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Abstract: The genetically amenable organism Drosophila melanogaster has been estimated to have 14,076 protein coding 
genes in the genome, according to the fl ybase release note R5.13 (http://fl ybase.bio.indiana.edu/static_pages/docs/
release_notes.html). Recent application of RNA interference (RNAi) to the study of developmental biology in Drosophila 
has enabled us to carry out a systematic investigation of genes affecting various specifi c phenotypes. In order to search for 
genes supporting cell survival, we conducted an immunohistochemical examination in which the RNAi of 2,497 genes was 
independently induced within the dorsal compartment of the wing imaginal disc. Under these conditions, the activities of a 
stress-activated protein kinase JNK (c-Jun N-terminal kinase) and apoptosis-executing factor Caspase-3 were monitored. 
Approximately half of the genes displayed a strong JNK or Caspase-3 activation when their RNAi was induced. Most of 
the JNK activation accompanied Caspase-3 activation, while the opposite did not hold true. Interestingly, the area activating 
Caspase-3 was more broadly seen than that activating JNK, suggesting that JNK is crucial for induction of non-autonomous 
apoptosis in many cases. Furthermore, the RNAi of essential factors commonly regulating transcription and translation 
showed a severe and cell-autonomous apoptosis but also elicited another apoptosis at an adjacent area in a non-autonomous 
way. We also found that the frequency of apoptosis varies depending on the tissues.
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Introduction
In recent years, mechanisms controlling apoptosis have been extensively studied, and various factors 
are known to be involved in the intrinsic and extrinsic apoptotic pathways.1–4 Although these pathways 
play a pivotal role in the execution of most cases of apoptosis, the apoptosis shown in developing animal 
tissues is also affected by various growth and differentiation signals to promote or repair organ 
development.5 In general, inhibition of apoptosis accompanies growth induction, whereas reduction of 
growth conversely leads to apoptosis. However, we can often fi nd exceptions showing an opposite 
relationship, such as overgrowth-induced apoptosis6–8 and apoptosis-induced overgrowth,9–11 indicating 
that we do not fully understand these cell survival controls between apoptosis and growth. In order to 
systematically investigate the apoptosis phenotype caused by reducing each gene function in the 
developing animal tissues, we employed a genetically amenable fruit fl y Drosophila melanogaster, in 
which each gene can be knocked down by RNAi,12–14 to observe the effect on apoptosis induction. 
RNAi provides an easy and powerful technique for reducing the quantity of mRNA derived from 
endogenous specifi c genes, and it has recently been applied in many studies to investigate various gene 
functions.15

In this study, we screened 2,497 protein-coding genes of Drosophila to determine whether they were 
required for prevention of apoptosis in the wing imaginal disc and found that 47% of them showed an 
apoptosis induction when their functions were knocked down by RNAi in the developing wing disc. Most 
of the cases (82%) with detectable Caspase activation were associated with JNK activation, which was 
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unexpectedly high because JNK has not been 
observed as essential for all apoptosis. Alternatively, 
JNK is known to be involved in inducing non-
autonomous apoptosis,16,17 which occurs in cells 
distant from the cells associated with the primary 
cause of apoptosis. Interestingly, a major part of the 
JNK and Caspase-3 activation found in this study 
occurred in a non-autonomous manner, suggesting 
that the non-autonomous pathway is a common way 
to induce apoptosis. Loss of membrane proteins 
frequently caused JNK activation, which had also 
been expected because cell-cell communication is 
presumed to be important for many developmental 
processes, including apoptosis in multicellular 
organisms. These results, as well as the database 
showing the immunofl uorescent data, provide an 
archival source for survey of genes and for fi ne 
analysis of each gene in apoptosis regulation using 
the Drosophila imaginal discs.

