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Abstract: Signifi cant research has been devoted to predicting diagnosis, prognosis, and response to treatment using high-
throughput assays. Rapid translation into clinical results hinges upon effi cient access to up-to-date and high-quality 
molecular medicine modalities.
We fi rst explain why this goal is inadequately supported by existing databases and portals and then introduce a novel seman-
tic indexing and information retrieval model for clinical bioinformatics. The formalism provides the means for indexing a 
variety of relevant objects (e.g. papers, algorithms, signatures, datasets) and includes a model of the research processes that 
creates and validates these objects in order to support their systematic presentation once retrieved.
We test the applicability of the model by constructing proof-of-concept encodings and visual presentations of evidence and 
modalities in molecular profi ling and prognosis of: (a) diffuse large B-cell lymphoma (DLBCL) and (b) breast cancer.
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Introduction
The goal of Molecular Medicine is to diagnose and fi nd treatments for human diseases by the application 
of tools of molecular and cell biology (Sobie et al. 2003). In recent years, researchers have begun to 
link tissue molecular profi les—such as gene expression information—of individual patients to relevant 
disease outcomes such as diagnosis (Quackenbush, 2006), prognosis (Ntzani and Ioannidis, 2003), and 
response to treatment (Ross and Ginsburg, 2003). Knowledge discovered from large-scale genomic and 
molecular biology data is already being put to clinical use (van’t Veer et al. 2002) and several clinical 
studies are in the development or validation phase (Simon, 2005).

The fi eld of pharmocogenomics, for example, applies whole genome analysis technologies to predict 
drug treatment response and adverse drug reaction susceptibility based on individual genetic variability 
(Marsh and McLeod, 2006; Ross et al. 2004). For instance, an inherited genetic trait places some 
individuals at risk for adverse drug reactions (diarrhea, neutropenia) to the antineoplastic drug irinote-
can (Ando et al. 2000; Ciotti et al. 1998; Innocenti et al. 2004). Individuals with the most common 
variant allele (UGT1A1*28) have lower expression levels of an enzyme that deactivates irinotecan. 
The FDA requires that the related genotype and dosing guideline information be included in the irino-
tecan package insert (Food and Drug Administration 2008). Other mutations are associated with a good 
clinical prognosis (Bell et al. 2005) and positive response to certain classes of drugs (Lynch et al. 2004). 
A listing of drug-related genomic biomarkers is available on the FDA website (Food and Drug 
Administration, 2008).

In a typical scenario, a molecular assay is performed on tissue obtained from a patient. Then, a 
decision model computes, based on the assay results, the “predicted” clinical outcome of the patient’s 
disease. For example, the U.S. Food and Drug Administration approved in February of 2007 the fi rst 
high-dimensional molecular test to predict the recurrence of breast cancer within fi ve to ten years. Many 
similar tests are expected to follow (Couzin, 2007).
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Discovering clinically signifi cant knowledge 
from large-scale genome and molecular biology 
information is a complicated scientifi c process that 
draws from multiple overlapping sources of data 
describing complex interactions at the genomic, 
proteomic, or other “omic” levels. High throughput 
“omic” experimental methods generate data that 
can have hundreds or even hundreds of thousands 
of data-points per sample. Such data are diffi cult 
to process manually and require sophisticated 
computation. Decision models that process the 
resulting data are also complex and draw from a 
variety of disciplines including biostatistics and 
machine learning. Furthermore, there is great vari-
ability in the methods that evaluate these predictive 
models’ validity, generalizability, and supporting 
evidence (Simon, 2005).

For advances in molecular medicine to come to 
clinical fruition, it is crucial for clinical and trans-
lational researchers to have access to relevant, 
up-to-date, and correct information about known 
molecular medicine modalities (Mathew et al. 
2007), such as research datasets, research methods, 
known and validated decision models, and related 
evidence. Therefore the important problem of 
retrieving and organizing the vast amount of infor-
mation issued from molecular medicine research 
needs to be addressed. The inherent complexity of 
this domain and the fast pace of scientifi c discov-
ery make this problem particularly challenging.

Problem Statement
Our goal is to develop a general purpose informa-
tion retrieval system that satisfi es the following 
two requirements:
1. The system should be able to index, retrieve and 

organize most methods of molecular profi ling, 
most forms of predictive computational models, 
many types of clinical outcome, as well as 
supporting evidence and computational 
resources.

2. The knowledgebase needs to be comprehensive 
and up to date. This requires simple, cheap, fast, 
and scalable methods to build the knowledge 
base and to keep it current. To keep up with the 
rapid pace of discovery in clinical bioinformatics, 
these methods have to be automated or semi-
automated in the worst case.
For this system to support the fi rst requirement, 

its underlying knowledge representation formalism 
has to convey the semantic complexity of the 

clinical bioinformatics domain; on the other hand, 
the underlying formalism has to be simple enough 
to support the second requirement of relying on 
scalable automated methods. The problem, there-
fore, is to develop a framework and semantic model 
that balance these two requirements.

This system will also have to accommodate a 
wide range of query types. Consider the following 
query examples to be posed by clinicians and/or 
clinical and translational researchers:

• Example Query 1: “What models exist that 
predict the response to the chemotherapy regi-
ment (CHOP) in patients with diffuse large 
B-cell lymphoma (DLBCL)?” In this query, the 
following entities are specifi ed: “disease” is 
specifi ed as “DLBCL”; “clinical outcome” is 
specifi ed as “response to CHOP”. Notice that 
this question leaves the specific method of 
“molecular profi ling” open. This query might 
be posed by an oncologist looking for up-to-date 
knowledge to guide her choice of treatment 
strategy for her DLBCL patient.

