736_at) was signifi cantly 
up-regulated in three types of tumor samples. 
Other genes involving in growth controls includ-
ing growth arrest specifi c 6 (GAS6, 1597_at), 
G0/G1swtich 2 (GOS2, 38326_at) are also abnor-
mally expressed in these tumors. The 44 gene list 
also includes six metallothioneins including 1A, 
1B, 1E, 1F, 1H and 2A (MT1A, 31623_f_at; 
MT1B, 609_f_at; MT1E, 36130_f_at; MT1F, 
31622_f_at; MT1H, 39594_f_at; MT2A, 39081_

Table 5. (Continued)
Probe set ID Gene title Gene 

symbol
Signed mean fold change

Liver Prostate Lung
34163_g_at RNA binding protein with multiple splicing RBPMS −1.5 −2.4 −1.4
34887_at Radixin RDX −1.5 −1.4 −1.7
39150_at ring fi nger protein 11 RNF11 −1.6 −1.4 −1.3
41096_at S100 calcium binding protein A8 S100A8 −3.6 −2.3 −3.3
33443_at serine incorporator 1 SERINC1 −1.8 −1.5 −1.6
39775_at serpin peptidase inhibitor, clade G 

(C1 inhibitor), member 1, (angioedema, 
hereditary)

SERPING1 −1.6 −2.2 −2

1798_at solute carrier family 39 (zinc transporter), 
member 6

SLC39A6 1.4 1.6 1.4

33131_at SRY (sex determining region Y)-box 4 SOX4 2.5 1.8 1.8
40419_at stomatin STOM −1.5 −1.8 −2
1897_at transforming growth factor, beta receptor 

III
TGFBR3 −1.4 −1.7 −2.5

38404_at transglutaminase 2 (C polypeptide, 
protein-glutamine-gamma-

glutamyltransferase)

TGM2 −2.9 −1.8 −1.8

40145_at topoisomerase (DNA) II alpha 170 kDa TOP2A 1.6 1.7 2
35720_at WD repeat domain 47 WDR47 −2.4 −1.5 −1.3
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chromosome segregation
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Figure 5. Pathway analysis heatmap. The enriched Gene Ontology terms are demonstrated on rows and lists of multi-cancer biomarkers 
are shown on columns. The signifi cance (p-values) is represented by gradient red color. When the number of genes of the biomarker list that 
fall in the GO term is too small or zero, the p-value assessment is not computable or not stable and is represented as missing in white color.

at). Metallothioneins are some low molecular 
weight zinc binding proteins that play important 
role in regulating transcriptional activity for 
variety of genes, and play crucial role in zinc 
signaling.21,22 . Abnormal up-regulation of these 
genes may result in global pattern of gene 
expression alteration. Up-regulation of metallo-
thioneins were thought to contain prognostic 

value in invasive ductal breast cancer.23 CCNB1 
and most of the metallothioneins were also iden-
tifi ed in batchI-MBs where adjacent tissues were 
included in the analysis. In the pathway analysis, 
we also observe many cancer related functional 
categories, including “mitotic checkpoint”, 
“apoptotic program”, “copper ion binding” and 
“cadmium binding”. Investigation into the abnor-
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malities of these pathways may yield important 
insight into the common carcinogenesis mechanism 
of the tumors. A possible future work is to study 
sequential biopsies in the progression of different 
tumors in a mouse model and analyze the 
expression changes of the biomarkers identifi ed 
in this paper. Such rigorous validation of 
signature genes can help create a carcinogenic 
model and reduce the inter-individual genetic 
differences.

The clinical implication of our finding is 
two-fold: If the prediction of hepatocellular carci-
noma, lung cancer and prostate cancer using our 
44 batchI-MBs is interchangeable, we like to 
hypothesize that the abnormalities in the expres-
sion of the 44 genes represent a common features 
of these malignancies. Therapeutic targeting 
toward some of these genes will be of signifi cant 
value in treating these malignancies. Second, the 
99 batchII-MBs predicts tissues adjacent to malig-
nancies versus completely normal organ tissues 
with high accuracy. This model may be able to 
serve as predictor of malignancies nearby even if 
a biopsy misses its tumor target. This may serve 
as an indicator for a quick follow-up re-biopsy until 
the tumor(s) is identifi ed. Alternatively, the detec-
tion of a strong cancer fi eld effect change may 
argue for some prophylactic treatments before 
morphological cancer appears.