Results

Rationale for RNAi-mediated screening 
for genes regulating apoptosis
We induced RNAi in the dorsal compartment of 
the wing disc and monitored the activities of 
Caspase-3 and JNK. Caspase-3 plays a central role 
in most apoptosis, while JNK leads to a subgroup 
of stress-induced apoptosis.18 In the Drosophila 
wing disc, JNK activation is usually linked to the 
activation of Caspase-3.16 Puc is a protein phos-
phatase specifically inactivating JNK, and its 
transcription occurs in response to the JNK signal, 
thereby making a negative-regulatory circuit.19 
Thus, the expression of puc reflects the JNK 
activity and can be used for monitoring it.

Before expanding the RNAi analyses to the 
entire genome, we checked whether the mutant 
phenotypes caused by previously known apoptosis-
regulating genes, such as diap120 and dark,21–23 
were reproduced by their RNAi. When diap1 
(Drosophila Inhibitor of Apoptosis Protein 1) was 
knocked down within the dorsal compartment of 
the imaginal disc, a local but prominent activation 
of Caspase-3 was detected (Fig. 1B). The position-
specifi city may be dependent on the difference in 
sensitivity in the induction of apoptosis, as described 
later. In contrast, when dark (Drosophila Apaf-1-
Related Killer) was knocked down, no apoptosis 
induction was observed (Fig. 1C). Furthermore, 
the use of this collection of RNAi strains has 

already been validated, since they were screened for 
apoptosis phenotype in the compound eye.24

For the non-autonomously induced apoptosis 
during restoration of morphogenesis, for example, 
we tested whether the apoptosis shown in several 
RNAi samples really refl ected the non-autonomous 
apoptosis by conventional gene manipulation in 
previously studies.16 We manipulated signaling 
factors for a diffusible extracellular ligand Dpp, a 
homolog of  mammalian BMP (Bone Morphogenetic 
Protein)−2/4. Mad (Mothers against Dpp),25 a 
Drosophila homolog of mammalian r-Smad, trans-
mits the intracellular signal caused by Dpp. As shown 
in Figure 1E, the RNAi of mad within the dorsal 
compartment activated JNK and Caspase-3 in both 
dorsal and ventral compartments of the central wing 
disc region, which is a typical example of non-cell-
autonomous induction of apoptosis. These features 
are also quite similar to those seen in the case of 
overexpression of Dad (Daughters against Dpp), a 
homolog of anti-Smad, (Fig. 1F) that can repress Dpp 
signaling.26 Therefore, RNAi can mimic the conven-
tional gene manipulation in induction of apoptosis, 
at least in some representative examples.

We describe how to choose the genes for RNAi 
in the section on Experimental Procedures. During 
observation of our RNAi results, we focused on 
six areas of the wing disc (Notum [N], Dorsal wing 
Blade [DB], DorsoCentral spot [DC], Dorsal wing 
Margin [DM], Ventral wing Margin [VM], and 
Ventral wing Blade [VB]), and classified the 
strength of JNK and Caspase-3 activities in each 
area into three grades (+ −, +, and ++). The data-
base was constructed by using FileMaker Pro 7 
(FileMaker, Inc.) and contains each immunofl uo-
rescence image with the above classifi cation of 
JNK/Caspase-3 activities in each gene page.

First, we noticed that a narrow area in the dor-
socentral (DC) wing region showed JNK and 
Caspase-3 activation too sensitively (e.g. Fig. 2), 
which was not always correlated with RNAi. Con-
sequently, the results that simply refl ected this 
feature were excluded from all of the analyses.

