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Abstract: Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic 
transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modifi ed to produce 
functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control 
of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron 
splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing 
events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is 
implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an 
overview of current knowledge of the post-transcriptional processing in chloroplasts.
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Introduction
Since the discovery of the existence of DNA1 and ribosomes2 in chloroplasts, many studies have been 
published about the structure of the chloroplast genome and its expression. These studies were facilitated 
by the development of cloning and sequencing techniques in the 1970s. The fi rst physical map of plas-
tid DNA was obtained from maize3 and the fi rst plastid gene was cloned in 1977.4 A decade later, the 
complete chloroplast genome of tobacco,5 Marchantia polymorpha6 and rice7 was sequenced. These 
fi rst approaches culminated in an emerging new fi eld: gene organization and expression of the chloro-
plast genome. This fi eld has subsequently become one of the most studied in plant molecular biology. 
The chloroplast genome has both prokaryotic and eukaryotic properties,8 but resembles prokaryotic 
systems since it has σ70 type promoters, a plastid encoded RNA polymerase, operons, “Shine-Dalgarno”-
like sequences, and 70S ribosomes. The chloroplast genetic machinery also has characteristics of nuclear 
systems with the presence of introns and highly stable mRNAs. Consequently, the control of chloroplast 
gene expression includes several processes that are similar to those of prokaryotic and/or eukaryotic 
systems. These processes are: transcription, post-transcriptional processing, translation, and post-
translational modifi cations. Generally, transcription rates and steady-state mRNA levels are not consis-
tent suggesting that post-transcriptional RNA processing and stabilization are decisive steps in 
controlling plastid gene expression. This step principally includes RNA cleavage of pre-existing RNAs, 
RNA stabilization-degradation, intron splicing, and RNA editing (Fig. 1).

Plastid Transcriptional Machinery
Most of the genes encoded in higher plant chloroplasts, including genes involved in related functions, 
are organized as operons. However, they may also encode functionally unrelated genes.9,10 Plastid 
operons are transcribed as polycistronic units by at least two distinct RNA polymerase activities: the 
plastid-encoded (PEP) and the nuclear-encoded (NEP) RNA polymerases.11,12 PEP is a multisubunit 
complex which resembles eubacterial RNA polymerases and is the predominant transcriptional activity 
in mature chloroplasts. PEP recognizes E. coli σ70 type promoters whose typical TTGACA (−35) and 
TATAAT (−10) consensus elements are found upstream of most plastid transcriptional units. The PEP 
core enzyme is composed of four different subunits, α, β, β’ and β,’’ which are encoded on the plastid 
genome by rpoA, rpoB, rpoC1 and C2 genes.13 The activity of the PEP core enzyme is regulated by 
sigma-like transcription factors (SLFs) that paly a role in promoter selection in a similar manner to the 
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RNA polymerase of E. coli.14,15 Six different sigma 
factors, SIG1–SIG6, have been described for 
Arabidopsis thaliana.16 The mRNAs of these SLFs 
are translated in the cytoplasm and the correspond-
ing proteins are subsequently imported as precur-
sor proteins into the plastids. Recently, several 
investigations have elucidated the role of sigma 
factors by analyzing Arabidopsis T-DNA insertion 
lines with disrupted SIG genes. SIG2 is known to 

specifi cally transcribe some of the tRNA genes17 
and the psaJ gene,18 SIG3 specifi cally transcribes 
the psbN gene in plastids,19 SIG4 is of specifi c 
importance for ndhF gene transcription,20 SIG5 
has been shown to play an important role in the 
recognition of the blue-light dependent promoter 
of the psbD gene21 and SIG6 plays a more general 
role during early plastid differentiation and plant 
development.22

Figure 1. Schematic representation of the mechanisms involved in the control of chloroplast gene expression in higher plant 
chloroplasts. Most of the genes encoded in higher plant chloroplasts are organized as operons.9,10 Primary transcripts are further modifi ed 
to produce functional RNAs. In higher plants, post-transcriptional modifi cations include RNA cleavage of pre-existing RNAs, RNA stabiliza-
tion, intron splicing and RNA editing. Generally, RNA editing affects mRNAs RNA stabilization usually involves the formation of a 3’ stem 
loop secondary structure which prevents its 3’ to 5’exonucleolytic degradation.38 Most of chloroplast introns in higher plants belong to group II 
and are spliced by releasing the intron in a lariat form.105,106 Generally, editing is found mRNAs but it also affects structural RNAs. In chlo-
roplasts, most editing events involve conversions of cytidine (C) to uridine (U), but they are also “reverse” conversions of uridine to cytidine 
as is the case of several studied lower plants as hornworts and ferns.120–123 Several nuclear-encoded proteins participate in diverse plastid 
RNA processing events. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial 
functions including organelle biogenesis and plant development.172
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There is a second nuclear-encoded transcription 
activity in chloroplasts (NEP, nuclear-encoded 
plastid RNA polymerase) supplementary to PEP.11 
Most NEP promoters have a core sequence motif 
YRTA and are known as type-Ia, similar to plant 
mitochondria promoters.23 A subclass of NEP 
promoters, known as type-Ib, shares a GAA-box 
motif upstream of the YRTA-motif.24 Type-II NEP 
promoters lack these motifs and possess crucial 
sequences located downstream of the transcription 
initiation site, represented by dicot clpP promoters.25 
Unlike PEP, NEP is a single subunit enzyme shar-
ing homology with the RNA polymerases of phage 
T3 and T7.26,27 Initially, a gene encoding NEP was 
sequenced in several plants.26,28,29 Further isolation 
of functionally distinct NEP activities in spinach 
chloroplasts27 and the identifi cation of two genes 
for NEP-like isozymes in Arabidopsis30 suggested 
the existence of additional NEP activities.

