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Abstract: Nicotine, the addictive component of cigarette smoke has profound effects on the brain. Activation of its receptors 
by nicotine has complex consequences for network activity throughout the brain, potentially contributing to the addictive 
property of the drug. Nicotinic receptors have been implicated in psychiatric illnesses like schizophrenia and are also 
neuroprotective, potentially benefi cial for neurodegenerative diseases. These effects of nicotine serve to emphasize the 
multifarious roles the drug, acting through multiple nicotinic acetylcholine receptor subtypes. The fi ndings also remind us 
of the complexity of signaling mechanisms and stress the risks of unintended consequences of drugs designed to combat 
nicotine addiction.
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Smoking, perhaps, is the number one preventable cause of serious illnesses like heart disease, stroke 
and cancer. The fact that nicotine is an addictive drug of abuse is undisputed. At the same time, the drug 
is thought to be neuroprotective in cases of neurodegenerative diseases like Alzheimer’s disease (AD) 
and Parkinson’s disease (PD), as well as in psychiatric disorders like depression and schizophrenia. 
How the drug mediates its effects is still largely unknown. Here we review what is known about nico-
tine’s actions on the brain and mechanisms that might contribute to its effects. Using two brain structures, 
the hippocampus and the Ventral Tegmental area (VTA), known to be involved in some or all effects 
of nicotine, as examples, we will sequentially address the following issues—a) properties and functional 
distribution of nicotinic acetylcholine receptors (nAChRs); b) signaling by nAChRs, c) what such 
mechanisms might inform us regarding nicotine addiction and the role of nAChRs in brain disorders 
and d) therapeutic approaches to combat these illnesses.

Neuronal Nicotinic Receptors: Subtypes and Distribution
It is well accepted that the actions of nicotine are mediated by its ability to activate neuronal nicotinic 
receptors (nAChRs). The mammalian nAChR family consists of a number of subunits arising from a 
total of 11 gene products (α2–α7, α9 α10, β2–β4; Nicke et al. 2004), the α subunits being putative 
agonist binding subunits, based on homology with the muscle nicotinic receptor (α1). These receptors 
are arranged as pentamers with the fi ve subunits forming a wall surrounding a central cationic ion 
channel. Activation of the receptors opens the central pore allowing cations to fl ux through, depolarizing 
neurons to their fi ring threshold.

Distribution of nAChRs in the VTA and hippocampus
In the mammalian brain there are two predominant nAChR subtypes. The fi rst is a homomeric receptor 
consisting of fi ve α7 subunits (α7-nAChRs) and the second is a heteromer consisting of a combination 
of α4 and β2 gene products, with or without other subunits (α4β2*-nAChRs; the * refl ects the potential 
heterogeneity in subunits. mRNA for almost all the common brain nAChR subtypes are found in VTA 
neurons (Charpantier et al. 1998; Champtiaux et al. 2002; Han et al. 2000). There are differences 
in abundance of message for various nAChR subunits between the hippocampus and the VTA. 
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The mammalian hippocampus appears to contain 
mainly the α7 mRNAs while the VTA expresses a 
number of nAChR subunits to varying degrees. In 
the VTA, there are differences in subunit mRNA 
abundance between dopaminergic and non-
dopaminergic neurons, with the latter mainly 
expressing α7 mRNAs (Table 1).

The two classes of nAChRs are identifi ed by 
differences in their pharmacology (Table 2). 
α7-nAChRs have a relatively lower (µM) affi nity 
for nicotine, compared to the heteromeric subtype, 
while they have a high affi nity for the snake venom 
toxin alpha-bungarotoxin (αBTX). Thus, the dis-
tribution of the two receptor subtypes track with 
high affi nity nicotine and αBTX binding (Seguela 
et al. 1993; Breese et al. 1997; Sorenson and Chiap-
pinelli, 1992). As expected from mRNA distribu-
tions, nAChRs are widely distributed in the 
hippocampus and along the mesolimbic dopami-
nergic pathway. All dopaminergic neurons at the 
VTA appear to express a number of pharmaco-
logically identifi ed nAChRs, though only half of 
these neurons seem to possess the α7 subclass 
(Klink et al. 2001). Local GABAergic interneurons 
possess α4β2*-nAChRs (Klink et al. 2001). In the 
hippocampus, however, α7-nAChRs predominate 
in the stratum radiatum interneurons (Klein and 
Yakel, 2005) while heteromeric subtypes might 
exist in interneurons from other regions, e.g. stra-
tum oriens (Khiroug et al. 2004). Using radiola-
beled methyllycaconitine (MLA) an antagonist 
selective for the α7-nAChRs (Ward et al. 1990) and 
nicotine binding studies to discriminate between 
α7-nAChRs and α4β2*-nAChRs, it was shown that 
the hippocampus contained approximately two-fold 
greater α7-nAChR sites than the VTA but about 
4-fold less of the α4β2*-nAChR sites (Mugnaini 
et al. 2002).

Subcellular distribution
In neurons, functional nAChRs are not only widely 
distributed across different neuron types but are 
also differentially localized within a neuron—on 
the soma, dendrites or synaptic terminals. This 
diverse distribution of the receptors presents a 
challenge to the functional interpretation of recep-
tor activation. It suggests a modulation of plastic-
ity and activity at a network level more than linear 
modulations of individual synaptic pathways. In 
this section, we summarize evidence for functional 
localization of nAChRs.