When a survey of all of the RNAi experiments 
was carried out, both weak and strong activation of 
JNK and Caspase-3 (shown by + and ++ signs in 
the database) was observed in 41% and 87% of the 
cases, respectively (Fig. 3A). These proportions 
seemed much higher than expected because the 
imaginal disc cells may not actually express such a 
large number of genes, and they are thought to 
express several thousand genes.27–29 This large 
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Figure 1. Similarity of RNAi and conventional gene manipulation in their apoptotic phenotypes. (A–A”) RNAi of diap1 by expressing its 
inverted repeat (IR) sequence in the dorsal compartment displayed a reduction of DIAP1 protein levels specifi cally in the dorsal compart-
ment. Expression of a dorsal compartment marker apterous (green), DIAP1 (red), and JNK indicator puc-lacZ (blue) are shown. A” shows 
a pseudocolor image representing DIAP1 protein levels. Arrowhead in A’ indicates a cluster of high level staining of DIAP1 and puc-lacZ, 
which is caused by the presence of massive apoptotic bodies. (B–F) Expression of apterous (green), puc-lacZ (magenta), and activated 
Caspase-3 (blue) are shown. (B–B”) RNAi of diap1 in the dorsal compartment led to an activation of Caspase-3 at the specifi c position in 
the dorsal compartment. When the contrast of B’ image is elevated, puc-lacZ expression can be observed at around the apoptotic bodies 
as in A’ (not shown). (C–C”) RNAi of dark in the dorsal compartment as a negative control experiment. No activation of JNK and faint activa-
tion of Caspase-3 were observed. (D–D”) Wild type. JNK and Caspase-3 are not activated in wild type. (E–E”) RNAi of mad in the dorsal 
compartment led to a non-autonomous activation of JNK and Caspase-3 in the medial region of the DV boundary. (F–F”) Overexpression 
(OE) of dad in the dorsal compartment, which results in a reduction of Dpp signaling, induces a shrinkage of the dorsal compartment as well 
as a non-autonomous activation of JNK and Caspase-3 in the medial region of the DV boundary.
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number of strains with weak JNK and/or Caspase-3 
activation may refl ect false-positive results due to 
an off-target effect (OTE) or other non-specifi c 
effects of dsRNA expression. A part of these IR lines 
was known to have possible OTs and the frequency 
of such suspected OTE lines was calculated to be 
47% as a maximal estimation. Accordingly, we did 
not give further consideration to this class of strains 
and hereafter focused on the results showing high 
levels of JNK and Caspase-3 activation (shown only 
by the ++ sign in the database), which amounted to 
10% and 47% of cases, respectively (Fig. 3A). The 
immunofl uorescence data can be accessed on the 
website: http://www.shigen.nig.ac.jp/fl y/nigfl y/
index.jsp (see Experimental Procedures).

Screening summary
Among these strong cases of JNK and/or Caspase-3 
activation, more than 80% showed a coupling of 

JNK and Caspase-3 activation to various extents 
(Fig. 3C). Conversely, there were only two cases in 
which JNK activation did not accompany Caspase-3 
activation (calculated as 0.17%). Therefore, these 
fi ndings are consistent with the previous observa-
tion that the JNK activation precedes Caspase-3 
activation and is strongly linked to apoptosis in the 
Drosophila wing.17 Furthermore, we carefully 
assessed the non-cell autonomous effect of RNAi 
by examining the phenotypes in the vicinity of the 
DV boundary. Most of the RNAi-induced JNK/
Caspase-3 activation showed a striking non-cell 
autonomy (Fig. 3D), which is similar to the previ-
ously known feature in non-cell-autonomous 
activation of JNK by altered Dpp signaling.17 This 
suggests that the non-cell-autonomous induction 
of apoptosis is one of the common patterns in cell 
death induction.