Recent evidence indicates that NEP is repre-
sented by two phage-type RNA polymerases 
(RpoTp and RpoTmp) that have overlapping as 
well as gene-specifi c functions in the transcription 
of plastidial genes in A. thaliana. RpoTp is local-
ized in chloroplasts whereas RpoTmp, exclusively 
found in dicots, is presumably localized in both 
mitochondria and chloroplasts. In vitro transcrip-
tion assays revealed no significant promoter 
specifi city for RpoTmp and the accurate transcrip-
tion initiation from overlapping subsets of 
mitochondrial and plastidial promoters without the 
aid of protein cofactors.31 RpoTp is a catalytic 
subunit of NEP involved in recognition of a distinct 
subset of type I NEP promoters.32 Mutational 
approaches indicated that the plastid RpoTp RNA 
Polymerase is required for chloroplast biogenesis 
and mesophyll cell proliferation in Arabidopsis.33 
Evidence indicates hat RpoTmp and RpoTp are 
involved in similar developmental events and that 
they are partially redundant.33,34 However, in con-
trast to the role assigned to RpoTp in both early 
and late stages of vegetative development in Ara-
bidopsis, RpoTmp is required in early seedling 
development. It has been shown that RPOTmp 
fulfi lls a specifi c function in the transcription of 
the rrn operon in proplasts/amyloplasts during seed 
imbibition/germination.35 In chloroplast, RpoTp 
is tightly associated with thylakoid membranes and 
interacts with a RING-H2 protein that in turn medi-
ates intraplastidial traffi cking of the RPOTmp 
RNA polymerase.36 The same research work 
presented a model in which light determines 

membrane association and functional switching of 
RPOTmp by triggering the synthesis of the RING 
protein. Interestingly, comparison of plastidial 
promoters from tobacco and Arabidopsis revealed 
a high diversity, which may also apply to other 
plants.37 The diversity in individual promoter usage 
in different plants suggests that there are species-
specifi c ways of controlling gene expression in 
plastids.

Chloroplast RNA Processing 
and Stability
Evidence indicates that the control of chloroplast 
gene expression relies more on RNA processing 
and stability than on transcriptional regulation.38,39 
In chloroplasts, polycistronic primary RNAs tran-
scribed by PEP and/or NEP are generally processed 
into smaller transcripts which are further modifi ed. 
RNA processing mechanisms remain largely 
unknown and sometimes controversial in spite of 
the diverse studies, focusing on several aspects of 
chloroplast gene expressionreviewed in:40,41 
Nowadays, the fact that post-transcriptional RNA 
processing of primary transcripts represents an 
important step in the control of chloroplast gene 
expression appears to be well accepted.42,43 In 
several cases, alternative processing of polycis-
tronic primary transcripts may cause the simultane-
ous stabilization and degradation of alternative 
transcripts, resulting in the enhancement and inhi-
bition of their translation, respectively.44–47 
Whether or not transcript processing infl uences its 
translation into proteins remains controversial. In 
light of this, several investigations indicated that 
intercistronic processing is crucial for the transla-
tion of chloroplast operons and that the translation 
of monocistronic forms is more effective than 
translation of polycistronic forms.45,48,49 Neverthe-
less, in some cases it seems that translatable tran-
scripts can be produced by both direct transcription 
from the promoter and intercistronic cleavage of 
pre-existing transcripts.9,48 Additionally, recent 
investigations with transgenic lines have demon-
strated that processing into monocistrons is not 
required for over-expression of transgenes and that 
they are effi ciently translated.50 Unlike higher 
plants, in the green alga Chlamydomonas rein-
hardtii, translation seems to be an essential step in 
the regulation of chloroplast gene expression.51,52 
In these algae, transcript processing is less important 
in controlling plastid gene expression than in 
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higher plants since nearly all genes appear to be 
transcribed as monocistronic RNAs.

In chloroplasts, transcript stability is mainly 
infl uenced by the presence of 5’ untranslated 
regions (5’-UTRs) and 3’-UTRs, that seem to be 
necessary to prevent the rapid degradation or low 
accumulation of primary transcripts.53–57 Delet-
ing or mutating them destabilizes the RNA, lead-
ing to reduced transcript accumulation and 
translation.53,58,59 Most of the plastid transcripts 
have short inverted repeat sequences (IR) that can 
potentially form a stem loop secondary structure 
(Fig. 1). In prokaryotic organisms, similar 
structures appear to play a crucial role in tran-
scription termination of RNAs. However, in 
chloroplasts, transcription termination is very 
ineffi cient, resulting in considerable read-through 
transcription of downstream sequences.50,60,61 
Therefore, the role of plastid 3’-UTRs differs 
from the role of its bacterial counterparts since 
they are more involved in transcript stability 
preventing 3’ to 5’ exonucleolytic degradation 
of transcripts than in the effective termination of 
transcription.38

Another post-transcriptional modification 
affecting transcript stability is RNA polyadenyl-
ation (Fig. 1). In chloroplasts, poly(A) tails are 
found in degradation intermediate 3’-ends that 
contain not only adenosine but also other residues, 
principally guanosine.62 In chloroplast extracts, 
polyadenylated RNAs are degraded faster than 
nonadenylated RNAs and are more abundant 
in vivo under specifi c conditions that promote 
RNA degradation. Thus, polyadenylation might 
promote plastid RNA turnover in vivo by target-
ing endonucleolytic cleavage products for 
degradation63–66 as described for bacteria67–70 and 
plant mitochondria.71,72 The molecular mechanism 
of RNA degradation in chloroplasts appears very 
similar to that of bacteria.63,64,73 The fi rst step con-
sists of endonucleolytic cleavage of the RNA 
molecule, followed by polyadenylation.74,75 The 
polyadenylated cleavage products, including 
mRNAs63,64,73 and released introns,76 are then 
directed to rapid exonucleolytic degradation by 
PNPase and possibly other exoribonucleases 
(Fig. 1).65,74 Recent studies have revealed that 
although this enzyme is essential for effi cient 
3’-end processing of mRNAs, it is insuffi cient to 
mediate transcript degradation revealing an addi-
tional function of this exoribonuclease in tRNA 
degradation in Arabidopsis thaliana.77