Presynaptic treminals
nAChRs are present at presynaptic terminals of other 
transmitter systems where they modulate transmit-
ter release. The key subtype mediating these effects 
is the α7-nAChR while other subtypes play a role 
as well. Together these receptors at presynaptic 
locations infl uence the release of glutamate (Gray 
et al. 1996; Sharma et al. 2008; Sharma and 
Vijayaraghavan, 2003), GABA (Lena and Changeux, 
1997), norepinephrine (Clarke and Reuben, 1996), 
and dopamine (Grady et al. 2007), among others. 
Modulation of transmitter release at various nerve 
terminals could potentially be a mechanism for 
nicotine-mediated alterations in local synaptic 
plasticity. Small, spontaneous release events, 
increased by nicotine, can modulate local protein 
synthesis and affect synaptic effi cacy (Sutton et al. 
2004). At the mossy fiber terminals of the rat 
hippocampus, nicotine mediates an unusual form of 
plasticity. The drug causes a burst of glutamate 
release events in the absence of incoming action 
potentials, mediated by α7-nAChRs (Sharma and 
Vijayaraghavan, 2003). This burst consists of both 
an increase in glutamate release frequencies as well 
as a CaMKII-mediated concerted release of multiple 
quanta at these terminals (Sharma et al. 2008). 
Activation of α7-nAChRs induces a long-lasting 
slow calcium transient at these terminals resulting, 
at least partially, from the release of calcium from 
internals endoplasmic reticulum stores (Sharma 
et al. 2008). Most surprisingly, this burst of transmit-
ter release is suffi cient to drive the postsynaptic 
neuron above its fi ring threshold, in what is the fi rst 
instance of a presynaptic action potential-independent 
transmission in the CNS (Sharma et al. 2008; 

Table 1. Comparison of nAChR subunit mRNA 
expression in hippocampus and VTA.

Region α3 α4 α5 α7 β2 β4
Hippocampus + + + ++ + +
Dentate + + + ++ + +
Prefrontal ++ ++ +++ +
VTA DA neurons ++ ++ ++ ++ ++ ++
VTA Non-DA 
neurons

+ + +? ++ + ++

Relative distribution of common nicotinic subunit mRNAs in the 
hippocampus and VTA. (?) indicates confl ict among reports. Data 
compiled from (Court JA et al. 1995; Breese et al. 1997; Rubboli et al. 
1994; Ostermann et al. 1995; Lobron et al. 1995; Azam et al. 2003; 
Azam et al. 2002; Klink et al. 2001).
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Sharma and Vijayaraghavan, 2003). The relevance 
for this signaling mechanism for nicotine actions in 
vivo comes from the observation that at physiolog-
ical temperatures, levels of nicotine found in the 
serum of smokers can mediate these effects (Sharma 
et al. 2008). The fi ndings suggests that, at this syn-
apse, nicotine ‘hijacks’ normal signaling pathways, 
altering synaptic strength in a manner independent 
of the physiological context but dependent on the 
presence of nicotine. Such modulation might have 
a very signifi cant impact nicotine-mediated addic-
tive processes and would be consistent with the more 
homeostatic view of addiction discussed below.

GABA interneurons
A common site for functional nAChRs appears to 
be at the soma and dendrites of GABAergic inter-
neurons. In the VTA, local GABAergic neurons, 
as well as the feedback GABAergic input from the 
nucleus accumbens, contain α4β2*-nAChRs 
(Fagen et al. 2003; Mansvelder et al. 2003). These 
receptors, upon activation of cholinergic inputs 
might regulate the firing of the VTA output 
neurons controlling the patterning and timing of 
responses.

In the hippocampus, interneurons of the 
stratum radiatum, and other regions, contain 
α7-nAChRs. The receptors appear to be localized 
both at somatic and dendritic sites (Fayuk and 
Yakel, 2007; Klein and Yakel, 2006; Klein and 
Yakel, 2005) as well as at interneuron terminals 
where they modulate GABA release (Alkondon 
et al. 1999). However, α7-nAChRs are also pres-
ent on secondary GABAergic interneurons and 
can thus mediate both inhibition as well as dis-
inhibition of the output pyramidal neurons (Ji and 
Dani, 2000).

Principal neurons
There is evidence for the existence of functional 
nAChRs on dopaminergic output neurons at the VTA 
(Mansvelder et al. 2003). Putative α4β2*-nAChRs 
at somatodendritic sites might provide excitatory 
inputs for these neurons while α7-nAChRs at nerve 
terminals would enhance dopamine release at the 
nucleus accumbens, the target area. Coupled with 
the modulation of interneurons by nAChRs, these 
results suggest a complex regulation of the reward 
pathway by nAChRs.

In the hippocampus, evidence for the existence 
of nAChRs on the pyramidal neurons, the principal 
excitatory output neurons of the area, is more 
equivocal. While small nicotinic currents have 
been demonstrated from these neurons (Ji et al. 
2001), other studies have failed to discern these 
signals (Khiroug et al. 2003).

Astrocytes
Studies over the last decade have demonstrated 
that astrocytes have more active role to play in 
modulation of synaptic activity than previously 
imagined. These cells have a form of excitability, 
not mediated by fast action potentials, but by 
slowly propagating calcium signals (Araque et al. 
1999). In addition, accumulated evidence suggests 
an ability of these cells to communicate back to 
neurons by release of multiple vesicular and non-
vesicular signals (Haydon, 2001).

Our studies showed that hippocampal astrocytes 
have functional α7-nAChRs that induce large 
calcium transients in these cells (Sharma and 
Vijayaraghavan, 2001). These signals result from 
a complex cascade of amplifi cation upon receptor 
activation, discussed below. Presence of nAChRs 
on astrocytes in situ has been demonstrated as well 

Table 2. Functional nAChR pharmacology.