It has previously been shown that LRR (Leucine 
Rich Repeat) family cell adhesion proteins contribute 
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Figure 2. Web page showing the database for immunofl uorescent images of the imaginal discs. The page for anterior open (aop) is shown 
here as an example. The gene’s full name, CG number, gene symbol, strain line number, and biological process are described at the top 
according to the Flybase (http:// fl ybase.bio.indiana.edu/). The top three photographs are images for each color channel (green [apterous], 
red [JNK], and blue [Caspase-3]). The center-bottom photograph shows an image merged with the three colors. In the left-bottom photo-
graphs, the DAPI staining is displayed to recognize the position and shape of the imaginal discs in the other photos. In some photographs, 
three kinds of imaginal discs (leg, haltere and wing) are shown in a single frame. In the right-bottom corner of the fi gure, abbreviations for 
the position in the wing imaginal discs are indicated using a cartoon. The colors used in this cartoon are not related to those in the immun-
ofl uorescent images. Small boxes at the bottom box row indicate the levels of JNK and Caspase-3 activation by symbols as follows: + −, +, ++. 
In this example, strong activation of JNK and Caspase-3 can be seen only around the DC spot area in the wing blade region. The abbreviations 
are explained in the fourth paragraph of the Results section.
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Figure 3. Categorization of RNAi-induced JNK and Caspase-3 activation. A) Frequency of genes in which RNAi induces JNK activation. 
Cases with activation only at the dorsocentral spot (e.g. aop shown in Fig. 2) are excluded. B) Frequency of genes in which RNAi induces 
Caspase-3 activation. Again, cases with activation only at the dorsocentral spot are excluded. C) Relationship between JNK and Caspase-3. 
Cases showing strong activation of at least either JNK or Caspase-3 are analyzed. Left: Overlap of JNK and Caspase-3 activation. In 
most cases, both are simultaneously activated. Caspase-3 are sometimes activated solely (e.g. Fig. 1B), whereas JNK activation without 
Caspase-3 activation is rare. Right: Pattern of relative position of JNK-activating area (red) and Caspase-3-activating area (blue). Overlapping 
areas are shown in magenta. D) Relation of cell autonomy in JNK activation and that in Caspase-3 activation around the DV boundary in 
the wing blade. Examples showing rare patterns in the table are RpL17 (α), shotgun (β), CG14122 (γ), CG14072 (δ), and E(spl)m5 (ε). E) 
Frequencies of each JNK activation pattern with regard to wing disc subdomains. F) Frequencies of each Caspase-3 activation pattern with 
regard to wing disc subdomains.
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to unique cell affi nity. Furthermore, alteration of 
LRR protein functions causes JNK activation fol-
lowed by Caspase-3 activation.30,31 Therefore, 
transmembrane and secreted proteins are good 
candidates for mediators of non-cell-autonomous 
apoptosis. We thus tested the apoptosis-inducing 
activity by RNAi of putative secreted proteins 
selected based on the presence of  N-terminal signal 
sequences. Consistently, the RNAi of such genes 
caused a higher frequency of strong JNK activation 
(74 out of 296 cases, 25%) when compared with 
the frequency of strong JNK activation in all of the 
RNAi cases (248 out of 2,497 cases, 10%). More-
over, the RNAi of various transcription factors 
frequently showed non-autonomous apoptosis, sug-
gesting that they are highly involved in regulation 
of morphogenesis and that their aberration likely 
induces non-autonomous apoptosis. These results 
suggest that a relatively large number of secreted 
proteins and transcription factors are involved in 

the prevention of non-cell-autonomous apoptosis. 
However, functional redundancy may have 
prevented identifi cation of such molecules.