In the last few years, several nuclear-encoded 
proteins that participate in chloroplast transcript 
processing and stabilization have been character-
ised. Most of them have been studied in Arabidop-
sis mutants (see Table 1). CRS2 is a protein that is 
involved in the intercistronic processing of rps7-
ndhB transcripts.78 Such RNA processing seems 
to be essential for ndhB translation. This protein 
was fi rst described in Arabidopsis mutants known 
as “chlororespiratory reduction mutants,” with 
reduced chloroplast NDH activity. crr2-1 and 
crr2-2 are recessive mutant alleles responsible for 
the impaired accumulation of the NDH complex. 
HCF152, encoded by the gene hcf152, is a RNA-
binding protein that is involved in the processing 
or stabilization of the petB transcripts within the 
psbB-psbT-psbH-petB-petD operon.79 This gene 
was fi rst identifi ed in the nonphotosynthetic mutant 
of Arabidopsis hcf152 which does not produce the 
cytochrome b6f. The P67 protein seems to par-
ticipate in the processing and translation of specifi c 
chloroplast mRNAs in radish and Arabidopsis80 
and PGR3 is a nuclear-encoded protein which 
might have different functions in conferring RNA 
stability to the primary tricistronic transcript of the 
petL operon.81 This regulatory protein was 
described in pgr3 (proton gradient regulation 3) 
mutants of Arabidopsis, which display high chlo-
rophyll fl uorescence (HCF) because of a reduced 
level of the cytochrome b6/f complex.

Mutants of several plant species other than 
Arqabidopsis have revealed the existence of new 
nuclear-encoded proteins which participate in 
chlroplast RNA processing and/or stabilization. In 
maize, the CRP1 protein is required for the trans-
lation of the chloroplast petA and petD transcripts 
and for the processing of the petD mRNA from a 
polycistronic precursor.82,83 Analysis of double 
mutants that lack both chloroplast ribosomes and 
CRP1 function suggested that CRP1 activates a 
site-specifi c endoribonuclease independently of 
any role it plays in translation.

Zmppr5 is the maize ortholog of the embyo-
essential Arabidopsis gene Atppr5. The protein 
product of this gene is bound in vivo to the 
unspliced precursor of trnG-UCC RNA.84 Null and 
hypomorphic Zmppr5 insertion mutants are embryo 
viable but show defi ciency in chloroplast ribo-
somes and die as seedlings. In these mutants, 
transcription of trnG-UCC is unaffected but their 
encoded transcripts are dramatically decreased. 
This observation, in addition to biochemical data, 
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indicates that PPR5 stabilizes the trnG-UCC 
precursor by direct binding and protection of an 
endonuclease-sensitive site.

In the moss Physcomitrella patens, the ppr531-
11-disrupted mutants display a significantly 
smaller protonemal colony, different chloroplast 
morphology, incomplete thylakoid membrane 
formation and a reduction of the quantum yield of 
photosystem II.85 Several analyses have demon-
strated that PPR531-11 has a role in intergenic 
RNA cleavage between clpP and 5’-rps12 and in 
the splicing of clpP pre-mRNA affecting the 
steady-state level of ClpP, which regulates the 
formation and maintenance of thylakoid mem-
branes in chloroplasts.

In the unicellular alga Chlamydomonas rein-
hardtii, expression of the chloroplast petA gene-
encoding cytochrome f, depends on two specifi c 
nucleus-encoded factors: MCA1, required for stable 
accumulation of the petA transcript, and TCA1, 
required for its translation.86 Mutants with tagged 
versions of MCA1 and TCA1 have low amounts of 
MCA1 or TCA1, show limited petA mRNA accu-
mulation and cytochrome f translation, respectively. 
It has been proposed that a rapid drop in MCA1 
exhausts the pool of petA transcripts, and the pro-
gressive loss of TCA1 further prevents translation 
of cytochrome f where de novo biogenesis of cyto-
chrome b(6)f complexes is not required.

Intron Splicing
Several chloroplast genes, encoding both structural 
RNAs and proteins, are interrupted by introns. In 
chloroplasts, introns are classifi ed into two main 
groups according to their conserved primary and 
secondary structures as well as their different splic-
ing pathways, these are termed group I and group 
II introns. Land plant chloroplast genomes contain 
c.a. 20 group II introns and a single group I intron 
(within the trnL-UAA gene). However, a relatively 
high number of group I introns have been reported 
for green algae within organellar LSU rDNAs.87–89 
Group I introns are found more frequently in 
eukaryotes than in prokaryotes.90 Approximately 
90% of all group I introns identifi ed to date are 
found in fungi, plants, and algae. In organellar 
DNAs, group I introns are found in genes encoding 
rRNAs, tRNAs, and proteins but they are limited 
to genes encoding rRNAs in the nucleus. Group I 
introns are located in functionally vital loci and 
they must be removed from transcripts by splicing, 