• Example Query 2: “What models exist that 
predict response to the chemotherapy regiment 
(CHOP) based on gene expression profi le?” 
This query does not specify the type of cancer, 
it does, on the other hand, restrict all desired 
models to those based on gene expression data. 
This query may be posed by a researcher in 
pharmacogenomics looking to correlate the 
expression of specifi c genes with the biological 
function of specifi c drugs.

• Example Query 3: “What papers have com-
pared multiple supervised learning methods for 
the prediction of cancer diagnosis based on gene 
expression data using a cross validation 
method?” This query could be posed by a 
clinical researcher in possession of a gene 
expression dataset who is looking for proven 
methods to build and validate models for diag-
nosing prospective cancer patients using gene 
expression microarrays. Notice that in this 
query, the specifi c disease and the specifi c out-
come are not specifi ed. Only the type of outcome 
is specifi ed as “diagnosis”. Also notice that this 
query specifi es classes of algorithms (“super-
vised learning”) and validation methods (“cross-
validation”) rather than individual methods.

• Example Query 4: “What datasets originating 
from breast tumor samples contain mass spec-
trometry data and contain clinical survival 
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data?” This is a specifi c query by someone who 
is interested in building and testing models that 
predict survival in breast cancer based on raw 
mass spectrometry data.
These queries require the search and retrieval of 

a multiplicity of molecular medicine modality object 
types including but not limited to documents, which 
are the focus of traditional information retrieval 
problems. Our envisioned system is intended to 
represent and retrieve four different types of objects 
relevant to clinical bioinformatics:
• Papers: A published paper is the primary unit 

of scientifi c communication. Individual papers 
or groups of papers describe the methods and 
results of high throughput molecular medicine 
research.

• Datasets: In many cases, researchers publish 
their data in the public domain (Broad Institute 
2005). Often, that data is utilized by other 
researchers seeking to develop new and 
improved analysis methods, to test novel 
hypotheses, or simply to reproduce or validate 
the published results.

• Algorithms/Software: Research laboratories 
that develop data analysis methods often publish 
implementation of the algorithms that they have 
developed and applied (Broad Institute 2008).

• Models: Predictive computational models are 
produced by the application of algorithms on 
research datasets. Predictive computational 
models provide a “decision” based on molecular 
assays and clinical data obtained from a single 
patient. The predictive computational model’s 
decision (output) may then be used for the clinical 
management of the respective patient, for 
example to help determine the choice of effective 
therapy. Ideally the process of decision model 
formation includes rigorous statistical validation 
to ensure that the utility of a given decision model 
can generalize to a wider population.

Related Work
Existing information retrieval systems specialized 
for molecular medicine modalities store and orga-
nize only related subsets of clinical bioinformatics 
research information. For example, PharmGKB 
(Altman et al. 2003; Oliver et al. 2002) is a database 
that links genomic variability, mostly accounted 
for by single nucleotide polymorphisms (SNPs), 
with phenotypes relating to pharmacokinetics, 

pharmacodynamics, or therapeutic clinical outcomes. 
Information is organized in PharmGKB by gene, 
drug, disease, publications, or datasets. ONCOMINE 
(Rhodes et al. 2004; Rhodes et al. 2007), a database 
and web-based analysis and visualization tools, is 
restricted to cancer-related gene expression micro-
array experimental results. Datasets in Oncomine 
are profi led (annotated) by cancer and tissue types, 
by experimental methods, and by the types of gene 
expression differential analysis performed on these 
datasets, e.g. comparing gene expression differen-
tials across different prognosis groups or across 
different histological subtypes. Oncomine provides 
links to the original datasets as well as analysis 
tools for (clinical) differential analysis of these 
datasets, but does not store or classify the applied 
algorithms or inferred models that were reported 
in the original publications. The Gene Expression 
Omnibus (GEO) (Barrett et al. 2007; Edgar, Dom-
rachev, and Lash, 2002), is a resource developed 
by the NCBI as a MeSH-indexed public repository 
of microarray and other forms of high-throughput 
“omics” data submitted by the scientifi c community. 
Sources of data in GEO include gene expression 
microarrays, ArrayCGH, SNP Arrays, Serial 
Analysis of Gene Expression (SAGE), Massively 
Parallel Signature Sequencing (MPSS), protein 
arrays, and mass spectrometry. Information in GEO 
is organized by series (study-centered data) or by 
individual genes. Many journals require that gene 
expression results be submitted in MIAME-compli-
ant format (Brazma et al. 2001) to the GEO prior 
to publication (Ball et al. 2004). Some of the series 
in GEO are further curated and stored as datasets 
with more structured annotations (relevant citations, 
organisms) and the possibility to perform online 
data analysis. The Biometric Research Branch at 
the NCI has developed array analysis tools for gene 
expression data, and provides a hand-curated 
archive of human cancer gene expression datasets 
(Simon and Zhao, 2008). The Rembrandt (National 
Cancer Institute, 2005) repository is highly 
annotated for clinically-oriented outcomes but 
is restricted to brain-cancer-related molecular 
research data.

