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Abstract: Information about tumors is usually obtained from a single assessment of a tumor sample, performed at some 
point in the course of the development and progression of the tumor, with patient characteristics being surrogates for natu-
ral history context. Differences between cells within individual tumors (intratumor heterogeneity) and between tumors of 
different patients (intertumor heterogeneity) may mean that a small sample is not representative of the tumor as a whole, 
particularly for solid tumors which are the focus of this paper. This issue is of increasing importance as high-throughput 
technologies generate large multi-feature data sets in the areas of genomics, proteomics, and image analysis. Three potential 
pitfalls in statistical analysis are discussed (sampling, cut-points, and validation) and suggestions are made about how to 
avoid these pitfalls.
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Introduction
Large multi-feature data sets to characterize tumors are being generated by new technologies in the 
areas of genomics (gene expression microarrays), proteomics (mass spectroscopy), image analysis 
(tissue microarrays), and others. These studies may provide information used for prevention, early 
detection, diagnosis, prognosis, and for prediction (to predict response to therapy). Traditional design 
issues involve specifi c patient subgroup representation, to address questions of interest. However, tumor 
heterogeneity provides challenges that have become even more acute in the era of large multi-feature 
databases. More data does not provide more useful information unless several pitfalls can be avoided. 
We discuss the statistical design and analysis of large multi-feature data sets with the goal of avoiding 
pitfalls, with an emphasis on pitfalls resulting from heterogeneity particularly of solid tumors in which 
it is more diffi cult to ensure that a representative tumor sample has been assessed.

The effect of intratumor heterogeneity in assessing biomarkers was considered by the Kananaskis 
working group on quantitative methods in tumor heterogeneity.1 There was an emphasis on the sources 
of variability during various procedural steps:

1) representative tumor sampling/collection method (sequential or random; internal or external; back 
and forth, such as in needle-guided biopsy), 2) number of cells assessed by type of investigation (ranging 
from a few to millions), and 3) all or random cells versus targeted only cancer or “visually worst” cancer. 
These can lead to methodologic variability attributable to (surgical) extraction, inter-laboratory proce-
dures, sample preparation, intra- and inter-reagent, inter-observer/inter-machine, and intra-observer/
intra-machine.

Recommendations for reporting results of tumor biomarker prognostic studies (REMARK) have 
been outlined by The Statistics Subcommittee of the National Cancer Institute—European Organization 
for Research and Treatment of Cancer (NCI-EORTC) Working Group on Cancer Diagnostics.2 The 
guidelines are aimed at clarifying the tenets of reporting in terms of study objectives, patient charac-
teristics, therapies, specimen type and handling, assay methods with scoring, statistical test specifi cations 
and methods, data acquisition, analyses undertaken with results, and integrated discussion of results in 
the context of the potential for the study design to address relevant questions. The implementation of 
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these reporting recommendations would be a large 
step forward in improving the ability to evaluate 
biomarker results, including apparent inconsistent 
results arising from assays of heterogeneous 
tumors.

Heterogeneity
Heterogeneity of cells within individual tumors 
(intra-tumor heterogeneity) has long been recog-
nized.3,4 Recognition of morphological differ-
ences between tumors by histopathologists is the 
basis of grading tumors. Solid tumors may contain 
recognizable subpopulations that differ morpho-
logically, biochemically, functionally, and dynam-
ically. This is most dramatically revealed in tumors 
such as teratomas in which several different 
recognizable tissue types are present. More subtley, 
groups of cells (perhaps clones) may express dif-
ferent immunohistochemical staining properties 
than other cells within the same tumor. There may 
be differences between cells within the same tumor 
in terms of resistance to chemotherapeutic drugs.5 
Subclones of tumor cells may have different prob-
abilities of metastases and show a different prolif-
erating fraction of cancer stem cells.6,7 Individual 
premalignant neoplasms such as ductal carcinoma 
in situ of the breast exhibit heterogeneity of nuclear 
grade.8–11 Individual breast cancer tumors may 
contain a mixture of multiple grades of malignant 
cells, which has implications for understanding 
the pathways for progression of heterogeneous 
tumors.12,13