a process which occurs co-ordinately with ligation 
of RNA exons.91,92 The intron folds to form a sec-
ondary structure consisting of ten domains, P1 to 
P10, each with specifi c roles in the formation of a 
catalytic core responsible for carrying out the splic-
ing and ligation.91,93 Most of the conserved nucle-
otides correspond to the four short sequences P, Q, 
R, and S. These sequences are located in the same 
5’ to 3’ order at variable distances from each other 
(form c.a. 20 nt to many hundreds). All of the group 
I introns, from several genetic systems of diverse 
organisms identifi ed to date including green algae 
chloroplasts, have a U at their 5’-end and a G at 
their 3’-end.91,93 Splicing proceeds through two 
transesterifi cation reactions93 with the fi rst reaction 
involving cleavage at the 5’ splice site and simul-
taneous addition of guanosine to the 5’ intron end. 
The second reaction involves cleavage at the 
3’ splice site with concomitant ligation of exons. 
Group I intron splicing may be autocatalytic (self-
splicing) or maturase facilitated. Several proteins 
from fungal mitochondria encoded by group I 
introns promote their splicing in vivo.94 However, 
self-splicing has only been tested by an in vitro 
assay in mitochondrial groupI introns from Asper-
gillus nidulans.95 In Chlamydomonas reinhardtii 
it has been demonstrated the existence of nuclear 
genes that promote splicing of group I introns in 
the chloroplast 23S rRNA and psbA genes.96

A remarkable feature of group I introns is their 
ability to colonize new insertion sites resulting in 
their spread.90 Intron insertion can occur via two 
alternative processes: reverse splicing and intron 
homing. Reverse splicing involves the insertion of 
a free intron into the RNA and has been observed 
in mobile group I introns integrated into the small 
subunit rRNA of bacteria and yeast.97,98 Intron hom-
ing is the insertion of an intron into a homologous 
position within an intronless copy of DNA.99

Intron homing is catalyzed by endonucleases, 
and are called homing endonucleases (HEs). 
Encoded by open reading frames (ORF) within 
introns, they recognize and cleave the target gene. 
In eukaryotes, HEs are found within nuclear and 
organellar genomes including both mitochondria 
and chloroplasts. HEs comprise four families known 
as: LAGLIDADG, GIY-YIG, His-Cys box, and 
HNH.99,100 In chloroplasts, HEs belonging to the 
LAGLIDADG, GIY-YIG, and HNH families have 
been discovered. The most studied chloroplast HEs 
were found within green algae of the genus Chlam-
ydomonas. The LAGLIDADG family includes 
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I-CreI and I-Ceu-I proteins from the chloroplasts of 
C. reinhardtii and C. eugametos respectively which 
have only one LAGLIDADG sequence motif and 
function as homodimers. X-ray crystallography has 
generated structural models for group I intron-
encoded I-CreI HE [23S rRNA gene from Chlam-
ydomonas reinhardtii chloroplast].101

The LAGLIDADG motifs form structurally 
conserved alpha-helices packed at the center of the 
interdomain. The DNA-binding interface forms a 
four-stranded beta-sheet located on either side of 
the LAGLIDADG alpha-helices. The last acidic 
residue of the LAGLIDADG motif participates in 
DNA cleavage by phosphodiester hydrolysis.100 
The GIY-YIG family includes monomeric enzymes 
which are characterized by the conserved GIY-
(X10–11)-YIG motif. In chloroplasts, the ORFs in 
introns 2 and 3 (Cr.psbA2 and Cr.psbA3) within 
the psbA gene of C. reinhardtii contain variants of 
the GIY-YIG motif.102 The I-CreII protein is an 
ORF within intron 4 (Cr.psbA4) of the psbA gene 
of C. reinhardtii. This HE contains an H–N–H and 
possibly a GIY–YIG motif.103 This protein is a 
double-strand-specifi c endonuclease that cleaves 
fused psbA exon 4–exon 5 DNA. Cleavage of 
heterologous psbA DNAs has been demonstated 
indicating that the enzyme can tolerate multiple, 
but not all, substitutions in the recognition site.

Group II introns are broadly distributed in 
diverse genetic systems including the chloroplast 
genome. This intron group can be distinguished by 
its folding into a characteristic secondary structure 
consisting on six helical domains radiating from a 
central core. There are two exon binding sites 
(EBS1 and ENS2) located within domain I. These 
exon binding sites interact with two intron binding 
sites (IBS1 and IBS2) located within the fi rst 
twelve nucleotides of the intron 5’ end104 and their 
splicing proceeds via two alternative pathways 
known as the “branching” and “hydrolytic” path-
ways. The branching pathway consists of two 
consecutive transesterifi cation reactions. During 
the fi rst reaction, the fi rst nucleotide of the intron 
5’ end establishes a temporary 2’–5’ bond with a 
bulging adenosine located within domain VI. After 
intron splicing, the 5’ and 3’ exons join and the 
intron is released in a lariat form. The alternative 
splicing pathway starts by the hydrolytic cleavage 
of the 5’-splice site instead of transesterifi cation.105 
In chloroplasts, most group II introns have a bulg-
ing adenosine within their domain VI and the 
splicing seems to occur via the branching pathway 

except for the trnV(UAC) transcripts.106 In spite 
of the fact that plastid group II introns are large 
ribozymes, since they seem to be auto-spliced 
in vitro, experimental evidence indicates that 
proteins are required for the effi cient splicing of 
many group II introns in vivo, but to date, few 
group II intron splicing factors have been identi-
fi ed. Some of the protein factors are encoded within 
certain plastid group II introns, which contain 
genes for maturase-like proteins involved in their 
own splicing as well as of other intron-containing 
plastid genes107,108 whereas others are nuclear 
encoded. Several nucleus-encoded proteins neces-
sary for the splicing of various subsets of the c.a. 
20 chloroplast group II introns in vascular plants 
have been reported. CRS1 is one of the fi rst to be 
characterized and is necessary for the splicing of 
the group II intron in the chloroplast atpF 
gene.109,110 Further investigations have demon-
strated the participation of additional proteins in 
atpF intron splicing. One such proteins is the 
ZmWHY1 that co-immunoprecipitates with CRS1. 
ZmWHY1 is the maize ortholog of WHY1 which 
acts as nuclear the transcription factors involved 
in pathogen-induced transcription in potato and 
Arabidopsis (StWHY1 and AtWHY1 respectively). 
Genome-wide co-immunoprecipitation assays 
have shown that ZmWHY1 in chloroplast extract 
is associated with DNA from throughout the plas-
tid genome and with a subset of plastid RNAs that 
includes atpF transcripts.