We also noted that there was a significant 
tendency for various examples of RNAi-mediated 
apoptosis to be preferentially found in the wing 
blade region but not outside of this region. For 
example, the RNAi of taf6 (TBP-Associated 
Factor 6) leads to an autonomous activation of 
Caspase-3 at high levels in the wing blade region 
but at lower levels in the wing hinge region (Fig. 4). 
Similar traits have also been reported in the case 
of the apoptosis induced by a reduced-Dpp signal.17 
Furthermore, when we surveyed all of the results, 
the activation of JNK/Caspase-3 in the wing blade 
was found to be much more frequent than those in 
the notum (Figs. 3E and F). Consequently, localiza-
tion of apoptosis in the wing blade region may not 
be a feature specifi c to the alteration of a particular 
cell signal (such as Dpp) but instead a general 
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puc-lacZ Caspase-3
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ex.2
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Figure 4. Examples showing non-autonomous activation of JNK and Caspase-3. (A–A”) An example of Taf6 RNAi. A non-autonomously 
induced JNK activation around the DV boundary in the hinge region is indicated by arrows. The approximate position of the boundary between 
the wing blade and hinge regions is indicated by the circle with the broken line. (B–B”) Another example of Taf6 RNAi, which shows a more 
severe autonomous apoptosis in the dorsal cells in the wing blade region. (C–C”) RNAi of RpS14. Similar to B–B”, a severe autonomous 
apoptosis can be observed. puc-lacZ expression (magenta). Caspase-3 activation (blue).
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feature found in all cases of apoptosis in the wing 
disc. This suggests that the number of stimuli to 
activate JNK or apoptosis varies depending on 
the tissue, or that the sensitivities to alterations of 
gene expression in induction of apoptosis are quite 
different between tissues.

Non-autonomously induced apoptosis
As we reported previously, aberrations of some 
morphogenetic signaling induce JNK activation 
followed by Caspase-3 activation at the boundary 
between cell populations with different levels of 
signaling intensities. This non-autonomous apop-
tosis is thought to be important for restoration of 
abnormally developing tissues.17 Various examples 
of apoptosis are probably induced in a similar non-
autonomous way. To determine to what extent this 
applies to non-autonomous apoptosis, we surveyed 
the relationship in cell autonomy between JNK 
and Caspase-3 activation by focusing on the DV 
boundary at which the two cell populations come 
in contact (Fig. 3D). Around this position, there is 
an apparent tendency for JNK and Caspase-3 
activation to occur simultaneously, which was 
observed in 471 cases, as shown in the 9 upper-left 
boxes in Fig. 3D’s grid. As stated above, the most 
frequent pattern is that both JNK and Caspase-3 
are both autonomously and non-autonomously 
activated. However, 112 out of 196 cases with 
autonomous JNK activation (57%) displayed a 
non-autonomous Caspase-3 activation (upper-most 
row in Fig. 3D grid). In contrast, except for 6 cases, 
autonomous Caspase-3 activation (331 cases) did 
not show non-autonomous JNK activation (left-
most column in Fig. 3D grid). Accordingly, these 
data strongly suggest that JNK activation is also 
crucial for priming non-autonomous apoptosis, 
whereas Caspase-3 is not.

Furthermore, when observed throughout the 
wing disc, the activation patterns of JNK and 
Caspase-3 are different (Figs. 3E and F). JNK 
activation seems to be found unevenly in the dorsal 
region (2 + 42 + 13 = 57%), whereas the Caspase-3 
activation only within the dorsal region is less (2 + 
5 + 35 = 42%). On the other hand, JNK with non-
autonomous activation is minor (0 + 0 + 16 + 27 = 
43%), whereas non-autonomous Caspase-3 is 
major (0 + 0 + 4 + 54 = 58%).

We were interested in the fact that some RNAi 
examples resulted in a non-autonomous apoptosis 
similar to that seen previously.17 The RNAi of basal 

transcription factor Taf6 showed an autonomous 
activation of Caspase-3 in the blade region and a 
non-autonomous activation of JNK in the hinge 
region (Figs. 4A, B), the latter of which was unex-
pected because Taf6 is known to be necessary for 
the function of TBP (TATA-Binding Protein), 
suggesting its ubiquitous requirement for most 
of the transcription by RNA polymerase II. 
Accordingly, the RNAi of taf6 is expected to 
induce a severe autonomous apoptosis in all of the 
tissues, as is the case for the RNAi of ribosomal 
protein genes (e.g. RpS14, Fig. 4C). Thus, the 
non-autonomy in JNK activation in the hinge 
region in taf6 RNAi suggests a morphogenetic 
function rather than its common transcriptional 
function and/or a difference in the sensitivity of 
decreased transcription leading to apoptosis 
between the tissues. The difference in responses 
between the blade and hinge regions was previ-
ously described in the apoptosis associated with 
homeotic transformation by overexpression of 
spineless.30

