
Cancer Informatics 2009:7 91–104 91

METHODOLOGY

Correspondence: Eytan Domany, Physics of Complex Systems, Weizmann Institute of Science, 76100 Rehovot,
Israel. Tel: +(972)-8-934 3964; Email: eytan.domany@weizmann.ac.il

Copyright in this article, its metadata, and any supplementary data is held by its author or authors. It is published under the 
Creative Commons Attribution By licence. For further information go to: http://creativecommons.org/licenses/by/3.0/. 

Combining Chromosomal Arm Status and Signifi cantly 
Aberrant Genomic Locations Reveals New Cancer Subtypes
Tal Shay1, Wanyu L. Lambiv2, Anat Reiner-Benaim1,3, Monika E. Hegi2,4 
and Eytan Domany1

1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel. 
2Laboratory of Brain Tumor Biology and Genetics, Neurosurgery, University Hospital Lausanne (CHUV), 
Lausanne, Switzerland. 3Department of Statistics, University of Haifa, Haifa, Israel. 4National Center 
for Competence Research Molecular Oncology, ISREC, Epalinges, Switzerland.

Abstract: Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifi cations and 
deletions. Within any given tumor type, sample specifi c amplifi cations and deletions are also observed. Typically, a region 
that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate 
to be biologically relevant to cancer. We sought for an intuitive method to defi ne such aberrations and prioritize them. We 
defi ne V, the “volume” associated with an aberration, as the product of three factors: (a) fraction of patients with the aberration, 
(b) the aberration’s length and (c) its amplitude. Our algorithm compares the values of V derived from the real data to a null 
distribution obtained by permutations, and yields the statistical signifi cance (p-value) of the measured value of V. We detected 
genetic locations that were signifi cantly aberrant, and combine them with chromosomal arm status (gain/loss) to create a 
succinct fi ngerprint of the tumor genome. This genomic fi ngerprint is used to visualize the tumors, highlighting events that 
are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblas-
toma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the 
tested cancer types, as well as to suggest new genomic locations to be tested. We identifi ed a potential new subtype of 
Medulloblastoma, which is analogous to Neuroblastoma type 1.
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Background

Cancer is characterized by DNA copy number aberrations
Genes from all bands of the human chromosomes are involved in some commonly occurring tumor 
associated aberrations.1 Each solid tumor type displays one of several characteristic combinations of chro-
mosomal gains and losses. There is considerable overlap between the imbalance profi les of the different 
tumor types, and typically there are more losses than gains.2 It has been shown that in several cancers local 
DNA copy number aberrations are predictive of outcome3–5 or of treatment response.6–8 Oncogene activa-
tions can result from chromosomal translocations and from gene amplifi cations. Tumor-suppressor genes’ 
inactivation arises from several mechanisms, including deletions or insertions of various sizes.9

Analysis and interpretation of local aberrations that contribute to cancer development are hindered 
by the fact that in cancer cells there is loss and gain of whole chromosomes, that may be the cause of 
the cancer or a by-product of it.10,11 While many cancers display karyotypic changes, oncogenic trans-
formation can occur with no chromosomal instability, both in-vitro12 and in-vivo.13

Array CGH as a tool to measure DNA copy number aberrations
Array Comparative Genomic Hybridization (aCGH)14,15 is a procedure that provides genome-wide 
DNA copy number measurement along genomes of mammalian complexity. A control sample and a 
test sample are competitively hybridized to an array with genomic targets. If the control is diploid, 
a higher signal of the test sample is indicative of amplifi cation, and a higher control signal indicates 
deletion. Single-copy decreases and increases from diploid are reliably detected.15 Several types of 
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genomic targets can be printed on the array. For 
example, Bacterial Artificial Chromosomes 
(BACs) are fairly widely used: these markers have 
a typical length of 150 KB, and about 2000–8000 
BACS are used to provide coverage of the full 
human genome. In addition, cDNA probes are also 
used16 as well as oligonucleotides.17,18

Existing methods for analyzing 
array CGH data
Most methods for analysis of aCGH data focus on 
assigning copy number or status (gain, normal, loss) 
to every genomic location in single samples.19–24 
Several such methods were compared,22,25 with the 
conclusion that most algorithms do well in detect-
ing the existence and the width of aberrations for 
large changes and high signal-to-noise ratio. None 
of the algorithms, however, detected reliably aber-
rations with small width and low signal-to-noise 
ratio. Most studies recognize those aberrations that 
pass a certain threshold of frequency of appearance 
or amplitude. In nearly all studies, the selection 
criteria were either not specifi ed, or set in an arbi-
trary way.19,20,26–28

Considerable effort has been devoted to identify 
signifi cant and meaningful aberrations, using simul-
taneously data from multiple samples. Hidden 
Markov Models, often used to defi ne single sample 
status, were extended to multiple samples.29 
Rouveirol et al.30 defined recurrent minimal 
genomic alterations, and incorporated external 
constraints, such as a range or frequencies of occur-
rence and a range of signal magnitudes, to fi lter the 
observed alterations. Snijders et al.31 used aCGH to 
defi ne minimal common amplifi ed regions and then 
expression analysis to identify candidate driver 
genes in amplicons. Diskin et al.32 presented a 
method for testing the signifi cance of aberrations 
across multiple samples. Their input is a list of aber-
rations in each sample. They calculate a frequency 
statistic and a footprint statistic out of permutations 
of the locations in each chromosomal arm. Guttman 
et al. extended this method to scan a range of thresh-
olds for defi ning aberrations, selecting multiple 
aberrations in each threshold.33 Lipson et al.34 tried 
to identify optimal intervals over the aCGH data. 
Methods in similar spirit were developed for 
analysis of SNP data, which is informative for 
genotyping as well as copy number.35,36