Acknowledgements
This work is supported by grants from National 
Cancer Institute to JHL (R01 CA098249), by 
Urology development fund and by the John Rangos 

Foundation for Enhancement of Research in 
Pathology. G.C.T. is supported by National Insti-
tute of Health (1 KL2 RR024154-02) and Univer-
sity of Pittsburgh (Central Research Development 
Fund, CRDF; Competitive Medical Research 
Fund, CMRF). The authors wish it to be known 
that, in their opinion, George C. Tseng and Chun-
rong Cheng should be regarded as joined fi rst 
authors. The authors wish it to be known that, in 
their opinion, George C. Tseng and Chunrong 
Cheng should be regarded as joined fi rst authors.

Disclosure
The authors report no confl icts of interest.

References
 1. Hanahan, D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:

57–70.
 2. Jemal A, Ward E, Wu X, Martin HJ, McLaughlin CC, Thun MJ. 

Geographic patterns of prostate cancer mortality and variations in access 
to medical care in the United States. Cancer Epidemiol Biomarkers 
Prev. 2005;14(3):590–5.

 3. Gleason DF. Classifi cation of prostatic carcinomas. Cancer Chemother 
Rep. 1966;50(3):125–8.

 4. Segal E, Friedman N, Koller D, Regev A. A module map showing 
conditional activity of expression modules in cancer. Nat Genet. 
2004;36(10):1090–8.

 5. Luo JH, Ren B, Keryanov S, et al. Transcriptomic and genomic analysis 
of human hepatocellular carcinomas and hepatoblastomas. Hepatology. 
2006;44(4):1012–24.

 6. Yu YP, Landsittel D, Jing L, et al. Gene expression alterations in prostate 
cancer predicting tumor aggression and preceding development of 
malignancy. J Clin Oncol. 2004;22(14):2790–9.

 7. Bhattacharjee A, Richards WG, Staunton J, et al. Classifi cation of 
human lung carcinomas by mRNA expression profiling reveals 
distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A. 
2001;98(24):13790–5.

2 0 2 4

-2
-1

0
1

2

Batch II prostate & independent prostate

1

1

1

1
1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

2

2

2
2

2

2

2

22
2

2

2
22

2 2

2

2

2 2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2
2 2

2

2

2
2

2

2

2 2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4
4 4

4

4

4

4

4

4

4

4

4

4

4

4

1
2
4

Batch II prostate normal
Batch II prostate tumor
Independent prostate tumor

2 1 0 1 2 3

-3
-2

-1
0

1
2

3

Batch II liver & independent prostate

1
11
1

1

1
1 11

1

1

1

1
1

111
1

1 1
1

22
2

2
2

2 2

22 22 2

2

2

2
2

2

2

2

2
22

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2 2

22

44

4
4

4

4

44
44 44

4
44

4

4

4
4

4

4
4

4

1
2
4

Batch II liver normal
Batch II liver tumor
Independent prostate tumor

2 1 0 1 2 3 4

-2
-1

0
1

Batch II lung & independent prostate

1
1

11
11

1

11

1
1

1

1
1

1
1 1 2

2
2

2

2 2

2

2

2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2
2

2

22

2

2

2

2

2

22

2
2

2

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

2
2 2

2

2
2

2

2
2

2

2 2

2
2

2

2

2

2
2

2

2

2

2
2

2
2

2

2

2

22

22

2

2

2
22

2 2

2

2

2

2

2

22 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

4

4
4 4

4 4

4
4

4
4

4
4
4

4

4

4

4

4
4

4

4

4

4

1
2
4

Batch II lung normal
Batch II lung tumor
Independent prostate tumor

−−− − −
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Supplementary Material

Bootstrap procedure for gene-wise normalization
Conceptually we standardize each gene vector to mean 0 and standard deviation 1 to accommodate 
different expression range of a predictive biomarker across different studies (e.g. APBA2BP, SLC39A14, 
AGT, TOP2A and B2M in Fig. 2). Since the ratios of normal and tumor groups can vary in different 
studies, simple standardization can cause bias and deteriorate the prediction performance. Instead we 
perform bootstrap to sample a gene vector of B = 1,000 samples in each group and standardize the 
vector of 2,000 (3,000 if N, A and T groups are all compared) bootstrapped samples to mean 0 and 
standard deviation 1 to estimate the standardization factors. Essentially we perform standardization 
under the simulated condition that normal and tumor groups have the same sample sizes.