Various genetic approaches allowed the identi-
fi cation of additional nucleus-encoded proteins that 
are required for the splicing of group II introns in 
maize (Zea mays) chloroplasts: a CAF1/CRS2 
complex, a CAF2/CRS2 complex, PPR4 and 
RNC1. Each of the afore mentioned nuclear-
encoded factors is required for the splicing of 
distinct, but overlapping, subsets of the 17 group 
II introns in maize chloroplasts.83,109,111–113 CRS1, 
CAF1and CAF2 harbor a CRM domain which is 
a RNA binding domain111,112,114 and their Arabi-
dopsis thaliana orthologs conserve the splicing 
functions.110 CRS2 is related to peptidyl-tRNA 
hydrolase enzymes115–116 whereas PPR4 is a mem-
ber of the pentatricopeptide repeat (PPR) family 
(see Table 1 and Fig. 2).113,117 RNC1 is a plant-
specifi c protein that has been recovered in both 
CAF1 and CAF2 co-immunoprecipitates118 and 
has two ribonuclease III (RNase III) domains. 
RNC1 is found in complexes containing a subset 
of group II introns in the chloroplasts that include, 
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but are not limited to, CAF1- and CAF2-dependent 
introns. rnc1 mutants exhibit an ineffi cient splicing 
of many of the introns which are associated with 
RNC1 indicating that RNC1 promotes intron splic-
ing in vivo. Despite its two RNase III domains, 
phylogenetic considerations and biochemical 
assays indicate that RNC1 lacks endonucleolytic 
activity. These and other results suggest that RNC1 
promotes splicing via its RNA binding activity and 
that it is recruited to specifi c plastid introns via 
protein–protein interactions.

All of the investigations on nuclear-encoded 
splicing factors mentioned have contributed to the 
elucidation of the possible mechanisms by which 
they promote splicing. Nevertheless, the fate of 
introns after splicing remains an unresolved ques-
tion. To this end, the analysis of the degradation 
products of ndhA, atpF, and petB transcripts in 
several plant species have demonstrated the exis-
tence of both incomplete introns and unspliced 
pre-mRNAs, which presumably correspond with 
their respective intermediate degradation products.76 
Nucleotide sequencing of both 5’ and 3’ ends of 
such RNA species has shown that the cleavage 
affects specifi c intron domains and occurs within 
an unpaired bubble fl anked by two-stem structures 
typical of prokaryotic RNAse III processing sites. 
Degradation of both unspliced pre-mRNAs and 
lariat introns has also been proposed as an addi-
tional mechanism that controls the level of mature 
translatable mRNAs of chloroplast genes.

RNA Editing
In plants, with the exception of liverworts, RNA 
editing has been found in both mitochondria and 
chloroplasts.119 Generally, this post-transcriptional 
modifi cation affects mRNAs but it can also affect 
structural RNAs. In chloroplasts, most editing 
events involve conversions of cytidine (C) to uri-
dine (U), but “reverse” conversions of uridine to 
cytidine have also been noted in several studied 
hornworts and ferns.120–123 In the chloroplast of 
seed plants, about 30 different C to U transitions 
affecting mRNAs have been found.124–128 In bryo-
phytes, the number of RNA editing sites in plastids 
range from zero in liverworts to almost 1,000 in 
hornworts.121,122,129 Editing often alters the amino 
acid identity and affects the amino acids that play 
a role in proper protein function.122,129,130–132 In 
some cases, editing creates new translation initia-
tion codons, converting mRNAs into translatable 

messages or stop codons.122,129,133–136 The existence 
of these cryptic start codons created by RNA edit-
ing, led to the defi nition of open reading frames 
(ORFs). Editing sites have also been detected in 
the anticodon of tRNA (Leu) and within untrans-
lated regions, including introns.122,137–139 However, 
it seems that the frequency of editing within non-
coding regions is very low in comparison with the 
extent of editing within coding regions. The dis-
covery that editing often leads to the conservation 
of certain amino acid residues in some proteins in 
both mitochondria and chloroplasts suggests that 
editing may act as a mechanism to prevent the 
deleterious effects of point mutations that have 
been maintained through evolution. The correspon-
dence of 53 editing sites found in the fern Adiantum 
capillus-veneris to editing sites in hornworts, and 
some other land plants, suggests that a major com-
ponent of RNA editing sites have been conserved 
for hundreds of millions of years.122 Editing has 
also been studied in transcript processing interme-
diates to elucidate possible connections between 
editing and other post-transcriptional processing 
events (Fig. 1). The fi rst results indicate that edit-
ing is an early RNA processing step, which pre-
cedes splicing and cleavage of polycistronic 
transcripts.46,127,140–142 The complete editing of 
polycistronic transcripts before any processing 
event could prevent aberrant forms of the corre-
sponding protein as a result of the translation of 
unedited transcripts. The editing process involves 
two consecutive events: site recognition and 
nucleotide modifi cation. It seems that the modifi ca-
tion process in C to U transitions occurs via 
deamination of the base in plant mitochondria143,144 
although the factor(s) mediating this process in 
plant organelles have not yet been identifi ed. The 
recognition process for both mitochondrial and 
chloroplast RNA editing remains unknown to date. 
In this line, it is very diffi cult to explain the extraor-
dinary high specifi city in the selection of bases to 
be edited. Several studies indicate that RNA fl ank-
ing sequences or cis-elements typically located 
within 15–30 nucleotides are involved in editing 
site recognition.145–152