Subtype Agonist EC50 (µM) Antagonists IC50 (µM)
α7-nAChRs ACh 1301, 1552 αBTX 0.00165

Nicotine 492, 273 MLA 0.000256

Choline 16001, 4934 Conotoxin ImI 0.0227

Mecamylamine 15.68

α4β2*-nAChRs ACh 2.13 DHβE 0.0810

Nicotine 0.99 Mecamylamine 0.77–2.38

Data compiled from 1) Alkondon et al. 1997; 2) Gopalakrishnan et al. 1995; 3) Alkondon and Albuquerque, 1993; 4) Gonzalez-Rubio et al. 
2006; 5) Zhang et al. 1994 6) Palma et al. 1996; 7) McIntosh et al. 1999; 8) Papke et al. 2008; 9) Alkondon and Albuquerque,1995; 10) Buisson 
et al. 1996.
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(Gahring et al. 2005; Gahring et al. 2004a; Gahring 
et al. 2004b), suggesting another site for nicotinic 
modulation in the brain. As astrocytes are thought 
to be involved in controlling the local excitation 
of neuronal synapses, nicotinic control of these 
cells might contribute to the overall effects of the 
drug on synaptic function and plasticity.

In summary, functional nAChRs are widespread 
in their distribution among various cell types in the 
brain, controlling all aspects of signaling between 
neurons. This potentially complex modulation of 
network activity by nAChRs is illustrated in 
Figure 1. These fi ndings suggest caution in linear 
interpretations of the drug effects in order to arrive 
at mechanistic correlates of behavioral changes 
induced by the drug.

nAChR Signaling Mechanisms
The widespread incidence of nAChR-mediated 
rapid chemical transmission has yet to be demon-
strated in the brain. In the stratum radiatum 
interneurons of the mammalian hippocampus, 
α7-nAChR synaptic currents were reported after 
the blockade of other major transmitter systems 

with antagonists (Frazier et al. 1998) while these 
were not observed in another study (McQuiston 
and Madison, 1999). Similarly, a fraction of syn-
aptic currents recorded from CA1 pyramidal cells 
were consistent with nAChR responses (Hefft et al. 
1999). However, a number of caveats plague these 
studies, the chief being the lack of information on 
the relationships between nAChRs, acetylcholine 
esterases (AChEs), and cholinergic innervation in 
an acute slice preparation, as well as an over reli-
ance on pharmacological agents.

Both the unusual locations of these receptors, 
as well as the observations that very few postsyn-
aptic specializations have been observed at ACh 
release sites (Contant et al. 1996), suggest a non-
traditional role for nAChR activation, probably by 
transmitter diffusion.

Such an idea runs into the problem of having to 
account for receptor desensitization. All ligand-
gated ion channels desensitize, some faster than 
others. Among nAChRs, the α7-nAChR subtype 
shows rapid desensitization with nicotine with a 
time constant of a few milliseconds, while the 
slowly desensitizing receptor types do so in the 
order of a few seconds (Zhang et al. 1994). It has 
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Figure 1. Intra-circuit distribution of functional nAChRs. A) α7-nAChRs (Red Boxes) and α4β2-nAChRs (Blue Boxes) distribution in the VTA. 
The homomeric receptors are predominant on the glutamatergic terminals of the inputs from the prefrontal cortex (PFC; Green lines). The 
heteromeric receptor is present on the GABAergic interneurons (INT) and on the Principal dopaminergic neurons (DA) which send their 
outputs to the nucleur accumbens (NAcc). The presence of functional nAChRs on astrocytes (Ast) from the VTA has yet to be demonstrated 
(denoted by ?). Based on data from other systems, however, this is a distinct possibility. B) Distribution in the CA3 region of the hippocampus. 
The main functional evidence available is for the α7-nAChRs (Red Boxes). The homomeric receptor is on the GABAergic interneurons (INT) 
and at the mossy fi ber boutons (Green circles) that are en passant terminals made on to the dendrites of the CA3 pyramidal cell (Pyr) and 
originating from the granule cells (Gran) of the dentate gyrus. Hippocampal astrocytes (Ast) possess functional α7-nAChRs. The presence of 
functional nAChRs on granule cells and the pyramidal cells are controversial (indicated by ?). The nAChR modulated output is the axons of 
the CA3 pyramidal cells that innervate the Principal cells in the CA1 region. The fi gure illustrates the potentially complex modulation of network 
output by nAChRs.
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been argued that at low doses of nicotine might 
desensitize the α4β2*-nAChRs but not the 
α7-nAChRs due to the fact that the latter has lower 
affi nity for nicotine (Fenster et al. 1997; Mansvelder 
et al. 2003). While one cannot rule out the role of 
desensitization in mediating the behavioral effects 
of nicotine, the direct implication of this channel 
property might be diffi cult to demonstrate. First, 
channel kinetics and biophysical states of these 
receptors are not completely understood. Second, 
the assumption underlying these arguments, that 
nicotine concentrations seen in the serum of 
smokers are the same as that encountered by the 
receptors at synaptic and extrasynaptic sites, is not 
necessarily correct. In fact, nicotine might be pres-
ent at higher concentrations in the brain and might 
have slower clearance rates (Ghosheh et al. 2001). 
Third, effects attributed to receptor desensitization 
might be effects downstream to receptor activation, 
e.g. presynaptic alterations in glutamate release 
probabilities in areas where nAChRs modulate its 
release. Lastly, the relationship between time 
courses of desensitization and inactivation (which 
are often used synonymously in nAChR literature) 
and nicotine-mediated changes in behavior are not 
intuitively obvious. The diffuse distribution of 
nAChRs makes it diffi cult to predict what the 
consequences of either activation or desensitization 
might be for network excitability and plasticity. In 
physiological context, it is also not obvious how 
channel desensitization would affect signaling 
based on ACh diffusion.