In addition to the above, formalisms and tools 
have been developed to allow genomic and pro-
teomic researchers to ask questions of diverse data 
repositories. Such cross-database information que-
ries benefi t from standard and controlled represen-
tation of domain knowledge (Aitken, Webber and 
Bard, 2004; Smith et al. 2005). By standardizing 
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and controlling domain concepts, ontologies such 
as the NCI Thesaurus (Sioutos et al. 2007), the 
Gene Ontology (GO) (Ashburner et al. 2000) and 
the Clinical Bioinformatics Ontology (REFSEQ) 
(Hoffman, Arnoldi and Chuang, 2005) support 
interoperability between clinical bioinformatics 
repositories. Ontology-based frameworks, such as 
the RAD/RAPAD Study Annotator (Manduchi 
et al. 2004), the Functional Genomics Experiment 
Model (Jones et al. 2004; Jones et al. 2006), and 
the Ontofusion system for biomedical database 
integration (onso-Calvo et al. 2007; Perez-Rey 
et al. 2006), support cross-database queries. 
Description logic(DL)-based languages (Baader, 
2003), such as the Web Ontology Language (OWL) 
(McGuinness and van Harmelen, 2004) are popular 
means of formal ontology representation. DLs can 
be used for conceptual modeling, information 
integration, and support for semantic query mech-
anisms. As such, none of these resources provide 
a general-purpose information retrieval framework 
for clinical bioinformatics predictive models and 
related modalities as befi ts our goal.

Model Formulation and Proof 
of Concept

Model: Objects, indexing scheme, 
and queries
We developed an information retrieval model to 
support our intended system by examining use cases 
that mimic the queries introduced above in the 
domains of diffuse large B-cell lymphoma (DLBCL) 
and breast cancer. The model is described in the 
context of the task of retrieving research information 
from the semantically complex clinical bioinfor-
matics domain of gene expression microarrays in 
the diagnosis and treatment of DLBCL.

Initially, we conducted manual literature reviews 
for papers that describe this domain. We noted the 
different objects that were described in the papers 
that were reviewed, i.e. by identifying Algorithms, 
Datasets, or Models described in each Paper. 
Conceptually, the objects in the knowledgebase are 
all the Papers, and the union of all Algorithms, 
Datasets, and Models that are described by the 
Papers. An Algorithm, a Dataset, or a Model can 
be referenced in more than one Paper.

Further examination of these objects revealed 
that each can be described by at least one Context 
that specifi es the following elements in a tuple: 

�Disease, Population, Purpose, and Modality�. 
For example in the Paper by Wright et al. (Wright 
et al. 2003), a Model that predicts the molecular 
subtype of DLBCL was produced and validated by 
applying the Algorithm “Bayes Classifi er” on two 
gene expression Datasets. The five objects 
(1 Paper, 1 Algorithm, 2 Datasets, and 1 Model) 
can each be annotated with the following Con-
text: (Disease = DLBCL, Population = Human 
Patients, Purpose = Predict Molecular Subtype, 
Modality = Gene Expression Microarray).

A query to the knowledgebase should then 
return a subset of the objects in the knowledgebase. 
A simple enumeration of Papers, Algorithms, 
Datasets, and Models that relate to gene expression 
microarrays in the context of DLBCL is shown in 
the left side of Figure 1. We also realized that a 
query can be represented as a partial or complete 
Context. For example, the Contexts represented by 
the example queries above are shown in Table 1. 
Queries 1–3 specify partial Contexts, and Query 4 
specifi es a complete Context. A quick and simple 
indexing scheme can be achieved by using a set of 
canonical terms for each of the Context elements, 
and then indexing each of the objects with at least 
one complete Context tuple. Objects are retrieved 
when their Context elements match the Context 
elements specifi ed in the query.

We conducted a broad search for DLBCL gene-
expression-related objects, by placing a query as 
in Figure 1 that specifi ed the following Context: 
(Disease = DLBCL, Modality = Genomic). In the 
following section we will discuss three clinical 
bioinformatics scenarios that involve a subset of 
DLBCL gene-expression-related objects. The 
scenarios were encountered when we analyzed the 
set of manually collected objects that satisfi ed this 
Context. Figures 2–4 will provide a pictorial 
representation of these scenarios.

Proof of concept: Diffuse large 
B-cell lymphoma
DLBCL is the most common form of non-hodgkins 
lymphoma in adults. Historically, less than half of 
DLBCL patients are cured by chemotherapy (Vose, 
1998). It was suggested early on that DLBCL 
actually comprises several diseases that differ in 
responsiveness to chemotherapy. A pioneering 
paper by Alizadeh et al. in 2000 (Alizadeh et al. 
2000) applied bioinformatics methods to investigate 
this hypothesis. They measured gene expression 
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levels in lymphoid tissue collected from a variety 
of healthy and sick individuals. The microarray 
platform used, called “lymphochip,” measured 
mRNA levels by hybridization on cDNA spots. 
The cDNA gene library on the lymphochip was 
deliberately designed to include genes known to 
be expressed in lymphoid tissue. The resultant 
Dataset, which consisted of around 17 thousand 
gene expression analytes for 128 samples, was 
analyzed using an unsupervised hierarchical 
clustering Algorithm. Based on the hierarchical 
clustering results, multiple decision Models were 
generated that either related to the biological 
behavior of DLBCL or to the clinical outcome of 
patients suffering from DLBCL (See Fig. 2). In the 
former category, the decision Models seemed con-
sistent with the following hypotheses: (1) That 
DLBCL can be distinguished based on gene 
expression data from follicular lymphoma (FL), 

another form of lymphoma; (2) That there are two 
molecular subtypes of DLBCL; and (3) That one 
subtype’s molecular signature resembles that of 
activated peripheral B-cells (APB-like) whereas 
the other’s signature resembles that of B-cells 
found in the germinal centers of lymph nodes 
(GC-like). The resultant clinical decision Model of 
this study was that DLBCL samples that clustered 
in the GC-like category had better survival than 
those that clustered in the APC-like category.