The term heterogeneity has two meanings—it 
may refer to distinct subpopulations or to a continu-
ous range of differences (Webster’s New World 
Dictionary College Edition, 1957. World Publ., 
Cleveland). An example of two distinct patient sub-
populations are those who are alive and those who 
are dead at some point in time. An example of a 
continuous range of differences is the spectrum of 
colors. Although the colors may be given different 
names such as red, orange, yellow, green, blue, 
indigo, and violet, these are an arbitrary number of 
classes within a continuum of wavelengths. The 
classes may be defi ned, but they are not the only 
possible classes. Tumors probably can be most accu-
rately considered as containing cells with a variety 
of phenotypes. These phenotypes can be analytically 
characterized and reported with biomarkers. There 
may be a continuous spectrum (distribution) of values 
of biomarkers. The distribution may be unimodal, 

bimodal, or multimodal. A unimodal distribution 
may be symmetrical such as a Gaussian (normal) 
curve, or asymmetrical such as a Poisson or log-
normal distribution.

In summary, the challenge of tumor heterogene-
ity is to provide information about a patient’s tumor 
that is reliable and useful for prognosis and thera-
peutic guidance. The new era of large multi-feature 
data sets can provide numerical descriptions of the 
variety of cells within each tumor that are ame-
nable to objective statistical analysis. However, 
for the results to be reliable the pitfalls posed by 
heterogeneous tumors must be taken into account.

Pitfall 1: Sampling
Since solid tumors may be heterogeneous, it is 
important to analyze multiple samples to get a 
comprehensive picture of a patient’s entire tumor. 
Fine needle aspirates and core needle aspirates 
may under or over represent high grade areas in 
the tumor. Even in excision biopsy specimens, 
microscopic examination of limited amounts of a 
tumor may miss high grade areas. Analysis of 
portions of tumors by biochemical or molecular 
biology assays may provide quantitative data about 
a tumor sample that is an average or aggregate 
value, but the contribution of a minor fraction of 
high grade cells may be hidden by a large fraction 
of low grade cells.

Several methods are available to obtain quan-
titative information about the heterogeneity within 
a solid tumor by analyzing many separate cells or 
multiple regions of interest. These include fl ow 
cytometry, static image cytometry, and laser 
capture microdissection. Flow cytometry has the 
advantage that measurements can be made on tens 
of thousands of individual cells, but has the disad-
vantage that the histological architecture of tissues 
is lost because the cells are dispersed. Static image 
cytometry14–16 and laser capture microdissection17 
each have the advantage of allowing the correlation 
of measurements of individual cells, or regions of 
interest, with intact histological structure. This 
allows quantitative measurements to be related to 
traditional histopathological grades and other his-
topathologic details. For instance, quantitative 
image cytometry has revealed heterogeneity within 
individual breast ducts by detecting differences 
between different nuclei in breast ducts that were 
scored as having the same grade by the Van Nuys 
criteria.18
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Heterogeneity within tumors has been a concern 
in the sampling of tumors for the construction of 
tissue microarrays (TMA), and the subsequent 
analysis of the samples.19,20 In this technique small 
cores of tissue (0.6 mm–2 mm in diameter) are 
obtained from donor paraffin blocks and are 
assembled in a recipient paraffi n block. The advan-
tage of tissue microarays is that a single paraffi n 
block can potentially contain hundreds of tissue 
samples. Tissue microarray slides prepared from 
the blocks will contain samples from all those 
samples of tissue which can then be processed 
together and analyzed by high-throughput image 
analysis.21 Multiple samples from the same tumor, 
or samples from tumors of different patients, that 
are arrayed on the same slide can be compared. 
However, the question arises about how many 
samples from a heterogeneous tumor are necessary 
to adequately characterize such a tumor. Several 
groups have considered that issue and concluded 
that while two samples from a tumor are suffi cient 
for population studies, for individual patients the 
two samples may differ signifi cantly.22,23 It has 
been suggested that full sections rather than TMAs 
should be used for accurate assessment of some 
factors, for example for assessment of progester-
one receptor, or human epidermal growth factor 
receptor 2 (HER-2) in breast cancer patients.24 In 
our TMA studies, we have found that less than 10% 
of patients have two samples that would result in 
classifying a patient as different.43 However, Miller 
et al.18 found that there were signifi cant differences 
in digital image analysis features between all ducts 
assigned the same nuclear grading. Comparison of 
intra- and interclass correlations is a method suit-
able for determining whether two samples from a 
heterogenous population of tumor cells are more 
similar to each other than two samples from dif-
ferent heterogeneous tumors.5,26 Ideally, the values 
of a biomarker measured in pairs of samples from 
the same patient would be more similar to each 
other (intraclass correlation) than pairs of samples 
from different patients (interclass correlation). If 
not, then tumor heterogeneity and/or measurement 
variation may be obscuring important differences.