Intuitively, an aberration is more likely to have 
biological significance if it happens in many 

samples, and if it is strong. A longer aberration is 
less likely to be attributable to measurement error. 
Thus, the three parameters used to score each 
marker are the number (or fraction) of carriers 
(patients), the length of the aberration and its 
amplitude. We refer to the product of these three 
factors as the volume V of the marker, and use 
it as our statistic to assess the validity of each 
aberration. The method compares the real data to 
the randomized data obtained by permutations of 
the real data, under the null assumption that the 
genomic locations are independent. Once we obtain 
the distribution of V in our randomized data, we 
can evaluate the statistical signifi cance of the actual 
value of V, measured for each marker. We detect 
signifi cantly aberrant genetic locations and associ-
ate them with a p-value. We demonstrate the 
method for three different public aCGH datasets 
from two different childhood neoplasms associated 
with the nervous system on three different BAC 
array platforms: Medulloblastoma—GSE8634; 
Neuroblastoma—GSE578437 and GSE7230.38

Results

Algorithm
Our method uses aCGH data to create a concise 
genomic description of each sample, including 
chromosomal status and appearance of signifi cant 
local copy number aberrations. This concise 
description can be used to fi nd an informative order 
or sub-classifi cation of the samples.

The algorithm includes two steps—assigning 
chromosomal status and detecting signifi cant local 
copy number aberrations. Amplifi cations and dele-
tions are detected separately but similarly, using 
the same method.

Input
The algorithm’s input is the raw log2 aCGH data, 
and the markers’ status. The raw log2 ratio data of 
chromosome 2p, taken from GSE7230, is presented 
in Figure 1A. Markers’ status is the assignment per 
marker per sample—loss (−1), normal (0) or 
gain (1). The status was set by the R package 
GLAD (Gain and Loss Analysis of DNA) for 
identifying deleted or amplifi ed genomic regions39 
(see Supplementary note 1). Markers that were not 
correlated with their adjacent markers, but highly 
correlated with markers at another genomic 
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location, were removed (see Methods, section 
‘Recognizing possible inaccurate genomic loca-
tions’). We constructed an amplifi cations matrix 
A, which has binary valued elements: Ams = 1 if 
the aCGH marker m was assigned a gain value on 
sample s, and Ams = 0 otherwise (the amplifi cation 
matrix of chromosome 2p based on the GSE7230 
data is shown in Fig. 1B). A deletions matrix D is 
defi ned similarly: Dms = 1 if the aCGH marker m 
has a loss assignment on sample s, and Dms = 0 
otherwise (deletion matrix is not shown). Markers’ 
status is equal to A–D.

Chromosome status
We defi ne an entire chromosome arm gain in a 
sample when more than 50% of the markers have 
a status of ‘gain’ in that sample. A sample in which 
an entire chromosome arm is lost is defi ned by 
more than 50% of the markers having a status ‘loss’. 

For graphical representation of chromosomal sta-
tus, the median log2 ratio of all markers on each 
chromosomal arm in each sample is used.

‘Volume’ statistic
Our goal is to find markers whose aberration 
happens signifi cantly more frequently than expected 
by chance, taking into account the known tendency 
of cancer cells to gain and lose DNA sequences.

Three factors are relevant for assessing the 
signifi cance of an aberration:

Width W—The number of carriers—the more 
tumors have an aberration, the more likely this 
aberration is to give selective advantage to the cell 
that carries it.

Height H—The amplitude of the aberration. 
Typically, a duplication event creates only one 
extra copy of the sequence. Thus, having multiple 
copies may indicate that having this amplifi cation 
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Figure 1. Calculation of the “volume” statistic for chromosomal arm 2p amplifi cations in GSE7230 (Neuroblastoma).
A) The height matrix H (raw data) of 2p, where each element (m, s) on 2p is the log2 ratio of aCGH marker m in sample s. Each row 
corresponds to a marker, and each column corresponds to a sample. For presentation only, values are truncated to [−1, 1]. B) The amplifi -
cations matrix A, where each element (m, s) on chromosome 2p that is amplifi ed in sample s is marked by 1, otherwise 0. C) The length 
matrix L of 2p, where each element (m, s) on chromosome 2p for which Ams = 1 is replaced by the length of the sequence of 1s to which it 
belongs on sample s. Maximal represented length is K = 5. Non amplifi ed markers are white. D) X, the matrix created by multiplying elements 
of H, A and L. Non amplifi ed markers are white. E) Averaging the rows of X gives the volume statistic. The red line is the value of the volume 
statistic above which it is signifi cantly amplifi ed (corresponding to FDR of 0.05). F) The markers of the only region on chromosome 2p that 
passes this threshold—the MYCN region, marked in A-E by red asterisks. For presentation only, values are truncated to [−1, 1].
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gives a selective advantage. This is more relevant 
for amplifi cations, as deletions can be only at two 
levels—hemizygous or homozygous deletion. In 
addition, the amplitude of the aberration mea-
sured in a certain tumor is affected by the fraction 
of subclones in the tumor tissue tested in which 
it is present. If the fraction is higher, the amplitude 
is higher. The amplitude is hard to compare 
among samples, as the range of values varies 
depending on the percent of diploid cells in the 
tumor sample.