Two subsequent studies attempted to further 
investigate and validate the hypotheses that were 
reported in the Alizadeh Paper. See Figure 2 for a 
graphical view of the objects and relationships that 
were reported in these three Papers. Rosenwald 
et al. used the same microarray platform, the 
lymphochip, to collect data from 240 patients with 
DLBCL (Rosenwald et al. 2002). In this study, two 
Algorithms were used. An unsupervised hierarchical 

Query:
Return Object Type: ALL
Context: < DLBCL, *, *, Gene Expression>

Overview of Object Retrieval and Organization
Diffuse Large B-Cell Lymphoma Example

Quality Filtration: Validation Method = Cross Validation

1. Retrieve ALL Objects that match Context
2. Remove Models that do not match Quality Filtratiion if specified
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3. Subset of the result objects and their relations are selected and organized pictorially 
Object Collection

Papers
1. Alizadeh - Nature - 2000
2. shipp - Nat Med - 2002
3. Rosenwald - NEJM - 2002
4. Wright - PNAS - 2003
5. Bea - Blood - 2005
6. Li - Bioinformatics - 2006

Algorithms
1. Logistic Regression
2. Hierarchical Cluster Anal
3. Artificial Neural Networks
4. Principle Component Analysis and Sliced

Inverse Regression
5. Bayes Classifier
6. K-Nearest Neighbor
7. Support Vector Machine

Datasets
1. “Lymphochip” - 12K cDNa clones - 240

2. “Lymhochip” - 17K cDNa clones - 128
patients - untreated DLBCL

patients - DLBCL, CLL, FL, Normal B, ...
3. Oligonucleotide - 6K genes - 58 DLBCL

patients, 19 FL patient
4. Monte Carlo Simulation - 1000 Variables -
         200 Rows

Models
1. Hierarchical Clustering ( Alizadeh 2002):

identify two molecular subtypes of
DLBCL

3. SVN Classifier (shipp 2002): distinguish

Paper
Algorithm / Software

Dataset

Time

OmicsRelationship
Model

4. Cox Survival (Rosenwald 2002):

5. Bayes Classifier (Wright 2003): predict
multivariate predictor of risk

2. SVN Classifier (shipp 2002): predict
outcome of DLBCL

DLBCL from FL

DLBCL subtype
6. ...

5. ...

8. ...

7. ...

4

Figure 1. An overview of how the information retrieval model will be applied to the DLBCL use case. Left side: After specifying the desired 
query parameters (Context, Quality Filtration), the system will return a potentially large result set of molecular medicine modality objects. 
This enumerated set of objects is the raw result. Please refer to the subsection “Model: Objects, Indexing Scheme and Queries,” last two 
paragraphs. Right side: One or more subsets of the raw result may then be selected by the user for visualization and organization based 
on the relationships between these objects. The subsection “Model: Object Relationships and Quality Filters” elaborates on this process. 
The full details of the DLBCL use case are mentioned in the subsection “Proof of Concept: Diffuse Large B C-Cell Lymphoma”. Three subsets 
of objects from the DLBCL domain along with their relationships are organized pictorially according to our model in Figures 2, 3 and 4.
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clustering Algorithm was used in a similar way to 
that described in the Alizadeh paper. However, 
three resultant hierarchical clusters (molecular 
subtypes) were found and labeled: “Activated B-
Cell-like”, “GC-B-Cell-like”, and “Type 3”. The 
second Algorithm relied on multivariate regression 
techniques to construct a clinical survival prediction 
Model based on (so-called) gene expression scores. 
The decision Model was derived from a Dataset of 

160 patients and was validated on the remaining 
80 patients. This decision Model instance was 
compared to another widely used clinical predictive 
Model, the “International Prognostic Index” (IPI) 
(The International Non-Hodgkin’s Lymphoma 
Prognostic Factors Project 1993), that predicts 
clinical outcome based only on clinical parameters. 
Molecular and clinical data were reported as inde-
pendent factors in predicting clinical outcomes.

Table 1. Contexts partially or completely specifi ed by the example queries in the problem statement section above.