Quantitative measurements of protein expres-
sion, RNA expression, or nuclear image features 
of tumors are frequently reported in comparison 
to a pathologist’s description of the tumor grade 
and stage. However, traditional histopathology has 
limitations as a predictive biomarker.27 One such 
limitation is the interobserver variation in grading 

by pathologists (categorical classification) as 
expressed analytically by the kappa statistic.28 
Intraobserver variation has also been observed. 
Considerable effort has been made to devise 
systems that reduce the interobserver variation in 
grading, for instance, in the grading of in situ duct 
carcinoma of the breast.29–31 Quantitative molecular 
and image analysis with coeffi cients of variation 
of less than 3% can provide useful information that 
is complementary to the descriptive information 
provided by the pathologist. The pathologist, can 
also assist the molecular biologists by determining 
what regions of abnormal and normal tissue are 
best assessed by the molecular biologist.

In summary, it is important to recognize that 
heterogeneity within each assessment system may 
have a variable effect on an assessed outcome. 
Investigators need to more routinely examine the 
effects of tumor and laboratory assessment hetero-
geneity with a view that this could have a substan-
tive impact on study conclusions, introducing 
unnecessary inconsistencies in the literature.

Pitfall 2: Cut-points
When there is a continuous distribution of bio-
marker values with no obvious modal values, then 
a good alternative to using cut-points to derive 
discrete subgroups of patients with different out-
comes, is to consider a biomarker as a continuous 
rather than a dichotomous variable in multivariate 
analyses. For example, Chapman et al32 reported the 
multivariate results obtained by use of continuous 
hormonal receptor factors, followed by multivari-
ate examination of various cut-points. They showed 
there was no best cut-point for estrogen receptor 
(ER) or for the progesterone receptor (PgR) in 
breast cancer patients and suggested that they be 
considered as continuous rather than dichoto-
mous (negative, positive) variables for prognosis. 
Thompson et al33 report the percent risk of prostate 
cancer as a continuous dependent variable and 
prostate specifi c antigen (PSA) as a continuous 
independent variable, in contrast to the previous 
discrete risk groups with cut-points of 4.0 ng/mL 
and 10 ng/mL.

If two cut-points are more informative than one 
cut-point, then this raises the question whether 
more cut-points, or different cut-points would be 
an improvement. That is, should one search among 
a variety of possible cut-points until the difference 
between groups of patients becomes statistically 
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signifi cant with the minimum p-value? Altman 
et al34 have shown that seeking an optimal cut-
point among several cut-points causes an infl ation 
of type I error rate, and that this requires corrections 
for multiple testing; they also advocate against 
use of a data set to determine a factor cut-point, 
followed by use of the cut-point in the same data 
to determine its (multivariate) signifi cance.

However, if the distribution of the values of a 
biomarker appears by inspection and/or outcome 
to have subgroups, e.g. bimodal, i.e. Mobbs et al35 
or trimodal, then it is reasonable to consider mul-
tivariate investigations aimed at defi nition of appro-
priate cut-points, i.e. Chapman et al.32 This requires 
that the number of subgroups be chosen, e.g. 2 or 3, 
so that the patients will be aggregated to minimize 
overlap between subgroups.