Through these RNAi experiments, we discov-
ered numerous cases of non-autonomous apoptosis 
cases. Among these, there are particular cases in 
which an autonomous apoptosis must be induced 
as a primary response (e.g. RpL17, shotgun) while 
an additional non-autonomous apoptosis may be 
further induced as a secondary response, which is 
probably caused by a juxtaposition of a normal 
area and a wide apoptotic area, as proposed previ-
ously.32 Therefore, we tested a model case in which 
the proapoptotic gene reaper (rpr) is temporarily 
induced within the dorsal compartment by combi-
nation with a temperature sensitive-GAL8033 
(Fig. 5). As a result, at around 24 hours after rpr 
expression, non-autonomous apoptosis could be 
observed in the ventral compartment (Fig. 5B), 
although no similar non-autonomy was observed 
earlier or later (Figs. 5A and C). Thus, a wide area 
of autonomous apoptosis induction can cause a 
secondary non-autonomous apoptosis. This phe-
nomenon seems to be a repair mechanism for fi tting 
the adjacent tissue size.32

Discussion
We created a database to show the immunofl uores-
cent images for JNK and Caspase-3 activities in 
each RNAi experiment. In addition to our purpose 
of surveying genes affecting cell survival, the data-
base may also be useful for searching for genes 
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regulating tissue growth and patterning. For example, 
the RNAi of mad displays an apparent shrinkage 
of the compartment size without showing severe 
apoptosis except at the DV boundary (Fig. 1E). This 
phenotype strongly suggests the involvement of 
this gene in tissue growth and/or patterning. In 
contrast, the wing disc in which the dorsal compart-
ment cells overexpress rpr showed a wide and 
severe apoptosis so that most of the dorsal cells 
disappeared (Fig. 5D). This case represents a typi-
cal phenotype, showing that the gene plays a role 
exclusively for apoptosis. These fi ndings provide 

insight into the roles of genes for regulating various 
developmental processes.

As is the case for the above-mentioned possibility 
of weak activation of JNK and/or Caspase-3, the 
OTE should also be considered for all pheno-
types.34 As an effective initial examination, the 
RNAi phenotype must be ameliorated by addition 
of the wild type transgene that is targeted by 
RNAi. Furthermore, two ways to distinguish the 
real RNAi effect from OTE have been proposed.35 
One is a test of a dsRNA corresponding to the 
other part of the same mRNA for displaying the 
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+ reaper
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+ reaper
(48 hrs)

+ reaper
(without
GAL80ts)

merged puc-lacZ
apterous

Caspase-3
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Figure 5. Induction of autonomous apoptosis in the wide area of the wing disc leads to a non-autonomous apoptosis in an adjacent position. 
(A–A”) Just after induction of rpr expression. Active Caspase-3 is observed in the dorsal compartment. UAS-GFP expression in the dorsal 
compartment is not visualized yet at this point. Broken lines indicate the position of the DV boundary. (B–B”) 24 hrs after induction of rpr 
expression. A non-autonomously induced Caspase-3 activation is indicated by the arrows. (C–C”) 48 hrs after induction of rpr expression. 
Non-autonomous Caspase-3 activation is no longer induced. (D–D”) Induction of rpr expression without GAL80ts. Most of the area in the 
dorsal compartment has already disappeared. puc-lacZ expression (magenta). Caspase-3 activation (blue).
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same phenotype. The other is a test of an artifi cially 
altered transgene that is not targeted by the dsRNA 
but that encodes the same amino acid sequence for 
complete rescue of the phenotype. Of course, clas-
sical analysis using the loss-of-function mutant 
may be another reliable way to judge the involve-
ment of the gene in each phenotype. In either case, 
further analyses are required to demonstrate each 
phenotype as a real loss-of-function phenotype of 
the gene under focus. The database will be updated 
when we check the phenotype by the above exam-
inations or accumulate the data from other RNAi 
constructs.