Supplement Table 1. An example of confusion matrix. Two false negatives and fi ve false positive are made 
in the prediction, which sum up to seven total errors (with 42/48 = 87.5% overall accuracy). The sensitivity is 
41/42 = 97.6%, specifi city 1/6 = 16.7% and prediction performance index (PPI) (97.6% + 16.7%)/2 = 57.2%.

True normal tissues True tumor tissues
Predicted as normal tissues 1 1
Predicted as tumor tissues 5 41
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Supplement Table 4. A total of 109 biomarkers are identifi ed in more than 70% of leave-one-out cross validation 
in batch I (batchI-MBs). After deleting duplicates, 99 distinct predictive biomarkers are listed below.

Probe set ID Gene title Gene 
symbol

Signed mean fold Change
Liver Prostate

A-N T-N A-N T-N
39597_at* actin binding LIM protein family, 

member 3
ABLIM3 −1.4 −2.1 −1.3 −1.6

37599_at* aldehyde oxidase 1 AOX1 −1.5 −2.8 −1.6 −2.6
34736_at* cyclin B1 CCNB1 1.3 2.3 1.2 1.8
37302_at* centromere protein F, 350/400 ka 

(mitosin)
CENPF 1.3 1.9 1.1 1.4

37203_at* carboxylesterase 1 (monocyte/
macrophage serine esterase 1)

CES1 −1.3 −1.8 1 −1.7

32168_s_at* Down syndrome critical region gene 1 DSCR1 1.1 −2 1.1 −1.6
34311_at* glutaredoxin (thioltransferase) GLRX −1.6 −2.5 −1.3 −1.7
1737_s_at* insulin-like growth factor binding 

protein 4
IGFBP4 −1.5 −1.8 −1.8 −2.5

609_f_at* metallothionein 1B MT1B −1.4 −3.6 −1.3 −2.3
36130_f_at* metallothionein 1E MT1E −1.4 −3.5 −1.2 −1.9
31622_f_at* metallothionein 1F MT1F −1.5 −2.9 −1.4 −2.3
39594_f_at* metallothionein 1H MT1H −1.5 −3.2 −1.4 −2.4
41530_at acetyl-Coenzyme A acyltransferase 2 

(mitochondrial 3-oxoacyl-Coenzyme A 
thiolase)

ACAA2 −1.1 −2 −1.1 −1.6

34050_at acyl-CoA synthetase medium-chain 
family member 1

ACSM1 2.1 3.5 1.7 3.1

684_at angiotensinogen (serpin peptidase 
inhibitor, clade A, member 8)

AGT −1.9 −2.5 −3.3 −3.4

32747_at aldehyde dehydrogenase 2 family 
(mitochondrial)

ALDH2 1.1 −1.6 1.1 −1.5

33756_at amine oxidase, copper containing 3 
(vascular adhesion protein 1)

AOC3 −1.1 −1.4 −1.2 −2.5

41306_at amyloid beta (A4) precursor 
protein-binding, family A, member 2 

binding protein

APBA2BP 1.2 1.7 1.4 1.5

287_at activating transcription factor 3 ATF3 2.4 1.5 5.2 3.4
201_s_at beta-2-microglobulin B2M 1.1 −1.4 1.1 −1.4
2011_s_at BCL2-interacting killer (apoptosis-

inducing)
BIK 1.3 1.6 1.3 1.5

39409_at complement component 1, 
r subcomponent

C1R −1.2 −2.2 −1.4 −1.8

40496_at complement component 1, 
s subcomponent

C1S −1.1 −1.7 −1.2 −1.8

1943_at cyclin A2 CCNA2 2 2.5 1.6 1.6
33950_g_at corticotropin releasing hormone 

receptor 2
CRHR2 1.5 1.4 1.3 1.4

(Continued)
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Supplement Table 4. (Continued)

Probe set ID Gene title Gene 
symbol

Signed mean fold Change
Liver Prostate

A-N T-N A-N T-N
408_at chemokine (C-X-C motif) ligand 1 

(melanoma growth stimulating activity, 
alpha)