Alternatively, a population of patients who have 
a continuous distribution of values of a quantitative 
biomarker can be separated into two groups by 
specifying a neutral to investigation cut-point of its 
distribution. For instance, one cut-point at the mean 
value would separate patients into two groups, one 
with a higher and the other with a lower value of 
the biomarker. Or, the population can be separated 
by two cut-points into three groups, low, medium, 
and high values of the biomarker (Fig. 1). These 
groups are not necessarily intrinsically different 
biological classes,36 but they may be informative. 
These new discrete groups can be compared to 
patient outcome; for one cut-point, the patients 
might be described graphically as healthy or sick, 
good or poor survival, and for two cut-points good, 
moderate, and poor survival, using univariate 
Kaplan-Meier or cumulative incidence,37 or multi-
variately with Cox or log-normal survivor plots.38 

Recently, Royston et al39 demonstrated that a visual 
display of length of survival accomplished with a 
log-normal distribution of survival times would 
complement a Kaplan-Meier plot.

There are several caveats to the application of 
cut-points. The fi rst is in the use of visual subjec-
tive estimates of values rather than of objective 
measurements. In some cases qualitative informa-
tion is combined with quantitative information to 
derive a score. The score is then separated into 
discrete classes. For example, grading of invasive 
carcinoma of the breast40 by the Nottingham his-
tologic score, combines visual estimates of degree 
of acinus formation (1, 2, 3) and nuclear atypia 
(1, 2, 3) with numerical count of mitoses(converted 
to score 1, 2, 3) to create a total score which deter-
mines the grade (Total score of 3, 4, or 5 = grade 1, 
6 or 7 = grade 2, and 8 or 9 = grade 3.). Two cut-
points are then used to give three discrete nuclear 
grades.

In a series of patients with in situ duct carcinoma 
of the breast, objective quantitative image analysis 
measurements of 39 nuclear features including 
size, shape, texture, and stain intensity were com-
bined in a dimension reduction method, Fisher 
discriminant analysis, to derive a single value, 
the canonical variable, for each of 80 patients.25 
Figure 1 (left) This result indicates that there is a 
continuous distribution of values. Figure 1 (middle) 
shows two groups of patients resulting from one 
cut-point, and Figure 1 (right) shows three groups 
of patients resulting from two cut-points. Since the 
distribution of nuclear values is continuous with-
out obvious groups, the number of cut-points and 
position of the cut-points are arbitrary and not 
derived from distinct subpopulations. The two or 
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Figure 1. Cut-points of a continuous distribution of breast cancer patients. Eighty patients with in situ duct carcinoma of the breast were 
ranked by a canonical variable derived by weighting 39 nuclear features of 200 cells per patient.25 Left panel: there is a continuous distribution 
of patients. Middle panel: one cut-point at the mean separates patients into two groups (Low and High). Right panel: two cut-points separate 
patients into three groups (Low, Intermediate, and High). The choice of the number of cut-points, and the value of the cut-points, produces 
different groups of patients. Such discrete groups of patients are useful for comparing the outcome of the groups of patients, for instance by 
Kaplan-Meier survival analysis. However, the discrete groups are not distinct biological classes recognized from the distribution of their 
canonical variable of nuclear features.
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three groups are not intrinsic biological classes.36 
Although cut-points may not provide classes of 
patients with distinctly different nuclei, the group-
ing (binning) of patients can be useful. For instance, 
it was determined that one cut-point at the mean 
resulted in two groups of patents that differed in 
recurrence of ductal carcinoma in situ and in devel-
opment of invasive cancer.25,41

A notable example of the use of two cut-points 
to derive three informative groups of patients is 
given by Camp et al.42 The amount of p53 staining 
in breast cancer biopsies was determined by immu-
nohistochemistry. Two cut-points were determined 
by a method that allows the effects of scanning many 
cut-points and simultaneously visualizing the his-
togram of the distribution of p53 staining and of 
the Kaplan-Meier survival plots. The surprising 
result was that the survival was not proportional 
to the amount of p53, but rather that patients with 
intermediate values of p53 survived better than 
patients with low and high values of p53. We have 
confi rmed this non-linear dependence of survival 
on p53.43 In addition we have shown that two 
groups of patients, produced by one cut-point at 
the mean, do not differ in survival.