A unique feature of nAChRs, especially the 
α7-nAChR subtype, is that they have a high relative 
permeability for calcium and can also effectively 
raise intracellular free calcium concentration ([Ca]i). 
This ability of the receptors arises from being cou-
pled to downstream calcium amplifi cation mecha-
nisms. Studies indicate that calcium fl ux through 
α7-nAChRs can be dramatically amplifi ed by down-
stream release of calcium from ER stores via CICR 
(Sharma et al. 2008; Sharma and Vijayaraghavan, 
2003; Vijayaraghavan et al. 1992). This ability of 
α7-nAChR to effi ciently raise intracellular calcium 
levels plays a dominant role in the physiological 
function of the receptors and makes them effective 
mediators of downstream calcium signaling cascades 
(McKay et al. 2007; Dajas-Bailador and Wonnacott, 
2004). The α4β2-nAChRs, on the other hand may 
play a more traditional role for ligand-gated ion 
channels which is to provide the initial depolarization 
for neuronal fi ring. At the same time, by activating 

voltage-gated calcium channels (VGCCs), these 
receptors would also play important roles in 
nAChR-mediated calcium signaling .

The time course of calcium signals generated by 
nAChRs as well as consequent physiological 
responses is also not consistent with receptor 
desensitization. In response to nicotine application, 
α7-nAChRs on mossy fiber terminals in the 
hippocampus show slowly rising calcium transients 
with decay times dependent on the duration of 
agonist application in the order of many seconds 
(Sharma et al. 2008). While most of the calcium 
signals observed in response to α7-nAChR activa-
tion comes from amplifi cation via CICR, it still does 
not explain agonist exposure time-dependent sig-
nals, over periods up to 200s generated by a recep-
tor that desensitizes in milliseconds (Sharma et al. 
2008; Sharma and Vijayaraghavan, 2003). These 
results, coupled with many studies on the down-
stream effects of α7-nAChRs (e.g. Berger et al. 
1998; Dajas-Bailador et al. 2000) suggest the pos-
sibility that a small, slow desensitizing component 
might be the relevant α7-nAChR signal mediating 
extrasynaptic and calcium-dependent effects of the 
receptor. If true, this would imply that measuring 
calcium signals might be a more sensitive assay for 
functional α7-nAChRs than whole cell current 
measurements. The idea remains to be tested.

Considering nAChRs primarily as modulators 
of calcium signaling rather than primary mediators 
of synaptic transmission makes the idea of volume 
transmission more feasible as they might not 
require fast and effi cient delivery of ACh. Evidence 
for such a mechanism must, however, come from 
further studies on the nature of cholinergic signal-
ing. For example, determining the extent of agonist 
diffusion requires adequate knowledge of the rela-
tive distribution of nAChRs, transmitter release 
sites, and local AChE concentrations. It is tempting 
to speculate that, unlike the neuromuscular junc-
tion, the AChE forms a pocket around release sites 
providing a reasonable distance for free diffusion 
of ACh enabling it to act on nAChRs within the 
pocket. This idea needs to be tested.

Nicotinic Receptors in Disease States

Autosomal dominant frontal lobe epilepsy 
(ADNFLE)
Some information on what role these receptors 
might play in CNS physiology comes from 
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examining phenotypes of naturally occurring 
mutations in nAChRs genes. ADNFLE has been 
shown to be linked to nAChRs (Marini and 
Guerrini, 2007) which includes the α4 gene 
mutations (Phillips et al. 2000) as well as muta-
tions in the β2 gene (Bertrand et al. 2005; Phillips 
et al. 2001). In vitro studies, using receptors recon-
stituted in Xenopus oocytes, have shown that 
relevant mutations to the α4 subunit results in a 
receptor response that shows increased desensiti-
zation and altered calcium permeability (Bertrand 
et al. 1998). In mice harboring the mutation, expo-
sure to nicotine elicits a behavior termed as the 
dystonic arousal complex, a collection of symp-
toms akin to those seen in ADNFLE (Teper et al. 
2007). Similarly, ADNFLE mouse models show 
an increased sensitivity for the seizure generating 
effects of nicotine (Klaassen et al. 2006). While 
these studies cannot be over generalized as nAChR 
mutations might account for only a subpopulation 
of ADNFLE sufferers, the results nonetheless 
demonstrate a correlation between altered nAChR 
activity and changes in neuronal excitability. Inter-
estingly, many pathological nAChR mutations can 
be localized to regions predicted to affect ligand-
induced channel gating from structural models 
(Taly et al. 2006).

α7-nAChRs in schizophrenia
Schizophrenic patients show a much greater incidence 
of smoking than the general population (e.g. see 
Gopalaswamy and Morgan, 1986). These fi ndings 
led to the examination of nAChRs in schizophrenia. 
(Bickford et al. 1993).