Query # Disease Population Purpose Modality
1 DLBCL Human Patients Response to CHOP Regimen –
2 – – Response to CHOP Regimen Gene Expression
3 – – Diagnosis Gene Expression
4 Breast Cancer Human Patients Predict Survival Mass Spectrometry

Multivariate
Survival Mode

Using “Molecular
Signatures” “Iymphochip”

12K cDNA clones
240 Patients with
untreated DLBCL

“Iymphochip”
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“Oligonucleotide”
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58 DLBCL patients
receiving CHOP chemotherapy
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Molecular
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of DLBCL”
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from FL”
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‘GC’ B-Cell
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International
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Index (IPI)
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“Better
Survival in
GC than
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*

Figure 2. A pictorial representation of the fi rst three widely cited Papers relevant to the DLBCL use case along with the Datasets, Algorithms, 
and Models that were described in these Papers. Identifying and presenting relationships between these objects is important for the seman-
tic organization of this domain. These relationships are represented by edges connecting the different objects. For example, the three Papers 
each describe how Algorithms were applied to Datasets to produce decision Models. We identify this class of ternary relationship as Run_
on_Produce (Produce in the fi gure for simplifi cation). Furthermore, the Shipp (Shipp and others, 2002) and the Rosenwald (Rosenwald and 
others, 2002) Papers describe how the rightmost and leftmost predictive Models (respectively) were validated using the Datasets that they 
had assayed. This scenario is detailed in the subsection “Proof of Concept: Diffuse Large B-cell Lymphoma,” paragraphs 1–3.
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In a third study, by Shipp et al. (Shipp et al. 2002), 
gene expression was measured in tumor samples 
from 58 DLBCL patients receiving the CHOP 
chemotherapy protocol, and from 19 FL patients. 
In this study, however, oligonucleotide-based 
microarrays were used instead of the cDNA-based 
lymphochip. Supervised learning methods (Algo-
rithms) were used to construct two predictive 
classifi ers (decision Models): one associated with 
the biological hypothesis that DLBCL can be 

distinguished from FL based on gene expression 
data, and another associated with the clinical 
hypothesis that gene expression data can predict 
the clinical outcome of DLBCL. The latter deci-
sion Model was also compared to the IPI clinical 
predictive Model, and in this study as well, molec-
ular and clinical data were found to be independent 
factors in predicting outcomes. A more rigorous 
cross validation method was used to validate the 
models produced by this study. In this paper, the 

Wright et al
PNAS
2003

Model Validation Using an Independent Dataset

Rosenwald
et al

NEJM 2002
cite cite

assay assay
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Nat Med

2002
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produce
Validate_Internal

Validate_External:

(Independent):

(Independent Dataset)(Independent Dataset)
(Different Microarray

Platform)

Training Set:

57 Type 3
67 GCB
41 ABC
Validation Set:
67 GCB
42 ABC

“Bayes
Classifier to

Predict
DLBCL

subtype”

“Oligonucleotide”
6,817 genes

58 DLBCL patients
CHOP chemotherapy

19 FL patients

“Iymphochip”
12K cDNA clones
240 Patients with
untreated DLBCL

EXPANDED

Paper

Model

Algorithm / Software

Dataset

OmicsRelationship

Figure 3. This fi gure shows the objects and relationships that surround the production and external validation of a Bayes-classifi er Model 
as described in the Wright et al. (Wright and others 2003) Paper and explained in the subsection “Proof of Concept: Diffuse Large B-Cell 
Lymphoma”, paragraph 4. The Model (bottom center) was produced by applying the Bayes-classifi er Algorithm to the lymphochip Dataset 
(left). The Model was internally validated (left side arc) using that Dataset which was split into independent training and testing sets. It was 
then externally validated (right side arc) using another independent Dataset that was assayed and described in a previous Paper (right). It 
is important to represent and identify this type of scenario in which higher quality Models are produced, i.e. Models that generalize across 
different Datasets and, in this case, across different molecular assay platforms (oligonucleotide vs. cDNA).
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Figure 4. This fi gure describes how an Algorithm (PCA + SIR) was described by the Li et al. (Li, 2006) Paper. This Algorithm was benchmarked 
using two independent Datasets that were assayed and described by previous Papers, and one Dataset produced by Monte Carlo simula-
tion. The Models that were produced by the application of this Algorithm on these Datasets were validated internally using one independent 
split of the respective Datasets. This scenario is commonly encountered in methodological research aimed at developing and benchmarking 
new classifi cation Algorithms. Please refer to subsection “Proof of Concept: Diffuse Large B-Cell Lymphoma,” paragraph 5.
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previous claims about molecular sub-types were 
put to test. The same unsupervised hierarchical 
clustering Algorithm was applied on their dataset1 
to cluster the samples. Two molecular subtypes 
did emerge, and they did show “APB-” and “GC-” 
B-cell-like expression patterns. However, survival 
was not found to be different between the two 
groups.

Wright et al. (Wright and others 2003) wanted 
to reconcile the results from the last two stud-
ies (See Fig. 3). They developed a Bayes classi-
fi er (i.e. a decision Model) to predict molecular 
sub-type and clinical outcome. It was trained 
and validated on the Rosenwald Dataset that 
used the lymphochip platform. The classifi er was 
then independently validated on the Dataset 
produced by the Shipp group, again using 
sequence annotations to reconcile the cDNA 
sequences with the oligonucleotide sequences. 
This seems to support the biological hypothesis 
that the “two molecular subtypes” in DLBCL 
correlate with different biological and clinical 
behavior. The semantics of the relationship 
between this Model and these two Datasets is 
reflected through the visual description and 
organization in this fi gure.

On the other hand, the more recent paper by 
Li et al. (Li, 2006) describes a study that develops 
and evaluates a specific data-analysis method 
(i.e. Algorithm) (See Fig. 4). This Algorithm, “Prin-
ciple Component Analysis and Sliced Inverse 
Regression”, was applied to both the Rosenwald 
and Shipp Datasets, as well as to a Dataset 
produced by a Monte Carlo Simulation. Decision 
Models were generated and they were validated on 
an independent subset obtained through one split 
of the data (148 training samples, 74 training 
samples). This fi gure focuses on one algorithm in 
this Context and relates all the objects (and rela-
tionships) that are relevant to the evaluation of this 
Algorithm.