In addition to grouping patients by cut-points of 
the amounts of proteins measured by immunohis-
tochemistry, patients have been grouped by cut-
points of the amounts of messenger RNA measured 
in gene expression microarrays. A multivariable 
method, Logical Analysis of Data (LAD) has been 
used to group breast cancer patients for good and 
poor prognosis,44 and for diagnosis of lymphoma 
patients as having diffuse large B-cell lymphoma 
or follicular lymphoma45 based on gene expression 
data. LAD is a method that uses combinatorics and 
optimization to derive one or more cut-points for 
each of many individual variables.46 LAD has 
recently been extended to prognosis of censored 
survival data.47

If two cut-points are more informative than one 
cut-point, then these results raise the question 
whether more cut-points, or different cut-points 
would be an improvement, which brings us back 
to the beginning of this discussion that it could be 
appropriate to examine the effects of continuous 
factors without categorization, as continuous fac-
tors in multivariate modeling.

In summary, while there is frequently an impe-
tus to assign cut-point(s) at an early investigational 
point to facilitate scientifi c or medical application, 
this assignment may be detrimental to progress if 

it is not robust over a broad range of data. Good 
work-ups of a continuous factor’s multivariate 
effects on outcome, with repeated testing of 
(externally) generated hypothesized cut-points will 
avoid confounding of apparent effect that may arise 
from cut-points applied inappropriately in some 
future contexts.

Pitfall 3: Validation
Information about a set of tumors and the corre-
sponding patient’s outcome may be used to develop 
models that make predictions about the outcome 
of new patients. In order to be useful, the models 
must be validated both statistically and clinically.48 
Intratumor heterogeneity requires the same con-
siderations previously noted,49,50 and additional 
considerations.

Previously, studies with cut-points of continu-
ous values of the biomarker utilized ROC curves51 
and with dichotomous outcome typically reported 
specifi city (negative test of true negatives), sen-
sitivity (positive test of true positives), positive 
predictive value (chance that a positive test is 
really positive) and negative predictive value 
(chance that a negative test is really negative). The 
goal of 100% specifi city and 100% sensitivity is 
almost never achieved, and when reported should 
be viewed with skepticism. The positive and 
negative classes of the test may be determined by 
using cut-points of continuous quantitative bio-
marker data, as discussed above; however, recal-
culation is required for each cut-point considered. 
Recently, there has been a movement of medical 
practice in diagnostic testing towards the use of 
likelihood ratios and nomograms like that of 
Fagan’s52 which permit a simpler and more effi -
cient handling of continuous data.53 The reliability 
of conclusions about continuous data may be made 
by estimating the error of the predicted outcomes 
by cross-validation, e.g. comparing repeated sub-
sets of the original population. For instance, in 
k-folding, the patients may be divided into two 
groups such as 1/3 and 2/3 and the analysis is 
repeated with many different groups; or leave-one-
out in which all the patients but one are repeatedly 
analyzed. Large inter-tumor heterogeneity and 
outliers will be indicated if the error estimates are 
not uniform. However, intra-tumor heterogeneity 
will not be detected once the data for many cells 
or many regions within each tumor are combined 
to characterize each patient’s tumor.
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Intra-tumor heterogeneity can be detected when 
multiple regions within each tumor are measured 
and recorded separately rather then reported as an 
“average” or aggregated value to characterize a 
patient’s tumor. This can be achieved quantitatively 
by image cytometry that records different values 
for different regions of a tumor 25,41or qualitatively 
by pathologists who report all nuclear grades 
within each tumor, including the occurrence of 
more than one grade in a tumor. For instance, for 
breast ductal carcinoma in situ, Goldstein and 
Murphy54 reported 45% (68/150), Miller et al55 
reported 50% (62/124) and Allred et al.56 reported 
44% (53/120) of patients having more than one 
nuclear grade. The grades 1, 2, and 3 are categor-
ical groups that are assigned to nuclei whose 
deviation from normal nuclei is continuous.25 The 
reliability of interobserver variability (concordance) 
in assigning nuclear grades is expressed as the 
kappa statistic.28 It ranges from slight (kappa = 0.29) 
to substantial (kappa = 0.9)29–31 depending on the 
classifi cation system. This indicates that the exact 
proportions of each of the nuclear grades within a 
heterogeneous tumor that are reported may depend 
upon the classifi cation system used and the judg-
ment of the pathologist. Although the reported 
proportions of each nuclear grade within a hetero-
geneous tumor may not be perfectly relied upon, 
the heterogeneity among the nuclear morphologies 
within many tumors certainly exists. This may be 
seen in the examples shown in the valuable supple-
ment to the paper by Allred et al.56