Auditory gating is measured as changes in a 
specifi c peak in EEG recordings. This response, 
known as the P50 auditory evoked response, is 
seen about 40–80 ms after the presentation of the 
auditory stimulus. In normal population presenta-
tion of two stimuli closely spaced in time (~500 ms) 
results in the attenuation of the P50 response to the 
second stimulus. This relative suppression of the 
P50 response is an indicator of sensory gating. 
There is much less suppression of the P50 evoked 
response in schizophrenics (Cullum et al. 1993), 
leading to the idea that defects in this process 
contribute to schizophrenic symptoms. Consistent 
with epidemiological data, smoking restores, to 
a large extent, the P50 ratios in schizophrenics 
(Adler et al. 1993) implying a role for nAChRs in 
this process. A number of studies indicate that 

P50 defi cits show signifi cant correlation with the 
level of α7-nAChRs in the brain (Adler et al. 
1998). Further, infusion of α7-nAChR antagonists 
decrease P50 ratios (i.e. response to the second 
tone not suppressed) while agonists increase them 
(Simosky et al. 2003). This effect is mimicked by 
the atypical antipsychotic, clozapine, in a manner 
consistent with its effects being via α7-nAChRs 
(Simosky et al. 2003). Linkage analyses showed 
that the P50 changes were mapped to the chromo-
somal locus 15q13–q14 (Leonard et al. 2000). The 
α7 gene lies within this locus thus providing good 
correlation between α7-nAChRs, P50 defi cits and 
schizophrenia (Freedman et al. 1997). These 
results also suggest that therapeutic interventions 
based on modulating α7-nAChR function might 
be useful in the treatment of certain schizophrenic 
symptoms as well.

Nicotine and Alzheimer’s disease
A key fi nding over the years has been the role of 
α7-nAChRs in neuronal survival (Mechawar et al. 
2004; Berger et al. 1998; Roy et al. 1998; Pugh 
and Margiotta, 2000; Dajas-Bailador et al. 2000) 
increasing the plausibility of a role for these recep-
tors in neurodegenerative diseases.

Nicotine has been shown to increase memory 
and attention in normal humans (Warburton, 1992). 
In AD the drug has been shown to improve mem-
ory defi cits. This idea is supported by epidemio-
logical data suggesting that incidence of AD among 
smokers is signifi cantly less than in non-smokers 
(Perry et al. 1999). The cholinergic hypothesis for 
AD has been prevalent for a long time based on 
the fi nding that loss of basal forebrain cholinergic 
neurons is one of the early symptoms of AD. This 
led to the use of acetylcholine esterase (AChE) 
inhibitors for treatment of the disease (Bartus et al. 
1982). The results from this line of therapy have 
been disappointing, thus undermining the idea as 
a whole. Upon refl ection, however, these fi ndings 
are not contradictory to the cholinergic hypothesis. 
The effi cacy of the AChE inhibitors, whose func-
tion is to increase the lifetime of the transmitter in 
the extracellular space, depends on the presence 
of cholinergic projections. If these are the earliest 
neurons to die, as suggested, the loss of projections 
to would render inhibition of AChE ineffective. 
More recent data suggests that nAChR agonists 
and antagonists might be a better, more effective, 
therapeutic approach to the disease. Some attempts 
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at drug development based on this idea have been 
made. This is summarized in the next section.

A feature of α7-nAChRs is their modulation by 
the beta amyloid 1–42 peptide (Aβ), the key com-
ponent of plaques found in the brain of AD patients. 
Aβ binds to the receptor with picomolar affi nity 
(Wang et al. 2000) and it has been shown that the 
peptide, by activating α7-nAChRs, can modulate 
the MAPK pathway and CREB activation (Dineley 
et al. 2001). At the same time the receptor is down-
regulated in AD brains (Oddo and LaFerla, 2006). 
In transgenic mouse models of AD, nicotine via 
the MAPK pathway increases the hyperphos-
phorylation of the tau protein, the cause of neuro-
fibrillary tangles, which is a part of the AD 
pathology as well (Oddo and LaFerla, 2006; Oddo 
et al. 2005). Thus, the exact mechanisms which 
mediate the enhanced cognitive functions seen 
upon nicotine treatment remains unclear.

Parkinson’s disease
Nicotine has been shown to be protective against 
PD as well (for a recent review see Singh et al. 
2007) . In PD, there is a specifi c loss of the dopa-
minergic neurons of substantia nigra, which pro-
vide inhibitory control to the neurons of the 
striatum. Once again the role of nAChRs is likely 
to be complex, involving differential modulation 
of a number of pathways. In mouse models of PD, 
where selective lesions of dopaminergic neurons 
were made by injection of 6-hydroxy dopamine 
(6-OHDA) selectively into the striatum or the 
substantia nigra, the levels of a number of nAChRs 
showed dramatic decline though the α7-nAChR 
levels remained unchanged (Jellinger, 2002). In 
patients with PD there is a selective increase in 
α7-nAChRs while levels of heteromeric nAChRs 
decline (Bordia et al. 2007; Janhunen and Ahtee, 
2007). α7-nAChRs have been shown to trigger an 
anti-inflammatory pathway in brain microglia 
(Shytle et al. 2004). The activation of the receptor 
can suppress the inhibition of pro-infl ammatory 
transcription factors NFkappaB and c-myc (Liu 
et al. 2007).