Computational analysis of the sequences 
within −30 to +10 nucleotides of RNA editing sites 
(neighbor sequences) within the genomic and 
cDNA sequences of chloroplast genes in the moss 
Takakia lepidozioides. allowed statistical analyses 
of chloroplast RNA editing sites to be performed.152 
This study allowed the development of a prediction 
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Figure 2. (A) Structure of a hypothetical pentatricopeptide repeat protein. (B) Diagram depicting the PPR proteins listed in Table 1 
showing the distribution of PPR motifs. PPR motifs are represented as blue boxes whereas other motifs are represented as red ovals 
(RRM: RNA recognition motif; LAGLIDADG: LAGLIDADG motif). Only the motifs identifi ed by using Pfam v21.10183 were represented. All 
depicted PPR proteins have a transit peptide (no represented) at their N-termini for their targeting to chloroplasts.

algorithm wich predicted c.a. 60% of true editing 
sites in T. lepidozioides transcripts. The success of 
this prediction algorithm suggests that the obtained 
patterns are indicative of key sites recognized by 
trans-factors around editing sites of T. lepidozioides 
chloroplast genes.

One of the latest identifi ed editing cis-elements 
is the 5’ sequence GCCGUU, which is required 
for editing of tobacco psbE transcripts in vitro.153 
The analysis of psbE sequences from many plant 
species revealed that the GCCGUU sequence is 
present at a high frequency in plants that carry the 
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same editing event of psbE transcripts with the 
exception of Sciadopitys verticillata (Pinophyta). 
This plant species showed editing at this site 
despite the presence of nucleotides that differ from 
the conserved cis-element. Interestingly, chloro-
plast extracts from a species that has a difference 
in the motif and lacks the C target are incapable 
of editing tobacco psbE substrates, indicating that 
the necessary trans-acting factors were not retained 
without a C target. Conversely, several heterolo-
gous editing events have been reported in different 
plant species indicating the maintenance of plastid 
RNA editing activities independently of their 
target sites.154

The transformation of the tobacco chloroplast 
genome has been extensively used to characterize 
cis-elements involved in editing site recognition 
in chloroplasts. These experiments, in combination 
with the introduction of point mutations, are very 
useful for identifying critical nucleotides that are 
targets for the editing apparatus.146,147,155 By using 
these techniques many cis-acting elements required 
for the editing process have been discovered. Evi-
dence indicate that they are not specifi c to an 
individual editing site allow recognition of a clus-
ter of editing sites even in transcripts of different 
genes.156 This fi nding is supported by the discovery 
of cis-elements of some 2–5 editing site clusters 
within different transcripts of various genes. 
Although lacking consensus sequences, they show 
some motifs in the 5’ region that are adjacent to 
editing sites that seem to be recognized by the same 
trans-elements.157 Moreover, it has been shown 
that editing sites that share trans-elements are 
edited to an equal extent under similar physiolog-
ical contexts.158 In fact, in tobacco 34 editing events 
can be grouped into clusters of 2–5 editing sites 
according to sequence similarities immediately 5’ 
of the edited C. Analysis of transgenic tobacco 
plants with an over-expression of transcripts 
including each of the clusters showed impaired 
editing at these sites suggesting that the trans-
factors are common to these editing sites therefore 
act as a limiting factor.158–160 Moreover, the expres-
sion of transgenes bearing the sequences surround-
ing an specifi c editing site in sense and/or antisense 
orientation affected editing efficiency of both 
transgenic and endogenous transcripts.161

Nowadays, scant data exist on the trans-factors 
responsible for this recognition. Various indirect 
data indicate that each editing site, or in some cases 
a small set of sites, must be recognized by specif ic 

factors encoded in the plant nuclear genome since 
it seems that editing is not dependent on the chlo-
roplast translational apparatus.162,163 Nevertheless, 
recent studies on the infl uence of some physiolog-
ical processes on editing revealed that treatments 
with antibiotics that inhibit translation in prokary-
otes prevented certain C to U transitions.164,165 
Recently, several nuclear-encoded proteins have 
been identifi ed as possible trans-acting factors 
essential for RNA editing (see Table 1).148,166,168 
CP31 is a RNA-binding protein required for the 
editing of two different tobacco sites in vitro.148 
CRR4 and CRR21 are PPR (Pentatricopeptide) 
proteins essential for editing of a specifi c site in 
the chloroplast ndhD mRNA of Arabidopsis 
thaliana.166–168 Both CRR4 and CRR21 belong to 
the E+ subgroup of the PLS subfamily that is char-
acterized by the presence of a conserved C-terminal 
region (the E/E+ domain). This E/E+ domain is 
highly conserved and exchangeable between 
CRR21 and CRR4, although it is not essential for 
RNA binding. It is possible that the E/E+ domain 
may have a common function in RNA editing rather 
than recognizing specifi c RNA sequences. CLB19 
is a PPR protein similar to the editing specifi city 
factors CRR4 and CRR21, but, unlike them, is 
implicated in the editing of two distinct target sites 
within the chloroplast, namely rpoA and clpP 
transcripts.169 Further studies will be necessary to 
characterize the entire editing machinery.