CXCL1 2.5 1.1 1.8 1.2

649_s_at chemokine (C-X-C motif) receptor 4 CXCR4 3.3 2.6 3 2.8
38772_at cysteine-rich, angiogenic inducer, 61 CYR61 1.7 −1.2 3.9 2.5
36643_at discoidin domain receptor family, 

member 1
DDR1 1.7 1.6 1.6 1.5

33393_at DEAD (Asp-Glu-Ala-As) box 
polypeptide 19B

DDX19B −1.3 −1.7 −1.2 −1.5

32600_at docking protein 4 DOK4 −1.4 −1.5 −1.4 −1.6
37827_r_at dopey family member 2 DOPEY2 1.4 1.7 1.8 2.3
34823_at dipeptidyl-peptidase 4 

(CD26, adenosine deaminase 
complexing protein 2)

DPP4 1.8 2.4 2.9 2.7

36088_at Down syndrome critical region gene 2 DSCR2 −2.4 −2.8 −1.3 −1.3
167_at eukaryotic translation initiation 

factor 5
EIF5 −1.6 −2.1 −1.5 −1.8

1519_at v-ets erythroblastosis virus E26 
oncogene homolog 

2 (avian)

ETS2 1.3 −1.5 −1.1 −1.9

36543_at coagulation factor III (thromboplastin, 
tissue factor)

F3 2.6 1.9 2.7 2.7

1915_s_at v-fos FBJ murine osteosarcoma viral 
oncogene homolog

FOS 2.2 1.2 5.8 3.9

36669_at FBJ murine osteosarcoma viral 
oncogene homolog B

FOSB 1.5 1.2 5.7 4

39822_s_at growth arrest and 
DNA-damage-inducible, beta

GADD45B 2.7 1.4 2.3 1.4

290_s_at G protein-coupled receptor 3 GPR3 −1.1 −1.6 −1.2 −1.8
35127_at histone cluster 1, H2ae HIST1H2AE 1 1.4 1.2 1.7
31521_f_at histone cluster 1, H4k HIST1H4J 1 1.4 1 1.5
152_f_at histone cluster 2, H4a HIST2H4A −1.6 −1.4 −1.5 −1.5
38833_at major histocompatibility complex, 

class II, DP alpha 1
HLA-DPA1 3.3 2.5 1.4 1.1

38096_f_at major histocompatibility complex, 
class II, DP beta 1

HLA-DPB1 2.8 1.8 1.5 1.1

36878_f_at major histocompatibility complex, 
class II, DQ beta 1

HLA-DQB1 2.3 2.1 1.5 1.4

37039_at major histocompatibility complex, 
class II, DR alpha

HLA-DRA 2.5 1.8 1.6 1.2

36617_at inhibitor of DNA binding 1, dominant 
negative helix-loop-helix protein

ID1 −1.3 −2.2 −1 −1.5

676_g_at interferon induced transmembrane 
protein 1 (9–27)

IFITM1 −1.4 −1.8 −1.9 −2.8

(Continued)
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Supplement Table 4. (Continued)

Probe set ID Gene title Gene 
symbol

Signed mean fold Change
Liver Prostate

A-N T-N A-N T-N
41745_at interferon induced transmembrane 

protein 3 (1–8U)
IFITM3 −1.4 −1.6 −2.1 −3.2

37319_at insulin-like growth factor binding 
protein 3

IGFBP3 1.8 −1.4 1.3 −1

36227_at interleukin 7 receptor IL7R 2.5 2.1 1.6 1.6
35372_r_at interleukin 8 IL8 6.9 2.3 1.9 1.5
38545_at inhibin, beta B 

(activin AB beta polypeptide)
INHBB 3 2.8 1.5 1.7

36355_at involucrin IVL 1.6 1.6 1.3 1.4
1895_at jun oncogene JUN 2.5 1.6 3 2.3
41483_s_at jun D proto-oncogene JUND 2.3 1.8 1.8 1.5
217_at kallikrein-related peptidase 2 KLK2 1.8 2.1 5.7 6.5
35118_at lecithin-cholesterol acyltransferase LCAT 1.1 −1.8 1.1 −1.3
41710_at hypothetical protein LOC54103 LOC54103 1.7 1.5 1.6 1.5
35926_s_at lysozyme (renal amyloidosis) LYZ 2.2 1.9 1.6 1.4
36711_at v-maf musculoaponeurotic fi brosar-

coma oncogene homolog F (avian)
MAFF 3 1.8 1.7 1.2

33146_at myeloid cell leukemia sequence 1 
(BCL2-related)