In neurons, dopamine is oxidized by monoamine 
oxidases (MAOs). One class of MAO; MAO-B, 
oxidizes dopamine and various primary and tertiary 
amines to their corresponding aldehyde and free 
amines, resulting in the release of hydrogen perox-
ide a source of free radicals. The oxidation of 
dopamine to dihydroxy phenyl acetic acid, via a 

series of reactions, generates a number of reactive 
oxygen species (ROS). As the brain has a more 
limited capacity to clear ROS than other tissues, 
these species can trigger a cytotoxic cycle, wherein 
in the presence of solvated Fe(II) and H2O2, the 
toxic 6-OHDA is formed (Fenton Reaction). The 
6-OHDA, in turn, is able to mobilize more Fe(II) 
from stored forms of iron in proteins, thus propa-
gating neurotoxicity and neuronal death. Nicotine 
has been shown to be neuroprotective by blocking 
MAO activity, thus acting as a protective antioxi-
dant (Linert et al. 1999). This is discussed further 
under the section on clinical options (see below).

Thus there are both epidemiological, as well as 
potential mechanistic bases, for the protective role 
of nAChRs in neurodegenerative diseases and it is 
likely that α7-nAChRs play an important role.

Nicotinic Receptors and Addiction

Nicotine and smoking
The peak concentrations of nicotine reached in 
the bloodstream upon smoking a cigarette 
is ∼0.5 µM–1 µM (Benowitz and Henningfi eld, 
1994; Henningfi eld et al. 1993). However, nicotine 
appears to be concentrated in different compart-
ments. In the brain, the concentrations of nicotine 
might be as much as fi ve-fold that of the serum 
(Ghosheh et al. 2001). As the substance is 
hydrophobic and can also enter cells, it is almost 
impossible to determine concentrations at synapses. 
This becomes an interpretational problem, as 
discussed below.

Potential mechanisms underlying 
nicotine addiction
The fact that nicotine is an addictive drug is no 
longer in dispute, if it ever was. On the other hand, 
the mechanistic basis of this process is still far from 
clear.

A large body of literature has focused on the 
role of the mesolimbic dopaminergic circuit in 
addiction, linking addiction to reward seeking 
behavior. In 1958, James Olds published a series 
of papers identifying this system as the ‘pleasure 
centers’ of the brain. These studies demonstrated 
that electrical stimulation of these areas resulted 
in a powerful positive drive in animals that 
proved stronger than other innate drives like hunger 
and self-preservation. Further, placing electrodes 
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in this region resulted in a strong self-stimulation 
by the animals (OLDS, 1958b; OLDS, 1958a; 
OLDS, and OLDS, 1958; OLDS, 1958c). The link 
between these studies an addiction, however, came 
a couple of decades later, with studies demonstrat-
ing that delivering drugs of abuse, like cocaine, at 
the reward centers identifi ed by Olds resulted in 
the same behavior resulting in an equally strong 
drive to self-administer these agents (Goeders and 
Smith, 1983). The fi ndings resulted in a paradigm 
shift in our view of addiction changing from a 
negative drive, i.e. to avoid withdrawal symptoms, 
to a positive connotation to the drugs themselves.

In the subsequent years, a vast literature was 
generated showing the action of various drugs 
on the mesolimbic reward system (McClung 
and Nestler, 2008; Koob and Nestler, 1997; 
Nestler, 1994a; Nestler, 1994b; Nestler et al. 1993; 
Nestler, 1992).

The mesolimbic reward system originates as a 
bundle of dopaminergic fi bers at the ventral teg-
mental area (VTA) and fans out to a number of 
limbic areas including the nucleus accumbens 
(NAcc) and the prefrontal cortex. Dopaminergic 
neurons of the VTA are under the control of both 
GABAergic interneurons as well as incoming 
glutamatergic inputs from the prefrontal cortex. 
These glutamatergic inputs into the VTA provide 
the main excitatory control for dopamine release 
to further downstream areas of the pathway (Sesack 
and Pickel, 1992; Taber et al. 1995; Taber and 
Fibiger, 1995). Some of these inputs also terminate 
at the nucleus accumbens potentially providing a 
positive feed forward mechanism at the reward 
pathways (Sesack and Pickel, 1992).

There appear to be two pathways by which 
drugs of abuse modulate the mesolimbic dopami-
nergic system: the fi rst is the direct alteration of 
signaling at the VTA and the second is the modula-
tion of dopamine release at terminals in the NAcc. 
Nicotine appears to modulate both the excitatory 
as well as inhibitory inputs on the dopaminergic 
neurons of the VTA.

Drug Addiction: A homeostatic view
The prevailing wisdom is that addiction is a learnt 
behavior, which implies that like other forms of 
learning and memory, the consequence of nicotine 
exposure would be a net increase in long-term syn-
aptic strength. It is being recognized that widespread 
distribution of receptors for drugs of abuse implies 
that their action is not restricted to the mesolimbic 

reward pathway. This leads to a paradigm shift in 
our way of thinking about addiction and other 
actions of these drugs. nAChRs are present in a 
number of cortical, midbrain, and hindbrain loci.

An attractive concept put forth a few years ago 
by Koob and colleagues. The idea is that drug 
addiction is a means of self-medication for main-
taining hedonic homeostasis in the brain- an 
acceptable balance of positive and negative 
affective states. According to this theory, drug 
addiction is a complex phenomenon involving a 
lot more than just activation of reward pathways. 
It also links the addictive process to emotional 
dissonance explaining the greater prevalence of 
drug abuse among people with mood disorders. 
This, more inclusive, viewpoint most certainly 
involves a host of neurotransmitter systems in a 
number of areas of the brain.