The Role of PPR Protein 
in the Control of Chloroplast 
Gene Expression
A high number of nuclear mutants with non-
photosynthetic phenotypes showing alterations in 
post-transcriptional steps have been isolated 
in higher plants170,171 and in the green alga 
Chlamydomonas reinhardtii.43 Generally, these 
mutants are affected in a single gene cluster or 
RNA. However, in some cases a single nuclear 
mutation simultaneously affects posttranscrip-
tional processing of various operons.48,109 The 
existence of these mutants suggests, on one hand, 
the existence of nuclear-encoded factors that con-
trol chloroplast RNA processing, and on the other 
hand, that such processing could play a crucial 
role in controlling chloroplast gene expression. 
Recently, several nuclear-encoded proteins that 
participate in chloroplast transcript processing and 
stabilization have been characterised (see Table 1). 
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Many of them seem to be pentatricopeptide repeat 
(PPR) proteins which are implicated in many 
crucial functions including organelle biogenesis 
and plant development.172

The PPR protein family is characterized by a 
degenerate motif (PPR motif) consisting of around 
35 amino acids that occurs in multiple tandem 
copies (Fig. 2).173 The structure of these proteins 
is similar to other proteins with a repeat motif 
known as the tetratricopeptide repeat (TPR) 
involved in protein-to-protein interactions.174 Both 
TRP and PPR proteins share several structural 
similarities: i) they have degenerate helical tandem 
repeat motifs, TPR and PPR, respectively; ii) these 
repeat units form a super helix to bind biomolecules; 
iii) each repeat consists of anti parallel alpha helix 
(A and B); and, iv) they have conserved tyrosine 
residues that facilitate intra helix packing. In spite 
of these similarities, significant differences 
between TPR and PPR proteins remain: i) PPR 
proteins are predominant in plants and generally 
absent in prokaryotes, whereas TPR proteins are 
mostly abundant in animals and lower plants and 
present in prokaryotes; ii) PPR proteins interact 
with nucleic acids binding to a single target mol-
ecule (mainly single stranded RNA) whereas TPR 
interacts mainly with other proteins and may bind 
to multiple target proteins forming a complex; ii) 
PPR proteins have a higher number of repeats (2 to 
27) than TPR proteins (3 to 16); iii) they have 
repeat units of 35 and 34 amino acids for PPR and 
TPR proteins, respectively; and, iv) side chains of 
amino acids in the central groove are exclusively 
hydrophilic in PPR proteins whereas they vary 
considerably in TPR proteins. Another class of PPR 
proteins is the proteins commonly known as plant 
combinatorial and modular proteins or PCMPs. 
They have complex and variable arrangements of 
PPR motifs in different combinations.175,176 Apart 
from the predominant PPR repeat motifs, several 
other variable motifs have been found at the 
C-terminus in various PPR proteins. There are three 
different optional motifs in PPR proteins: E, Eþ, 
and DYW.173 While E and Ep motifs are degener-
ate, the amino acid sequence of DYW motifs is 
well conserved, especially Cys and His.177 The 
occurrence of C-terminal motif is optional in clas-
sical PPR and has been implicated in the recruit-
ment of catalytic factors for RNA processing.176

Most of the known PPR proteins of land plants 
are nuclear-encoded and targeted to the mitochon-
dria or chloroplasts since they contain a transit 

peptide at the N-terminus.175 Coordination of 
nuclear and organellar gene expression with organ-
ellar functions is essential to maintain cellular 
homeostasis, and to respond to changes in envi-
ronmental conditions. Within this context of mul-
tiple regulatory signalling pathways, PPR proteins 
seem to play a signifi cant role.178 PPR proteins 
seem to bind to specifi c chloroplast transcripts 
modulating their expression with other general 
factors.

PPR proteins play essential roles in chloroplast 
gene expression, affecting transcription RNA pro-
cessing and stabilization, intron splicing editing 
and translation (see Table 1 and Fig. 2). To date, 
only a few PPR proteins affecting chloroplast RNA 
processing and stabilization have been identifi ed, 
mostly in Arabidopsis (see Table 1). CRR2 is a 
member of the plant combinatorial and modular 
protein (PCMP) family consisting of more than 
200 genes in Arabidopsis. As mentioned earlier, 
CRR2 functions in the intergenic processing of 
chloroplast RNA between rps7 and ndhB, which 
is possibly essential for ndhB translation.78 CRP1 
is a PPR protein with 14 tandem PPR motifs inte-
grated in a multisubunit protein complex which is 
necessary for the accumulation of petB, petD, and 
petA chloroplast mRNAs in maize. The lack of the 
CRP1 protein results in the loss of the cytochrome 
b6f complex.48,82 The CRP1 protein is also directly 
associated with petA and psaC mRNAs in vivo, 
activating their translation.83 HCF152 is a PPR 
protein with 12 putative PPR motifs which binds 
certain areas of the petB transcript in Arabidopsis. 
This protein seems to exist in the chloroplast as a 
homodimer and is not associated with other pro-
teins to form a high molecular mass complex.79,179,180 
P67 is another PPR protein that could be involved 
in chloroplast RNA processing.80 Both HCF152 
and P67 proteins show a signifi cant similarity to 
the maize protein CRP1. PGR3 is a protein with 
27 PPR motifs which appears to be involved not 
in the processing but in the stabilization and activa-
tion of the petL mRNA translation in Arabidopsis.81 
ZmPPR5 is a protein with 8 PPR repeats ortholog 
of the embryo-essential Arabidopsis AtPPR5. This 
protein specifi cally binds the trnG-UCC group II 
intron and stabilizes the trnG-UCC precursor by 
directly protecting an endonuclease-sensitive site. 
These fi ndings add to the evidence that chloroplast-
localized PPR proteins that are embryo essential 
in Arabidopsis function in the biogenesis of the 
plastid translation apparatus. In rice, OSPPR1 is a 