Model: Object relationships 
and quality fi lters
These examples demonstrate that the fi gures and 
their underlying complex semantics can not be 

conveyed by simple retrieval and enumeration 
of objects returned by Context, i.e. as in the left 
side of Figure 1. A potentially large number of 
returned objects need to be organized and 
displayed intuitively. One aspect of object 
organization relates to the relationships between 
the different object types. Such relationships 
were indicated by edges in the figures. For 
example, a Paper can describe how an Algorithm 
is used to Analyze a Dataset. A Model is Produced 
by running an Algorithm on a Dataset. Models 
are Validated using more than one Dataset. 
Grouping objects in annotated relationships can 
be leveraged in post-retrieval organization and 
display to provide semantic information about 
the objects.

All the predictive Models mentioned above 
underwent some form of validation, expressed 
via the Validate relationships in the respective 
fi gures. The Validate relationship is further special-
ized via the Validate External and Validate Internal 
subclasses. Please see the section on evidence 
annotation in the appendix. As molecular predictive 
Models mature and get closer to routine clinical 
practice, it is important to consider the evidence 
supporting their validity and generalizability. As 
described by Pepe et al. (Pepe et al. 2001), clinical 
bioinformatics predictive models typically go 
through multiple stages of validation before being 
accepted in standard practice. Therefore, our envi-
sioned system will need to fi lter different objects 
based on the strength of supporting evidence. For 
example, these query results can be narrowed to 
include only high quality models by appending the 
following requirements to the query “[get models 
that …], have been developed using datasets with 
sample size (n) larger than 200 patients, and that 
have been validated using an independent 
dataset.”

The concepts mentioned so far that will 
support the information retrieval model are 
described in more detail in the appendix. Now 
we can revisit Figure 1 in its entirety. It gives an 
overview of how a query is intended to be 
processed: A query sets the desired object types, 
specifi es a partial or complete Context(s), and 
sets conditions for quality fi ltration. The process 
is decomposed into three steps: (1) returning 
objects that are indexed by Context tuples that 
match the query’s Context, (2) fi ltering out objects 
based on quality of evidence, and (3) selecting 
smaller sets of objects by the user and organization 

1Notice that the oligonucleotide sequences on the microarrays platform 
of this study were matched through their annotations to the cDNA genes in 
the “lymphochip” platform used in the other studies. Only the sequences 
that matched were used in this clustering technique. That’s why the ternary 
relationship apply-on-to-produce has an asterisk in Figure 2.
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of these objects along with their relationships in 
an intuitive way.

Proof of concept: Molecular 
prognostic test for breast 
cancer—MammaPrint®
The same semantic representation and organizational 
principles of Papers, Datasets, Algorithms, and 
Models that relate to MammaPrint®, the fi rst com-
mercial Breast Cancer molecular prognostic test, 
are shown in Figure 5 and explained below.

Researchers in the Netherlands (van’t Veer and 
others 2002) analyzed historical breast cancer 
tissues using a 25,000 sequence oligonucleotide 
microarray. Seventy genes were found to be 
predictive of 5-year metastasis in Lymph Node 
(LN)-negative female patients under the age 55. 
Unsupervised hierarchical clustering (Algorithm) 
distinguished the following three characteristics: 
Estrogen-receptor negative (i.e. can not be treated 

with the drug Tamoxifen), having BRCA1 germline 
mutation, and metastasis within 5 years. In other 
words, three Models were Produced using the 
hierarchical clustering Algorithm. A supervised 
machine learning method, Artificial Neural 
Network (ANN, another Algorithm), was used to 
construct a classifi er (Model), using a “70-gene 
signature”, that predicts these characteristics. This 
predictive Model was Validated Internally using a 
leave-one-out approach. The researchers also 
showed that this molecular predictive Model was 
an independent predictor of metastasis from other 
well-known decision Models that relied solely on 
clinical parameters (the NIH Consensus and the 
St. Gallen Consensus). In that paper, not only did 
the molecular decision Model improve clinical 
outcome prediction, but it also predicted the same 
number of patients who had metastasis with fewer 
false positives. This is important given the 
morbidity and economic costs associated with 
adjuvant chemotherapy (Erban and Lau, 2006; 

Filters
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van’t Veer - Nature 2002  *
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Morris - Curr Opin Oncol. 2007

Mook - Cancer Genomics
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Lacal - Clin Transl Oncol. 2007