Length L—The length of the aberration (number 
of neighboring markers included) is also important, 
but its contribution to the volume statistic defi ned 
below should be limited. The reason is that the aim 
of our analysis is to look for specifi c genes that 
“drive” the aberration, and long events, that affect 
the copy number of a large number of genes, are 
not informative. Therefore, entire chromosomal 
arm gains and losses are removed, and all the 
markers on this chromosome arm are given NaN 
value (arithmetic representation for Not-a-Number) 
for this sample. The removed chromosomal arms 
in each dataset appear in Supplementary Table 1, 
and their graphical representation in Supplemen-
tary Figure 1. If the statistic that characterizes the 
aberration increases linearly with the length, the 
presence of a few samples with very long aberra-
tions can have a very strong effect on the results 
of the calculation. This can be avoided by setting 
on L an upper limit, denoted by K, and choosing 
K ∼5–10 markers (in the actual implementation, 
we scan different values of K and combine the 
results). If the length of the aberration exceeds K 
markers, the value of the Length parameter is set 
to L = K. It should be noted that the number of 
markers does not necessarily refl ect linearly the 
aberration length on the chromosome, as the dis-
tances between the markers are not uniform along 
the genome.

Our method takes into consideration all the three 
factors—width, height and length, in order to calcu-
late the statistic termed ‘volume’ for each marker.

The detailed volume calculation is done as 
follows:

For each dataset there are two binary matrices—
the amplifi cation matrix A and the deletion matrix D, 
defi ned in the ‘Input’ section above. For samples 
in which an entire chromosome arm is gained (see 
‘Chromosome status’ section above for defi nition), 
the corresponding entries of A are replaced by NaN, 
and for samples in which an entire chromosome 

arm is lost, the corresponding entries are replaced 
by NaNs in the deletion matrix D. Figure 1 displays 
the amplifi cation volume calculation for chromo-
somal arm 2p in GSE7230 (Neuroblastoma). The 
height matrix H is actually the raw log2 ratio. Hms 
(Fig. 1A) is the measured aCGH log2 ratio value 
of marker m in sample s. Ams (Fig. 1B) is the ampli-
fi cation matrix, where each element (m, s) contains 
the digit 1 if the status of marker m on sample s is 
gain. In the length matrix L (Fig. 1C), each element 
(m, s) containing the digit 1 in A is replaced by Lms. 
Lms is the length of the sequence of ones on sample 
s, to which marker m belongs (length dimension). 
If Lms � K, we set Lms = K, to avoid overweighting 
long aberrations. In Figure 1 we used K = 5. If 
Ams = 0, Lms = 0 as well. In the X matrix shown in 
Figure 1D, each element (m, s) containing the digit 
1 (in A) is replaced by a real number Xms, where 
Xms = Hms * Ams * Lms (Ams is redundant here, as 
Lms = Ams * Lms, and is included for clarity). Finally, 
all the numbers in row m are summed—representing 
the contribution of the width variable to our statistic 
Vm (equation 1), representing the ‘volume’ of 
marker m (Fig. 1E).

 
V Xm ms

s
= ∑

 
(1)

This value is divided by the number of samples 
with non-NaN entries for this marker. This is done 
in order to enable detecting local aberrations even 
in genomic regions that are affected by large scale 
aberrations in most samples, but are nontheless 
containing some local aberrations. The volume 
statistic is calculated separately for each value of 
K, K = 1:10. Six markers are signifi cantly amplifi ed 
(signifi cance threshold is marked by a red line in 
Figure 1E, see next section for details on setting 
the p-value per marker, and the FDR section in 
Methods for controlling the False Discovery Rate 
(FDR)). The raw aCGH data of these six markers 
are shown in Figure 1F, and their location is marked 
by a red asterisk in Figures 1A–E. The volume 
statistic is calculated separately for amplifi cations, 
using the amplifi cations matrix A, and for dele-
tions, using the deletions matrix D.

Associating p-values to the volume 
statistic of each marker
Due to our lack of knowledge about the null 
distribution, in order to assign a p-value for the 
volume statistic of each marker m, Vm, a permutation 
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of the original data is applied to approximate the 
distribution of the data under the null assumption 
of independence between the aCGH values and the 
genomic locations in different samples. In order to 
preserve the length distribution in each sample, we 
permute the X matrix (that already includes the 
length contribution to the volume statistic), and not 
the H or L matrices. This choice also saves recal-
culating the length of the aberrations. The entries 
of each column of the matrix X are permuted, and 
then the values in each row are summed. This ran-
domization preserves the number of aberrant 
markers in each sample, their intensity, and the 
contributions of the lengths of the aberrations, while 
removing any location data. The randomization is 
repeated N (N = 100) times (see ‘Number of per-
mutations’ section below for discussion of robust-
ness in N). Note that permuting across samples 
(rows) will have no effect on the computed volume. 
For each of the N randomized X matrices we cal-
culate Vi for every marker, obtaining for our n mark-
ers N * n values Vi. The distribution of these N * n 
numbers is used to calculate the p-value associated 
with every measured value of V, simply by counting 
the frequency of values in the null distribution that 
are higher or equal to the measured value.

The null distribution is estimated separately for 
each value of K from 1 to 10, for amplifi cations 
and deletions.

The FDR procedure40 was used to control the 
False Discovery Rates. See FDR section in 
Methods for details.