Data sets from gene expression microarrays, 
mass spectroscopy, and image cytometry include 
measurements of multiple features of each tumor. 
Dimension reduction methods, such as discriminant 
analysis or logistic regression, may reduce the mea-
surements of multiple features to a single value. This 
requires criteria to select informative features, to 
eliminate highly correlated features, and to calculate 
weights of each feature. The subset of selected 
informative features may not be unique, several 
different subsets may yield models with similar 
results.44,45 Where feasible, it is important to include 
more patients than features to avoid over fi tting the 
data.57–59 The reliability of the conclusions from one 
set of patients can be determined by testing them 
on a second independent set of patients that were 
not used to obtain the fi rst set of conclusions, e.g. 
by comparison of a model from a “training set” with 
a “test set”. Even with low p-values on the training 
set, there may be failures to replicate results on 

a comparable test set,60 especially due to differences 
in patients assessed in each set. Care must be taken 
to obtain a test set that is similar to the training 
set.61 Camp et al42 have given a good example of 
this type of external validation that was necessi-
tated by their comparison of various cut-points 
which might have lead to an overestimate of sta-
tistical signifi cance.34 External validation is impor-
tant when there is inter-tumor heterogeneity, and 
especially when there is intra-tumor heterogeneity. 
To avoid bias, the training set and the test must be 
comparable, including having the same proportion 
of patients with intra-tumor heterogeity.

The validation methods discussed above con-
sider the effects of patient heterogeneity. Hetero-
geneous results may be derived in the same patients 
due to system instability with known or unknown 
factors which alone, or in combination, may have 
similar effects on outcome. Where feasible, con-
sidering a (restricted) all subset analysis may 
indicate the existence of groups of factors with 
very similar effects.38 Such a situation may be 
expected in competing molecular or genetic path-
ways. With a reasonably manageable number of 
factors in targeted investigations, it is better to 
avoid over simplifi cation to a few factors to avoid 
biasing the results.62–64

This becomes impractical in large multi-feature 
databases in the areas of genomics (gene expression 
microarrays), proteomics (mass spectroscopy), image 
analysis (tissue microarrays and mammography), 
and others where it is essential to consider some type 
of reduction in the number of factors under consid-
eration. Readers are directed in particular to the 
comprehensive and expanding NIH website cover-
age of this large topic which is beyond the scope of 
this paper. Examples are the book of Simon et al65 
and the extensive free software available in BRB-
Array Tools (http://linus.nci.nih.gov/pilot/index.
html) as well as the knowledge-base linkages of the 
NIH Pharmacogenetics Research Network (http://
www.nigms.nih.gov/Initiatives/PGRN).

In summary, internal cross-validation and sta-
tistical factor subgroup checking is an important 
fi rst step to assess the stability of results within a 
single data set, to maximize the prospects of con-
sistent inference between data sets.

Conclusion
Considerations of sampling, cut-points and valida-
tion must be taken into account when analyzing 
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large multi-features data sets, and especially when 
analyzing and interpreting data that describe het-
erogeneous tumors. At each step—assembling an 
appropriate cohort of patients, selecting regions of 
biopsy specimens, extracting quantitative data, 
reducing and interpreting the data—there are addi-
tional considerations that must be taken into 
account when there is tumor heterogeneity. This 
requires the collaboration of biostatisticians, 
pathologists, and laboratory scientists who have 
complementary expertise. Since most, if not all, 
solid tumors are heterogeneous at some stage of 
progression the challenges of heterogeneity must 
be kept in mind to avoid potential pitfalls.
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