Marchionni - Ann Intern Med. 2008
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Figure 5. This fi gure depicts objects and object relationships that span the development and evolution of the MammaPrint™ Model from its 
earlier versions. The fi gure also represents the validation of MammaPrint™ across multiple Datasets and its comparison to other Models. 
Notice that the other clinical predictive models are classical models that do not incorporate molecular data. The information retrieval frame-
work will incorporate classical (non-molecular) clinical predictive Models only when they are relevant to the validation of molecular prediction 
Models. Otherwise classical Models will not be indexed or stored. Similar to the process described in Figure 1, a query to this domain will 
return a raw set of objects (Part I, left side). A subset of the raw result may be selected for visual organization and display (right side) of the 
objects and their relationships (Part II, right side). The detailed prose description of this scenario is presented in the subsection “Proof of 
Concept: Molecular Prognostic Test for Breast Cancer—MammaPrint®”.
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Hassett et al. 2006). The 70-“gene signature” Model 
was Externally Validated (van de Vijver et al. 2002) 
using 295 consecutive historical patients in a Data-
set that is different from the Dataset that was used 
to Produce that signature. It also provided (Weigelt 
et al. 2005) the correct decision outcome, i.e. Exter-
nally Validated, on primary tumor tissue from 7 
patients and on matched metastatic tissue obtained 
years later from the same patients (not shown in 
Fig. 5). This validation was not of a clinical, but of 
a biological hypothesis that: molecular subtype 
determines the metastatic potential early in the 
disease as opposed to invasiveness resulting from 
cumulative mutations.2

A spin-off commercial company, Agendia™, 
developed a custom kit that measured gene 
expression and contained a similar 70-“gene 
signature” Model, now called MammaPrint®. 
MammaPrint® was also Produced using the ANN 
Algorithm and Internally Validated (Glas et al. 
2006). The new platform was shown to be 
concordant with the previous 25,000 oligonucle-
otide chip (Glas and others 2006) (thus Externally 
Validating that Dataset’s corresponding Model). 
MammaPrint® was Externally Validated through 
multi-center European consortium study (Buyse 
et al. 2006). It was also compared to known clini-
cal decision Models, including one based on a 
software, Adjuvant!, that calculates 10-year sur-
vival probability based on clinical parameters.

Discussion and Future Work
Some public resources currently implement some 
but not all aspects of our intended functionality and 
not in an integrated retrieval framework as was 
discussed in this paper. For example, PharmGKB’s 
clinical outcomes are restricted to outcomes of 
therapy, and exclude diagnostic and prognostic 
markers. Oncomine’s representation and organiza-
tion of oncology molecular datasets does not cover 
decision Models, the original Algorithms by which 
these models were produced, or their validation 
methods. Datasets and Papers are MeSH-indexed 
in GEO/PubMed, but their relationships to 
respective Models, Algorithms, and Contexts are 
not explicit. The proposed framework is designed 

to compliment existing resources and extend current 
representations to cover molecular clinical predictive 
models and their related modalities. Our choice to 
model this domain using an OWL ontology was 
made with the goal of semantic integration of this 
framework with existing knowledge sources. 
Whenever possible we associate objects in our 
database with their counterparts in external data-
bases, e.g. using PubMed uid for papers and GEO 
accession numbers for datasets.

Most existing clinical predictive models do not 
incorporate molecular features. Classical predictive 
models that are purely based on clinical parameters 
are outside the scope of this information retrieval 
framework; however, classical models will be 
incorporated only when they exist within the 
context of molecular predictive models. For 
example, we did include the International Prognostic 
Index model in the DLBCL case study, and the 
St. Gallen Consensus model in the MammaPrint™ 

validation case study. Similarly, storing and annotating 
gene signatures that predict underlying biological 
behavior without clinical outcomes is outside the 
scope of this framework. Again, some molecular 
clinical predictive models incorporate aspects of 
purely biological signatures, so we will also 
include those only when they exist within the con-
text of clinical models. For example, the early 
DLBCL models (Fig. 2) that identifi ed the underlying 
biological behavior of DLBCL (as APB-like or 
GC-like) did correlate with clinical outcomes and 
therefore they were included in the framework. 
Using molecular signatures that measure (EGF-R) 
receptor activity for choice of treatment with 
tyrosine kinase inhibiting drugs is another example 
(not discussed in this paper) that comes to mind of 
what will be included in this framework.

The focus of the present paper is the underlying 
information retrieval model and not the system’s 
implementation and inference mechanisms which 
will be described elsewhere (please see Appendix). 
When developing the formalisms described in this 
paper, we deliberately selected the minimal set of 
classes and properties that is expressive enough to 
allow for semantic organization of the domain. This 
level of simplicity is intended to enable automated 
methods for building the knowledgebase. Our current 
research is focused on building and validating 
machine learning models that can correctly annotate 
the Contexts described in clinical bioinformatics 
papers, and that can also correctly identify the vali-
dation methods that are employed in those papers.

2That same study Validated a decision Model described elsewhere (also not 
shown in Fig. 5) that used unsupervised clustering to separate Breast 
Cancer samples into four molecular subtypes. All matched primary tumors 
and metastatic tissue belonged to the same molecular subtype.
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Conclusion
While clinically-oriented research exploring gene 
expression microarrays, mass spectrometry, SNP 
arrays and other high-throughput molecular assays 
has followed an exponential growth in recent years, 
to date there is no general purpose system that 
allows researchers and clinicians to fi nd models, 
papers, data, and other related information in this 
emerging field using a unified and friendly 
interface. In the present paper we propose a 
framework for such interface and demonstrate the 
complexity of its required functionality. Our long-
term goal is to construct a system that addresses 
this need. As a signifi cant fi rst step, we developed 
a formalism that supports storage and retrieval of 
a multiplicity of clinical bioinformatics objects 
such as published papers, datasets, decision 
models, and discovery and inference algorithms. 
This formalism opens the way for automated 
methods that support the knowledgebase’s creation 
and annotation. In addition, it allows for a second 
layer of organization of objects returned by queries 
based on their (1) interrelationships and (2) strength 
of methodological validation. We demonstrated 
the power of this model in the complicated domain 
of diffuse large B-cell lymphoma. In future work 
we plan to deploy and test a prototype system based 
on the model of the present paper applied to 
biomarker discovery for other malignancies.