Defi nition of an aberrant region
After signifi cantly aberrant markers are identifi ed, 
adjacent markers, as well as markers separated by 
a single non-aberrant marker, are being combined 
into a single aberration. The aberration region is 
defi ned as the region between the non-aberrant 
markers that are bordering the aberration. Each 
aberration was annotated for being included in a 
normal copy number variation. In addition, genes 
residing within each aberration, and specifi cally 
cancer related genes, were listed (see Methods, 
section Aberrations’ annotation).

Parameters space

Maximal aberration length
In order to avoid an overrepresentation of long 
aberrations, two measures were taken. First, for 

each chromosomal arm, in samples in which an 
arm status was ‘gain’ or ‘loss’, all marker values 
on this arm were replaced by NaNs. In addition, 
the maximal contribution of an aberration length 
to the volume was set to K. This K is an arbitrary 
value, representing preference to aberrations that 
are longer than one marker, but avoiding domi-
nance of the signal by a few very long aberrations, 
which may induce ignoring short aberrations. 
Whenever an arbitrary value is assigned to a param-
eter, its effect on the results has to be checked. As 
Supplementary Figure 2 shows, as the parameter 
K increases over the range 1–10, the number of 
signifi cantly aberrant markers detected decreases 
monotonically, and the cumulative number of 
detected markers reaches a plateau. Therefore, we 
repeated all the analyses for K = 1:10.

Number of permutations
As we use the frequency of each volume in all 
permutations to assess the p-value, the more per-
mutations there are, the more accurate is the result, 
as a frequency of zero will always be accounted 
for as signifi cant. The number of permutations N 
thus may, in principle, affect the number of mark-
ers found signifi cant. However, the actual distribu-
tion converges fast. Though the p-value of a given 
volume may vary a bit with increasing N, it reaches 
a plateau before N = 100. For increasing N from 
100 to 200, the change in the p-value for a given 
volume (corresponding to FDR of 0.1 or 0.01 for 
N = 100) is smaller than 10–4. Thus, we chose to 
work with N = 100.

Applications
The method was applied to three datasets. Table 1 
displays the number of aberrant markers and aber-
rations detected in each dataset. Significantly 
deleted markers appear in Supplementary Table 3, 
and deletions in Supplementary Table 5. Signifi -
cantly amplifi ed markers appear in Supplemen-
tary Table 4, and amplifi cations in Supplementary 
Table 6.

Medulloblastoma
When applied to the Medulloblastoma dataset 
analyzed here (GSE8634) our method fi nds all the 
known chromosomal aberrations of this cancer, and 
several possibly new ones as well. Figure 2 displays 
the chromosome status map of the Medulloblastoma 
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dataset, and the signifi cant aberrations. As described 
in GSE2139,41 where a subset of the samples were 
analyzed, isochromosome 17 (i(17q)—loss of 17p, 
replaced by an exact copy of 17q) is the most fre-
quent aberration. We identifi ed fi ve different sub-
groups by manually ordering the samples, marked 
on the bar below Figure 2—Subgroup 1 has many 
chromosomal aberrations, but not isochromosome 17. 
Subgroups 2 and 3 carry isochromosome 17, which 
is the most frequent aberration in Medulloblas-
toma.41 On the basis of our analysis, we propose 
that the tumors displaying this aberration can be 
further separated into a group with many chromo-
somal events (marked 2) and a group with no other 
common chromosomal events (marked 3). Group 2 
is analogous to Neuroblastoma type 1, one of the 
three clinicogenetic subgroups described in 
Neuroblastoma,42,43 in the sense that there are many 
events of loss and gain of chromosomal arms that 
are common to the samples in this group. Several 
events of gain of chromosome 7 in group 2 are 
accompanied by loss of 8, resulting in chromo-
somes 7 and 8 being negatively correlated. A sub-
group of tumors with loss of chromosome 6 
(marked 4, genomically characterized similarly to44 
cluster A, associated with WNT and TGFβ signal-
ling) do not have isochromosome 17, as described 
also in other Medulloblastoma datasets.45,46 The 
last group (marked 5) has few or no chromosomal 
events. Three tumors of that group have gain of 
chromosome 7, and three samples have loss of 
chromosome 22, but those numbers are too small 
to consider them as separate subtypes. It would be 
of interest to compare this chromosomal status-
based stratifi cation of Medulloblastoma to previ-
ously defi ned subgroups, such as SHH associated 
and WNT associated.46 However, this cannot be 
done since the present dataset is not annotated 
clinically. This classifi cation only partially corre-
sponds to the partition of,44 because their partition 
was based on gene expression.

Our method identifi ed 10 amplifi ed regions 
(Supplementary Table 6A) comprised of 13 ampli-
fied markers (Supplementary Table 4A), and 
99 deleted regions (Supplementary Table 5A) 
comprised of 137 deleted markers (Supplementary 
Table 3A). Figure 2B displays selected aberrations. 
MYCN and CDK6 amplifi cations were identifi ed. 
MYCN region amplification appears only in 
groups 1–3. Amplifi cation of the CDK6 region 
appears mostly in groups 1 and 2. NPM1 
(Nucleophosmin, B23) was deleted in few samples. Ta
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NPM1 has been recognized as a partner gene for 
various chromosomal translocations in hemato-
logical malignancies. NPM1 was associated with 
centrosome duplication and the regulation of p53, 
and might have a role as a tumor suppressor.47