42

del Campo

Gene Regulation and Systems Biology 2009:3

protein with 11 PPR repeats involved in the 
processing of chloroplast transcripts necessary in 
the early steps of plastid biogenesis.181

PPR proteins are also involved in editing of 
specifi c chloroplast RNAs. The CRR4 protein 
belongs to the PCMP protein family with 11 PPR 
motifs and seems to be essential for RNA editing 
of ndhD in chloroplasts of Arabidopsis. It is 
speculated that CRR4 recognizes the target RNA 
and facilitates recruitment of general factors for 
RNA editing events in the chloroplast.166 It has 
been hypothesized that CRR4 protein functions as 
a trans-acting factor specifi cally interacting with a 
target sequence near the ndhD editing site, affect-
ing the start codon, and recruiting a putative edit-
ing enzyme such as cytidine deaminase, probably 
via the C-terminal Eþ domain.119,167 CRR21 is a 
PPR protein that is involved in the RNA editing of 
another editing site within ndhD transcripts con-
sisting of the conversion of the Ser-128 of NdhD 
protein to leucine.168 Arabidopsis crr21 mutants 
are specifi cally impaired in the RNA editing of this 
editing site and in the NDH complex suggesting 
that the Ser128Leu change has important conse-
quences for the function of the NDH complex. Both 
CRR21 and CRR4 belong to the E+ subgroup of 
the PLS subfamily that is characterized by the 
presence of a conserved C-terminal region (the 
E/E+ domain). This E/E+ domain is highly con-
served and exchangeable between CRR21 and 
CRR4 but it is not essential for RNA binding. 
Recent investigations suggest that the E/E+ domain 
has a common function in RNA editing rather than 
in recognizing specifi c RNA sequences. CLB19 is 
a PPR protein similar to the editing specifi city fac-
tors CRR4 and CRR21, but, unlike them, is impli-
cated in editing of two distinct target sites within 
the chloroplast, the rpoA and clpP transcripts. 
Mutants with a non-functional CLB19 protein 
show a yellow phenotype with impaired chloro-
plast development and early seedling lethality. In 
these mutants, transcript patterns are similar to a 
defect in the activity of the plastid-encoded RNA 
polymerase.

PPR proteins are also involved in chloroplast 
intron splicing. OTP51 is a PPR protein that is 
required for the splicing of ycf3 intron 2, and also 
infl uences the splicing of several other group-IIa 
introns. In Arabidopsis mutants, the loss of 
OTP51 has consequences for photosystem-I and 
photosystem-II assembly, and for the photosyn-
thetic fl uorescence characteristics. This protein 

contains two LAGLIDADG motifs that are found 
in group-I intron maturases in other organisms. 
Interestingly, the amino acids reported to be impor-
tant for maturase activity are conserved whereas 
amino acids thought to be important for the hom-
ing endonuclease activity of other LAGLIDADG 
proteins are missing in this protein. PPR4 is a 
chloroplast-targeted protein harbouring both a PPR 
tract and an RNA recognition motif. The associa-
tion of PPR4 with the fi rst intron of the plastid 
rps12 pre-mRNA and the fact that maize ppr4 
mutants are defective for rps12 trans-splicing, 
indicates that this protein is an rps12 trans-splicing 
factor.181

Thus far, PPRs have been considered exclusively 
eukaryotic, and they are greatly expanded in plants. 
However, the factors that underlie the expansion of 
this gene family in plants are not yet understood. 
Further studies are necessary to identify the diverse 
roles of the PPR family of proteins and to under-
stand how PPR proteins help regulate the organel-
lar gene expression and plant development.

Concluding Remarks
The control of chloroplast gene expression includes 
several processes that are similar to those of both 
prokaryotic and eukaryotic systems. These processes 
are: transcription, RNA processing, translation, and 
post-translational modifi cations (Fig. 1). Generally, 
transcription rates and steady-state mRNA levels are 
not comparable, suggesting that post-transcriptional 
RNA processing and stabilization are decisive steps 
in controlling gene expression in plastids. This step 
principally includes: RNA cleavage of pre-existing 
RNAs, RNA stabilization-degradation, intron splic-
ing, and RNA editing. Recently, several nuclear-
encoded proteins that participate in chloroplast 
transcript processing and stabilization have been 
characterised. Many of them seem to be pentatrico-
peptide repeat (PPR) proteins implicated in many 
crucial functions including organelle biogenesis and 
plant development (Table 1). PPR proteins seem to 
bind to specifi c chloroplast transcripts modulating 
their expression with other general factors and appear 
to be involved in the control of post-transcriptional 
gene expression in chloroplasts: in transcript process-
ing, stabilization, editing, and translation. Although 
it is generally assumed that the PPR motifs form the 
RNA binding domain, the basis for RNA recognition 
remains unknown. To add clarity, point mutagenesis 
and crystal structure analysis studies are needed. 
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Moreover, the identifi cation of interacting enzymes 
will be crucial to understanding the role of PPR 
proteins in the editing, splicing, stability and transla-
tion of diverse transcripts in chloroplasts. Finally, in 
spite of the increasing list of PPR proteins, as sum-
marized in Table 1, there is little evidence of their 
involvement in the regulation of chloroplast metab-
olism in relation to plant development and in 
response to environmental changes. To reach this 
goal, further investigations focused on the behaviour 
of these newly described proteins in different devel-
opmental stages and in response to environmental 
conditions will be necessary.
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