MCL1 2 1.4 1.5 1.2

33241_at microfi brillar-associated protein 3-like MFAP3L −1.5 −1.9 −1.6 −1.8
668_s_at matrix metallopeptidase 7 

(matrilysin, uterine)
MMP7 2 1.2 4.1 2.8

870_f_at metallothionein 3 MT3 −1.5 −2.8 −1.3 −2
36933_at N-myc downstream regulated gene 1 NDRG1 1.6 1.9 1.5 1.5
37544_at nuclear factor, interleukin 3 regulated NFIL3 1.1 −1.3 1.2 −1.3
190_at nuclear receptor subfamily 4, group A, 

member 3
NR4A3 2.2 1.6 1.6 1.2

31886_at 5’-nucleotidase, ecto (CD73) NT5E −1.3 −1.8 −1.2 −2.1
31733_at purinergic receptor P2X, ligand-gated 

ion channel, 3
P2RX3 1.7 1.6 1.6 1.7

32210_at phosphoglucomutase 1 PGM1 −1.2 −1.8 −1.1 −1.5
36980_at proline-rich nuclear receptor 

coactivator 1
PNRC1 −1 −1.7 −1 −1.4

39366_at protein phosphatase 1, regulatory 
(inhibitor) subunit 3C

PPP1R3C −1.4 −1.9 −1.4 −2

36159_s_at prion protein (p27–30) 
(Creutzfeldt-Jakob disease, 

Gerstmann-Strausler-Scheinker 
syndrome, fatal familial insomnia)

PRNP 1.2 −1.2 −1.1 −1.7

216_at prostaglandin D2 synthase 21 kDa 
(brain)

PTGDS 2.3 1.8 1.4 −1.2

1069_at prostaglandin-endoperoxide synthase 
2 (prostaglandin G/H synthase and 

cyclooxygenase)

PTGS2 1.4 1 2.1 1.2

(Continued)
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Supplement Table 4. (Continued)

Probe set ID Gene title Gene 
symbol

Signed mean fold Change
Liver Prostate

A-N T-N A-N T-N
37701_at regulator of G-protein signalling 2, 

24 kDa
RGS2 3.1 2.3 1.2 −1.3

41471_at S100 calcium binding protein A9 S100A9 −1.9 −4.1 −1.8 −2.4
33305_at serpin peptidase inhibitor, clade B 

(ovalbumin), member 1
SERPINB1 −1.2 −1.6 −1 −1.6

36979_at solute carrier family 2 (facilitated 
glucose transporter), member 3

SLC2A3 1.3 1.1 1.4 1.1

38797_at solute carrier family 39 
(zinc transporter), member 14

SLC39A14 −1.7 −2.9 −1.4 −1.9

38994_at suppressor of cytokine signaling 2 SOCS2 2.2 1.4 1.4 1.1
34666_at superoxide dismutase 2, 

mitochondrial
SOD2 −2.4 −3.2 −1.4 −1.8

38763_at sorbitol dehydrogenase SORD 1.7 1.4 2.4 2.5
38805_at TGFB-induced factor homeobox 1 TGIF1 1.6 1.7 1.5 1.4
39411_at TCDD-inducible poly (ADP-ribose) 

polymerase
TIPARP 2 1.6 1.8 1.3

1715_at tumor necrosis factor (ligand) 
superfamily, member 10

TNFSF10 1.6 1.3 1.9 1.9

904_s_at topoisomerase (DNA) II alpha 170 kDa TOP2A 1.1 1.4 1.1 1.4
32793_at T cell receptor beta variable 19 TRBC1 1.5 1.4 1.5 1.4
38469_at tetraspanin 8 TSPAN8 1.7 2.2 1.6 1.6
40198_at voltage-dependent anion channel 1 VDAC1 −1.5 −1.4 −1.3 −1.5
36909_at WEE1 homolog (S. pombe) WEE1 2 1.5 1.8 1.5
40448_at zinc fi nger protein 36, C3H type, 

homolog (mouse)
ZFP36 2.9 1.5 2.6 1.7

32588_s_at zinc fi nger protein 36, C3H type-like 2 ZFP36L2 2 1.2 1.4 1.1
1514_g_at 1.6 1.7 3.6 3.2
1662_r_at 1.9 2 3.6 4.1
40487_at Transcribed locus −1.2 −1.6 −1.1 −1.5
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