This dataset (GSE8634) has not yet been pub-
lished, but dataset GSE2139 that includes a subset 
of the samples41 was analyzed for local aberrations. 
This publication included a list of amplifi cations 
and deletions. We searched for markers that were 
included in amplifi cations or deletions identifi ed 
there and by our method. Three of the amplifi ca-
tions reported there included markers that were 
identified as significantly amplified by our 
method—MYCN, CDK6 and marker RP11–
382A18. Marker RP11–382A18 is annotated near 
MYC region on chromosome 8q by the platform 
of GSE2139, used by.41 MYC amplifi cation and 
MYCN amplifi cation are mutually exclusive. Nine 

of the amplifications reported there were not 
identifi ed by our method. Four of their deletions 
included markers that were identifi ed as signifi -
cantly deleted by our method, annotated there to 
carry CHRD, UTF1, PRDM2 and HDAC4. Eight 
of the amplifi cations reported by41 were not iden-
tifi ed by our method.

Neuroblastoma
Figure 3 displays the chromosome status map of 
both Neuroblastoma datasets, as well as the 
aberrations common to the two Neuroblastoma 
datasets tested. Samples are manually ordered 
according to the three distinct clinicogenetic sub-
groups described in Neuroblastoma.42,43 The fi rst 
group (marked 1 on the bar below Fig. 3 subplots) 
exhibits predominantly full chromosomal aberra-
tions (typical gains of chromosomes 6, 7, and 17, 

Figure 2. Chromosomal status and aberrations in Medulloblastoma. A) Chromosomal status of dataset GSE8634. Each row corresponds 
to a chromosomal arm. Due to space limitation, only every second arm is labelled. Since some chromosomes are telocentric (with short p 
arm), there is a change from p to q. Values are color coded according to the mean log2 ratio of the markers on each chromosomal arm. 
B) Discussed aberrations in Medulloblastoma dataset GSE8634. Each column corresponds to a sample. Samples are manually ordered 
according to known and new clinicogenetic subgroups, as the bar below shows. Each row corresponds to an aberration discussed in the 
text, and the label indicates the gene associated with it. Values are color coded according to the mean log2 ratio of the markers on each 
aberration. In all subfi gures, for presentation only, values are truncated to the range [−1, 1], rising from blue to red.
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and losses of chromosomes 3, 4, 11, and 14). Both 
other two groups (marked 2A and 2B) are charac-
terized by structural chromosome aberrations, such 
as partial 17q gain. Group 2A has MYCN amplifi -
cation and 1p deletion. Group 2B is characterized 
by 11q deletion, and to a lesser extent, 3p deletion. 
This classifi cation explains most of the chromo-
somal arms associations found.

In GSE5784 there are 15 amplifi cations (Supple-
mentary Table 6B, 28 markers amplifi ed, Supple-
mentary Table 4B) and 115 deletions (Supplementary 
Table 3B, 245 markers deleted, Supplementary 
Table 5B). In GSE7230 there are 18 amplifi cations 
(Supplementary Table 6C, 30 markers amplifi ed 
Supplementary Table 4C) and 49 deletions (Supple-
mentary Table 5C, 87 markers deleted, Supplemen-
tary Table 3C).

Three amplifications and 14 deletions are 
common to both Neuroblastoma datasets (GSE5784, 

GSE7230) (Table 2, Fig. 3C and D). The fi rst 
amplifi ed region, which was separated into two 
regions in GSE7230, is on chromosome 2, and 
corresponds to the MYCN region. MYCN ampli-
fi cations were identifi ed mostly in group 2. The 
other amplifi cation is of the defensins cluster on 
chromosome 8. In addition to being amplifi ed in 
several samples, this region is deleted in other 
samples, in accordance with this region being a 
known frequent normal copy number variation.48 
Eight of the common deletions correspond to the 
1pter deletion, and this deletion was fractioned into 
eight deletions in GSE7230. Another common 
deletion is in the region of BRCA1, a known tumor 
suppressor gene.

In GSE5784, several known tumor suppressor 
genes were deleted—APC, CDKN2A, RB1 and 
TGFBR1. Also, two regions with known onco-
genes were amplifi ed in this dataset—a region on 
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Figure 3. Chromosomal status and aberrations common to both Neuroblastoma datasets. Chromosomal status of datasets GSE5784 
(A) and GSE7230 (B), and the aberrations common to both of Neuroblastoma datasets, shown for the patients of GSE5784 (C) and GSE7230 
(D). Each column corresponds to a sample. Samples are manually ordered according to known and new clinicogenetic subgroups, as the 
bar below shows. In A and B, each row corresponds to a chromosomal arm. Due to space limitation, only every second arm is labelled. Since 
some chromosomes are telocentric (with short p arm), there is a change from p to q. Values are color coded according to the mean log2 ratio 
of the markers on each chromosomal arm. In C and D, each row corresponds to a common aberration, and the label indicates the chromo-
some on which the aberration resides. Values are color coded according to the mean log2 ratio of the markers on each aberration. In all 
subfi gures, for presentation only, values are truncated to the range [−1, 1], rising from blue to red.
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chromosome 11, that includes CCND1, FGF19, 
FGF3, FGF4 was amplifi ed, as well as a region on 
chromosome 12 with ETV6. For GSE5784, no 
aberration list was given in the original publication37 
for comparison.