The term ‘allostasis’ is used to refer to this 
condition where the brain must vary all its param-
eters to match them to perceived environmental 
demands, in order to maintain stability. This also 
implies that when stability is achieved, it includes 
the additional external variable, the drug, and 
withdrawal of the drug would consequently lead 
to instability. One consequence of this instability 
in addicts would be a negative hedonic balance, 
leading to craving for the drug, attentional bias in 
the form of preoccupation and anticipation, all 
of which lead to continued drug use or relapse 
(Koob and Le Moal, 1997; Koob, 1996). Changes 
in synaptic strength induced by previous exposure 
to addictive drugs would now lead to spiraling 
distress as the brain attempts to reach a new 
homeostasis.

There are a number of attractive facets to this 
idea. First, it implies that a vast number of experi-
ences, drug related or not, can be addictive, a 
conclusion intuitively attractive. Second, it takes 
into account the non-linearity of signal processing 
in the brain, raising the idea that it is possible to 
arrive at a common endpoint from a number of 
different circumstances. Such a mindset would also 
be valid for other psychiatric disorders. Third, it 
allows for a common perspective for the action of 
a number of addictive drugs that have a wide range 
of targets and end results and also provides an 
easier explanation for the small degree of 
co-morbidity among drugs of abuse. Fourth, as the 
brain will go into a long lasting dynamic instabil-
ity until it fi nds a new, acceptable, homeostatic 
state, it also predicts the possibility of relapse after 
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considerable periods of abstinence. Lastly, it 
recognizes the importance of the individual in the 
addiction process, implying that the strength and 
nature of the drugs abused would depend on the 
initial and the end hedonic state of the individual. 
It drives addiction research from searching for 
common brain pathways to more individually 
tailored hypotheses, implying that it might be futile 
to look for a one size fi ts all treatment approaches. 
This is defi nitely borne out in clinical studies with 
various treatment options to tobacco addiction.

The wide distribution of nAChRs is certainly 
consistent with this view. Our recent fi ndings that 
activation of α7-nAChRs in the hippocampus leads 
to synaptic transmission independent of informa-
tion coming down the presynaptic axon (Sharma 
et al. 2008; Sharma and Vijayaraghavan, 2003). 
This is consistent with the idea of allostasis in that 
nicotine usurps normal signaling pathways result-
ing in strengthening of synapses in non-physiolog-
ical contexts. Such an altered homeostatic state is 
now dependent on the presence of the drug, the 
withdrawal of which would result in instability and 
distress.

Current Treatment Options
A number of treatment options are currently avail-
able or in the development process to target nico-
tine addiction. In this section, we will briefly 
summarize some of the more promising approaches 
that can augment, or substitute for, current nicotine 
replacement therapies (Table 3).

Nicotine Vaccines
A recent approach to tackling nicotine addiction is 
to raise antibodies against the drug to prevent its 
access to the brain. A number of companies are 
developing such vaccines (Novartis, Sanofi-
Aventis, Nabi Biopharmaceuticals, Xenova 
Group). The idea is to link nicotine, as a hapten, 
to carrier proteins like the bacteriophage Qβ coat 
protein (Cornuz et al. 2008), in order to make it an 
effective immunogen.

While initial studies have shown this approach to 
result in a statistically signifi cant increase in the rates 
of abstinence among smokers, the long-term effi cacy 
of this approach remains to be determined. While no 
serious side effects of this treatment have been noted 
in humans, a number of issues need to be resolved 
and await a longer-term examination of this approach 
(LeSage et al. 2006b; LeSage et al. 2006a). A risk, is 

that, as the vaccine might only sequester a fraction 
of the serum nicotine, it might induce patients to 
smoke more. While this concern has not been borne 
out from limited studies, it still needs to be resolved. 
A second issue is one of withdrawal. As would be 
expected, in the presence of nicotine antibodies, the 
drug does not alleviate its own withdrawal symp-
toms. An interpretation of this outcome would be 
that nicotine use would no longer be rewarding to 
ameliorate withdrawal symptoms and therefore be 
less reinforcing. However, a converse argument, 
based on the viewpoint of addiction outlined above, 
would be the following—if the driving need for 
hedonic homeostasis persists, then there would be 
an increased risk that as nicotine fails to serve the 
need, other drugs might be sought after to fi ll the 
need. The danger that one would merely be swapping 
drugs needs to be appreciated.

Altering nicotine metabolism
Once it enters the bloodstream, nicotine is rapidly 
metabolized in the liver. The immediate reac-
tion step is the conversion of nicotine to its 
∆1’(5’)—iminium form. This conversion is catalyzed 
by the Cytochrome P450 enzyme CYP2A6. The 
iminium form is rapidly oxidized to a major nico-
tine metabolite cotinine. CYP2A6 is the key 
enzyme in this pathway, also catalyzing the 
conversion of cotinine to t-3’-Hydroxycotinine 
(Hukkanen et al. 2005; Dempsey et al. 2004). 
CYP2A6 is a highly polymorphic gene, with at 
least 23 numbered variants differing in their expres-
sion, stability and activity. In a manner analogous 
to Alcohol dehydrogenase, these variants determine 
the clearance rate of nicotine and thus affect smok-
ing behaviors. (Nakajima and Yokoi, 2005; 
Yamanaka et al. 2005). In a few studies methox-
salen, a CYP2A6 inhibitor reduced subjects’ desire 
to smoke thus increasing latency to the lighting of 
the next cigarette (Siu and Tyndale, 2008; Sellers 
et al. 2003a; Sellers et al. 2003b).