Experimental Procedures

Materials
Various fl y strains harboring a transcribable inverted 
repeat sequence (IR) driven by UAS (Upstream 
Activation Sequence) were prepared in the National 
Institute of Genetics (NIG) in Japan, as previously 
described.36 Briefl y, a cDNA fragment with nucle-
otide position 1–500 of the coding sequence was 
obtained by PCR and was inserted as an IR in a 
head-to-head manner into a modifi ed Bluescript 
vector, pSC1. Then IR-fragments were excised by 
NotI and were subcloned into pUAST, a germline 
transformation vector containing UAS.37

In the earlier stages of this research, we did not 
select the IR strains but randomly employed them 
according to the order in which NIG collected 
them. In the later stages, we preferentially focused 
on 302 genes that were predicted to encode secre-
tory proteins.38 Each UAS-IR fl y strain was crossed 
with another strain carrying ap-GAL4, UAS-GFP 
and puc-lacZ. The offspring larvae possessing 
these four transgenes were reared at 25 °C on a 
standard diet and then dissected at the late third 
instar larval stage for immunological staining.

Immunological staining
The dissected carcasses with the imaginal discs 
were fi xed in 4% formaldehyde for 20 min at room 
temperature and washed with PBS (phosphate 
buffered saline) containing Triton X-100 (0.02%). 
The puc-lacZ expression was detected by indi-
rect immunofl uorescence using the murine anti-
β-galactosidase antibody (Promega, #Z378B, 
1/200 dilution). Active Caspase-3 was detected 
by the rabbit anti-cleaved Caspase-3 antibody 

(Cell Signaling Technology, #9661, 1/200 dilution), 
which is known to bind to the cleaved (activated) 
forms of mammalian Caspase-3 and its Drosophila 
homolog Drice. DIAP1 was detected by the rabbit 
anti-DIAP1 antibody (1/500 dilution).39 Specifi c 
binding of these primary antibodies was visual-
ized by fl uorescent secondary antibodies, such 
as the anti-mouse Ig-Cy3 (#715–165–151, 
Jackson Immunoresearch) and anti-rabbit Ig-
Cy5 (#711–175–152, Jackson Immunoresearch) 
antibodies. Incubation with these primary or 
secondary antibodies was performed at 37 °C for 
1 hour or at 4 °C overnight. Microscopic observa-
tion was performed without antifade reagents by 
the Leica deconvolution system Q550FW.

Prediction of secreted proteins 
in the Drosophila genome
Putative secreted proteins were searched based 
on the presence of hydrophobic residues in the 
N-terminal amino acids. When the average hydro-
phobicity index in the 25 amino acids between 
positions 6 and 30 exceeded 0.953, the protein was 
assumed to be secreted. The predicted protein data 
set from BDGP release 4.2 was searched using the 
program “Ahiru”,38 which was written based on 
the algorithm described in40 (http://bioinformatics.
oxfordjournals.org/cgi/reprint/18/2/298); this 
yielded a list of 2,184 candidate genes encoding 
secreted proteins. Among them, 296 genes avail-
able in the RNAi strains in NIG were used for the 
screen.

How to access 
the immunofl uorescence images
To access the fl uorescent images, go to the middle 
of the right column of the web page (http://www.
shigen.nig.ac.jp/fl y/nigfl y/index.jsp), and click the 
line of “Browse All RNAi Stocks”. In the newly 
appeared page, you can see all of the IR strains. When 
you click each Stock ID name which has the 
“wing disc” icon on the right column, you can see 
a set of immunofl uorescence images at the bottom 
of the further next page.
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