In GSE7230, the ALK region on chromosome 2 
was amplifi ed. ALK was previously identifi ed as 
having a role in Neuroblastoma.49 The fumarate 
hydratase (FH) region was deleted in GSE7230. 
FH was shown to be a tumor suppressor gene in 
several cancers.50 For GSE723038 aberrations are 
reported at the cytoband level. Only two of the 
24 amplifi ed regions that were reported overlap 
with amplifi cations identifi ed by our method—
MYCN and a region on chromosome 16. Eleven 
of the 22 deleted regions reported in38 overlap with 
deletions identifi ed by our method, including the 
1pter deletion and MLH1 region.

Discussion
We have introduced a simple intuitive method to 
recognize significant local amplifications and 

deletions in aCGH data. The input is the raw data, 
and its categorization into gain, normal and loss 
values for each marker in each sample (defi ned in 
our implementation by GLAD).39 Then, for each 
marker, its level of change, frequency of change and 
length of change are combined to create a volume 
statistic. The signifi cance of this statistic is assessed 
using a random distribution based on a permutation 
of all the data. After aberrant markers are detected, 
they are combined into continuous aberrations that 
are annotated for normal copy number variations 
and then associated with cancer related genes.

Parameters’ dependence
Our guiding principle was to keep the method 
simple. We wanted to incorporate as few assumptions 
and as few arbitrary parameters as possible into 
the method. Implementation of the method neces-
sitates setting three parameters: number of ran-
domizations N, maximal aberration length 
contribution for statistic calculation, K, and FDR 
level. The number of permutations N affects 

Table 2. Aberrations common to both Neuroblastoma datasets.

Chromosome GSE5784 GSE7230 Interesting genes
Start marker End marker Start marker End marker

Amplifi cations
2 H10_K5 H10_M34 CTD-2603D17 CTD-2603D17
2 H10_K5 H10_M34 RP11–775D5 RP11–149C19 MYCN; NAG;
8 H9_L19 H9_I19 RP11–499J9 RP11–499J9 defensins
Deletions
1 H11_N30 H11_C10 RP11–82D16 RP11–780N18 TP73;
1 H11_N30 H11_C10 RP11–327P18 RP11–327P18
1 H11_N30 H11_C10 RP11–150L14 RP11–707I5
1 H11_N30 H11_C10 RP11–728G12 RP11–728G12
1 H11_N30 H11_C10 RP11–155L18 RP11–155L18
1 H11_N30 H11_C10 RP11–598N19 RP11–598N19
1 H11_N30 H11_C10 RP11–335G20 RP11–335G20
1 H11_N30 H11_C10 RP11–219O7 RP11–219O7
4 H9_C33 H9_A3 RP11–358C18 RP11–358C18
6 H9_J12 H9_J12 CTD-2356O12 CTD-2356O12
7 H11_M23 H11_M22 RP11–32H11 RP11–32H11
11 H11_A33 H11_O18 RP11–367J12 RP11–367J12
17 H11_J19 H11_J19 CTD-2321N2 CTD-2321N2
17 H10_A32 H10_A32 CTD-2321N2 CTD-2321N2  
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the computation time. As the distribution of the 
volume statistic under permutations converges fast, 
increasing N above 100 will not change the 
results.

The value of K, the maximal aberration length 
contribution for the statistic used, does affect the 
identity of the aberrations detected as signifi cant. 
Thus, we scanned for K = 1:10, and combined the 
results. We showed that increasing K above 10 had 
very little effect on the aberrations detected.

The chosen FDR level naturally affects the 
results, but setting the level of acceptable false 
discovery rate, the multiple comparisons equiva-
lent of the confidence, is always left to the 
researcher to decide. However, the minimal volume 
required for an aberration to be detected as sig-
nifi cant at each level of FDR can be estimated per 
each value of K, and the FDR level can be adjusted 
accordingly.

Statistic calculation
There is no reason to assume that the number of 
carriers, length and amplitude of an aberration are 
equally important to set its signifi cance, as they 
are used here to calculate the ‘volume’ statistic. 
But they are all biologically relevant parameters, 
and lacking an educated weighting system for these 
parameters, this is the simplest way. The relative 
weight of each parameter can be easily changed 
within this framework. Actually, we vary the rela-
tive weight of the length parameter when varying K. 
We also tested the case where the Height param-
eter is ignored, but this causes the loss of detection 
of relatively rare strong amplifi cations (e.g. CDK6 
amplicon in Medulloblastoma).

Status assignment
The accuracy of status assignment (gain/loss/normal) 
may affect on the results. If thresholds are too restric-
tive, aberrant markers may not be recognized as 
such. If thresholds are too permissive, many markers 
will be considered as aberrant. This may hamper the 
ability of the method to identify weak or rare aber-
rations. There are several methods for status assign-
ment available today,21,39,51–57 and the user may 
select the method most appropriate for his data.

Normal copy number variations
The normal copy number variation is a complicated 
issue in detecting significant disease related 

aberrations. Discarding all aberrations that contain 
any known variation will remove most of the aber-
rations, including clinically recognized ones. In 
addition, the normal copy number variation database 
contains variations that were identifi ed on patients 
with various medical conditions that may affect 
copy number. Thus, only variations identifi ed on 
normal population on a similar platform58 were used 
for annotation. In addition, every marker that was 
both signifi cantly deleted and signifi cantly amplifi ed 
was recorded as suspected for normal copy number 
variation. Indeed, many signifi cantly aberrant loca-
tions are annotated as frequent normal copy number 
variation. In cases when there are enough normal 
and tumor samples of the same population, it may 
be interesting to see how signifi cantly the frequen-
cies of high or low copy numbers of certain normal 
copy number variations differs between the normal 
and tumor populations, which may serve as an 
indication for a possible predisposition of carriers 
of those variants to cancer.