Further studies are under way evaluating the 
effi cacy of CYP inhibitors coupled with other 
approaches like nicotine replacement therapy.

nAChR agonists and antagonists
The use of nAChR agonists and antagonists has 
been the area targeted by the bulk of pharmaceuti-
cal research over the last few years. A number of 
candidate drugs have been developed that are either 
in the market or at various testing stages.
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Varenicline, a drug based on the alkaloid 
cytisine, is a partial agonist at the α4β2*-nAChRs 
and a full agonist at α7-nAChRs (Mihalak et al. 
2006) and has been approved by the FDA for smok-
ing cessation treatments. While the relative action 
of this drug on the two nAChR subtypes vis a vis 
its effi cacy in smoking cessation is not clear, it is 
assumed that it alters the mesolimbic reward system 
by modulating dopamine release (Stack, 2007).

The marine worm toxin, anabasine has been the 
base compound for other drugs aimed at targeting 
nAChR effects. Two benzylidine derivatives of this 
compound GTS-21 and 4OH GTS-21, which have 
specifi c agonistic properties for the α7-nAChRs 
(Uteshev et al. 2003), are under Phase II trials for 
the treatment of Schizophrenia (Freedman et al. 
2008). An anti-emetic drug, Tropisetron, has also 
shown potential for the treatment of auditory gat-
ing defi cits in Schizophrenia (Koike et al. 2005).

Other approaches
There are other treatment options being considered 
to treat nicotine addiction that use other, potentially 
downstream targets of the drug (see George and 

O’Malley, 2004). These demonstrate signifi cant 
effi cacy, either by themselves or in combination 
with other treatments. The hedonic homeostasis 
view of drug abuse postulates that addiction is a 
form of mood disorder. Consistent with this view-
point, a number of drugs like antidepressants have 
been found to be effi cacious in combating nicotine 
addiction.

Smokers exhibit lower levels of MAO levels 
compared to non-smokers (Fowler et al. 1996; 
Fowler et al. 2003). As MAOs are key enzymes 
in modulating dopamine levels in the brain, it 
was postulated that maintaining low levels of the 
enzyme would be useful in combating nicotine 
addiction. The MAO inhibitor Moclobemide has 
been shown to help smoking cessation (Berlin 
et al. 1995b; Berlin et al. 1995a). Another MAO 
inhibitor Selegiline, has shown effi cacy in smok-
ing cessation (George et al. 2003), though a 
recent study shows the drug to also be a potent 
inactivator of CYP2A6 in humans (Siu and 
Tyndale, 2008).

Tricyclic antidepressants, like Nortriptyline, 
have been shown to reduce craving symptoms 

Table 3. Potential therapeutic compounds targeting nAChRs.

Drug Target Postulated effects Potential use
Nicotine Vaccine Serum Nicotine Blocking drug entry 

into the brain
Smoking cessation

Varenicline α4β2*- and α7-nAChrs Affects mesolimbic 
dopamine levels

Smoking cessation

GTS-21 and 
4OH GTS-21

α7-nAChRs Improves auditory 
gating

Schizophrenia

Tropisetron α7-nAChRs Improves auditory 
gating

Schizophrenia

TC-1698 α7-nAChRs Neuroprotection AD and PD
Methoxsalen CYP2A6 inhibitor Alter nicotine 

clearance
Smoking cessation

Selegiline CYP2A6 blocker, MAO 
inhibitor

Affects nicotine 
clearance, dopamine 

metabolism

Smoking cessation, PD

Moclobemide MAO inhibitor Alters Dopamine 
metabolism

Smoking cessation, 
Depression

Buproprion Dopamine Transporter 
Blocker

Affects mesolimbic 
dopamine levels

Smoking cessation and 
Depression

Nortriptyline NE/5HT transporter blocker Increases brain NE 
and serotonin levels

Smoking cessation and 
Depression

Naltrexone µ-opioid antagonist and 
α7-nAChR channel blocker

Anxiolytic and 
antidepressant

Smoking Cessation
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during early smoking abstinence periods 
(Prochazka et al. 1998; Hall et al. 1998). Similarly, 
the more atypical monoamine transporter blocker 
and antidepressant, Bupropion, has been marketed 
as aid for smoking cessation (Hays et al. 2001; 
Hurt et al. 1997). The µ-opiod receptor antagonist, 
naltrexone, has been shown to reduce nicotine 
craving when provided in conjunction with trans-
dermal nicotine patches (Wong et al. 1999), by 
acting as an anxiolytic and antidepressant 
(Jarvekulg and Viru, 2002) and, possibly, by acting 
as an open channel blocker of the α7-nAChRs 
(Almeida et al. 2000).

Future attempts at using individually tailored 
combinations of these various approaches might 
lead to more effective therapeutic options to com-
bat both smoking behaviors and diseases like AD 
and PD. This remains to be seen.

Conclusion
The importance of combating nicotine addiction 
is unquestionable. A number of nAChR agonists 
and antagonists are candidates for the treatment 
of addiction and neurodegenerative disorders. 
However, the widespread distribution of nAChRs 
adds a degree of caution in this regard. It should 
be recognized that understanding the physiologi-
cal context in which these receptors work and 
consequences of functional disruption must give 
us pause. While it would be impractical to halt 
drug development until physiology is known, it is 
also imperative that we pay very close attention 
to the possibility of unintended consequences of 
such drugs.

Another important paradigm shift would be the 
recognition of addiction as a non-linear process 
with multiple possibilities of homeostatic disrup-
tions leading to a similar phenotype. This view 
would imply that any single drug would be effec-
tive only in a small subpopulation of addicts and 
investing resources for a universal treatment for 
nicotine addiction might be a futile exercise.
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