Problematic marker annotations
Another problem of most aCGH platforms is 
problematic marker annotations. In clustering the 
markers on the basis of their aberration profi le for 
each dataset, up to 5% clustered with markers anno-
tated to other chromosomes (data not shown). This 
is an under-estimation of the number of wrongly 
annotated markers, as not all chromosomes create a 
stable cluster of the associated markers. This prob-
lem can be addressed in several ways. The simplest 
one is to discard all single marker aberrations. This 
however may result in losing valuable information. 
Thus, we removed markers that had low correlation 
with the chromosome to which they were assigned 
and high correlation with another chromosome. Still, 
many of the signifi cantly aberrant markers are not 
correlated to their adjacent markers, and are still 
suspected to be located elsewhere in the genome.

Treating long aberrations
Unlike previous works, we do not perform binning 
into fi xed–width locations that may incorporate 
artefacts.32 The volume statistic we use is similar 
to the frequency statistic used in32 for K = 1, 
i.e. when the aberration’s length is not taken into 
account to calculate its signifi cance. Another dif-
ference is that we compare each marker to all the 
genome, and not to a certain chromosomal arm, 
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thus applying an equal ‘signifi cance’ threshold to 
all aberrations. To enable this, all long events must 
be removed. In most cases, removing all chromo-
somal arms on which more than half of the markers 
are aberrant, is enough. However, in certain cases 
(11p in both cancers, 1p in Neuroblastoma) we 
noted long events of less than half an arm length 
that were not removed. When these events are on 
the same genomic location, they may cause iden-
tifi cation of many markers in this region as aber-
rant, always in the same samples. This may be 
correct, but is not the goal of this analysis, aimed 
at fi nding local aberrations. Thus, in such cases, 
long chromosomal events can be noted and 
removed prior to the analysis, or after the analysis. 
Removing these aberrations, that may be interest-
ing in themselves, may allow the detection of more 
local aberrations.

Biological fi ndings
When comparing the aberrations identifi ed by our 
method to the aberrations identifi ed by other meth-
ods, we see all the oncogenes that are known to be 
amplifi ed in the corresponding cancers, but our 
method misses some aberrations identifi ed in pre-
vious publications and fi nds new one. This is a 
natural consequence of the parameters we defi ned 
and the removal of whole arm events. One of the 
main differences we have, using our method, is 
that identifi cation of a region that is aberrant in one 
sample only as signifi cant is rare. Also, a region 
that is amplifi ed on an amplifi ed chromosome 
background, or a region that is deleted on a deleted 
chromosome background with not many separate 
appearances on a normal copy number background 
cannot be identifi ed, as chromosome level events 
are removed. This is in agreement with our goal of 
detecting local events. However, this can be over-
come by running the method for each chromosome 
or chromosome arm separately, which would allow 
inclusion of all samples in the calaculation, and 
identifi cation of local amplifi cations on the back-
ground of chromosomal amplifi cations, and of 
local homozygous deletions on the background of 
chromosome loss. However, that approach also has 
several drawbacks. First, in aCGH with several 
thousands markers, the number on markers on 
some of the smaller chromosomes is too small to 
allow for generation of a reliable null distribution. 
Second, it is diffi cult to fi nd short non frequent 
aberrations on chromosomes that have long events, 

and third, the threshold an aberration has to pass 
to be considered as signifi cant will be different for 
different chromosomes. In cases where the goal is 
to fi nd an exhaustive list of aberrant locations, one 
may consider applying the analysis for the 
entire genome and for each chromosomal arm 
separately.

We applied our method on three public datas-
ets of childhood neoplasms associated with the 
nervous system—one of Medulloblastoma 
(GSE8634) and two of Neuroblastoma (GSE5784, 
GSE7230). In Medulloblastoma, we fi nd fi ve 
distinct sub groups. Two sub groups with isochro-
mosome 17, one with many other chromosomal 
events (2), and one with few chromosomal 
events (3). There is also a group with many chro-
mosomal aberrations but without isochromosome 
17 (1), a group with loss of chromosome 6 (4), 
and a group with few aberrations (5). MYCN 
amplifi cation appears only in the fi rst three groups, 
and CDK6 amplifi cation appears mostly in the 
fi rst two types. MYC amplifi cation appears only 
when there is no MYCN amplifi cations, and only 
in the fi rst two types, strengthening our new sug-
gested partition of the isochromosome 17 type 
into two subtypes, the fi rst of which is equivalent 
to Neuroblastoma type 1.

In Neuroblastoma, we identified the three 
known subgroups, and the MYCN amplifi cation 
known to be associated with one of the types.

Comparing two types of childhood neoplasms 
associated with the nervous system, it is interesting 
to note the role of chromosome 17, and its interrela-
tions with MYCN amplifi cations. Chromosome 17 
amplifi cation has two forms—isochromosome in 
Medulloblastoma, and gain of the q-arm or the whole 
chromosome in Neuroblastoma. MYCN amplifi ca-
tion appears mostly with isochromosome 17 in 
Medulloblastoma, but only with 17q amplifi cation 
in Neuroblastoma—rarely with whole chromosome 
gain. It was recently shown that MYCN-directed 
centrosome amplification, leading to increased 
tumorigenesis, requires MDM2-mediated suppres-
sion of p53 activity in Neuroblastoma cells.59 Since 
p53 is located on chromosome 17p, it can be sug-
gested that suppression of p53 is diffi cult when there 
are more than two copies of 17p, and thus there is 
no selective advantage in MYCN amplifi cation in 
tumors carrying more than two copies of the full 
chromosome 17 (Neuroblastoma type 1). Similarly, 
MYCN amplifi cation is more advantageous if there 
is deletion of 17p, carrying p53.
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Conclusions
Our method allows for a fast and biologically 
motivated detection of aberrant chromosomal 
regions, and associates them with chromosomal 
arm level events to characterize subtypes of can-
cer. We believe that our method is conceptually 
simpler to understand than prebiously published 
methods. We have demonstrated the ability of the 
method to detect all the clinically relevant proven 
aberrations and new DNA amplifi cations and dele-
tions in two types of childhood neoplasms associ-
ated with the nervous system. In addition to the 
known chromosomal aberrations and known sub-
groups, our method identifi ed a new subgroup in 
Medulloblastoma.

Methods

Datasets
All aCGH datasets used for analysis were down-
loaded from GEO (see Table 1). Log2 ratios were 
used as appeared in GEO. Markers were ordered by 
their genomic location according to the annotation 
of the corresponding platforms. Loss, normal or gain 
status was assigned per each marker in each sample 
by GLAD,39 using the parameters as are used in 
the GLAD manual (Supplementary note 1).

Aberrations’ annotation
Normal copy number variations were downloaded 
from http://projects.tcag.ca/variation/ for the human 
genome versions hg17 and hg18. There is no data 
for hg16. Aberration annotation includes variations 
identifi ed by aCGH on 270 normal individuals.58

The list of genes in each aberration was created 
based on the genomic location from UCSC 
matched version knownGene table, gene symbols 
by kgXref table. The genes list in each aberration 
was scanned to search for cancer related genes,60 
(October 30, 2007 version). The lists of deletions 
and amplifi cations and their associated genes and 
cancer related genes appear in Supplementary 
Tables 5 and 6, respectively.

Recognizing possible inaccurate 
genomic locations
Our working hypothesis is that at least 90% of the 
markers are annotated to their correct chromosomal 
locations. In order to identify markers that we 

suspect to be mistakenly annotated, we use the 
correlation of the marker’s signal intensity with 
neighboring markers. If the signal of a marker is 
correlated to that of its neighbors, it is not likely to 
be inaccurately annotated. Thus, we calculated for 
each marker m its Pearson correlation coeffi cients, 
c(m − 1, m) and c(m, m + 1), to its two neighboring 
markers. We defi ne a threshold T for each dataset 
such that 20% of the correlations between adjacent 
markers are lower than T (assuming that less than 
10% of the markers are inaccurately located, results 
in at most 20% of the neighbors being incorrectly 
identifi ed as such). For most markers m, both 
c(m − 1, m) and c(m, m + 1) � T. A low correlation 
(less than T) to one of the two neighbors may be 
due to chromosome arm start or end, to an aberra-
tion or variation border, or to mistaken location 
annotation of the neighbor. If, however, the cor-
relation of a marker to both its neighbors is below 
threshold, it is likely to be on an isolated aberration 
(copy number change) or—inaccurately located. 
We fl agged these markers as suspected as being 
assigned to wrong locations. For each suspected 
marker we applied the procedure described in 
Supplementary Note 2, to check whether it can be 
confi dently assigned to another genomic location, 
based on a very high correlation to the aCGH values 
of several markers in the other genomic location. 
If so, it was removed (see Supplementary Table 2 
for lists of removed markers, together with their 
putative correct chromosomal arm), otherwise it 
was left in the analysis.

Potentially inaccurate location was identifi ed 
for 17 to 144 markers per dataset, which constitute 
0.7%–3.5% of the markers (see Table 1).

We noticed for GSE8634 that many aberrations 
were highly correlated, and correlated to gender. 
Some of the samples were probably hybridized to 
opposite sex control samples. The 28 markers 
whose two sided t-test p-value between the 
genders passed FDR of 1% were thus removed, 
and the analysis was repeated. We assume 
those markers are actually located on the gender 
chromosomes, but as no data is included for 
markers on the gender chromosomes, we used the 
gender annotation.

FDR
Whenever many comparisons are done in parallel, 
p-values can be adjusted to control an overall 
error criterion. Here, we controlled the expected 
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rate of false identifi cations of aberrations through 
the FDR criterion, as defi ned by Benjamini and 
Hochberg.40 This procedure was applied on per-
mutation p-values in Reiner et al.61 and was 
shown there to control the FDR, based on simu-
lated data.

The FDR controlling procedure was applied on 
the p-values of all markers from all chromosomes. 
The designated rate of false discoveries q will 
naturally affect the number of markers identifi ed 
as signifi cant, and should be set according to the 
dataset and the resources allocated to check sig-
nifi cant aberrations. When q is set higher, the list 
of markers that are found signifi cant is longer, but 
the expected rate of false positives also increases. 
In the analysis presented in this article, FDR was 
controlled at the 5% level.

The output of the algorithm is a table with ten 
columns, one for each value of K (K = 1:10), and 
a row for each marker. FDR was controlled for the 
whole table, and only rows in which at least 
one column was found signifi cant were defi ned as 
aberrations.
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