Appendix

Context indexing and automation
As mentioned earlier, an object’s Context is 
represented by a tuple that specifies Disease, 
Population, Purpose, and Modality. Whenever an 
object is described in a Paper that object is indexed 
by the Context with which it is described in that 
Paper. An object, e.g. Dataset, can be indexed by 
many Contexts because more than one Paper can 
reference the same object and in multiple contexts. 
For example, a “neural network” Algorithm, can be 
described in the following Context in one Paper 
(�DLBCL, Human Patients, Prognosis with Treat-
ment, Proteomics �) i.e. neural network predictive 
Models were developed to predict prognosis in 
DLBCL using proteomic data. It can then be 
described in a different Context in another Paper. 
A Paper can be indexed by all the Contexts that 
apply to the objects in that Paper; however, indi-
vidual objects described in a Paper are not 

necessarily described by all the Contexts that are 
mentioned in that Paper. For example, a Paper that 
evaluates a certain Algorithm using multiple 
Datasets drawn from multiple diseases can be 
indexed by Context tuples that refl ect all the diseases, 
but each individual Dataset can only be indexed 
using tuples that refl ects its specifi c disease.

We use a canonical set of terms to specify the 
individual elements of a Context tuple. Initially we 
are only covering Neoplasms, and we will adopt 
the following nomenclature for Disease: Breast 
Neoplasms, Lung Neoplasms, Colorectal Neo-
plasms, Prostatic Neoplasms, and so on to cover 
all neoplasms in the domain of clinical bioinfor-
matics. Population refers to one of three types: 
Human Patients (Datasets created by assays on 
tissues taken from patients, this can include normal 
tissue taken as control), Cancer Cell Line, and 
Animal Model. Purpose refers to the type of 
clinical outcome, we have determined four catego-
ries of clinical outcomes: (1) Diagnosis, i.e. using 
a computational Model to assign a diagnostic label 
based on molecular profi le, an example in this 
category is the well known AML/ALL classifi ca-
tion Dataset by Golub et al. (Golub et al. 1999); 
(2) Prognosis with no treatment, (3) Prognosis with 
one treatment arm, e.g. 5 year survival or metas-
tasis prediction for patients on standard treatment; 
and (4) Prognosis with more than one treatment 
arm. The latter refers to situations where molecu-
lar computational models predict whether patients 
benefit from certain treatments, e.g. hormone 
therapy susceptibility based on molecular pathway 
activations. It also includes situations where the 
biological effect of certain chemicals, e.g. when 
tested on cancer cell lines, is measured. Finally, 
we determined three categories for Modality: 
(1) Genetic, refers to high throughput modalities 
that assess inherited genetic characteristics, e.g. 
SNPs and haplotypes; (2) Genomic, refers to high 
throughput modalities that assess functional 
genomic characteristics of disease or disease-
related tissues, e.g. gene expression microarrays, 
array CGH; and (3) Proteomic, e.g. high through-
put modalities like Mass Spectrometry and Gel 
Proteomics.

There are a plethora of reference ontologies 
(Burgun, 2006) and other formalisms that can 
represent Context elements with high granularity, 
e.g. SNOMED-CT for Disease and Purpose. A very 
expressive annotation of Context elements using 
complex ontologies with extensive subsumption 



13

A novel information retrieval model for high-throughput molecular medicine modalities

Cancer Informatics 2009:8 

hierarchies has many benefi ts. However it is labor 
intensive and with current and foreseeable 
technology relies heavily on human operators. As 
explained, our aim is to accelerate the indexing 
and annotation of Papers using automated or semi 
automated means.

Classes, Objects and relationships
We chose to represent the different object types, 
their relationships, as well as other entities in the 
clinical bioinformatics domain using Description 
Logic. Using Protégé’s OWL plug-in (Knublauch, 
Musen and Rector, 2004), we developed an 
ontology (Discovery Systems Laboratory, 2008) 
that uses OWL axioms to defi ne classes (concepts) 
of clinical bioinformatics entities and their 
respective properties (attributes). We chose OWL 
because the supporting tools are readily available, 
because we can use it to represent the domain 
unambiguously, and because we can use it to share 
our representation. We note that our aim is not to 
build extensive DL-based knowledgebases or to 
develop reference ontologies.

The main classes are Papers, Datasets, 
Algorithms, and Models. Datasets can have simple 
properties such as dataset dimensionality and 
sample size or complex ones such as related 
diseases and population characteristic. Algorithms 
are annotated with properties to refl ect the different 
methodologies e.g. “supervised” vs. “unsupervised 
learning”. Decision Models are annotated by the 
specifi c outcomes that they predict.

The semantics of relationships between classes 
in clinical bioinformatics is captured through 
relationship classes. For example, a Paper 
“proposes” or “invents” a specific Algorithm, 
“evaluates” that Algorithm using a Dataset, or 
simply “applies” that Algorithm on a given Dataset. 
So in addition to classes of objects, the ontology 
specifi es classes of relationships between classes. 
Most relationships are binary, although there are 
some that are of higher arity. Relationships in our 
ontology are represented as classes and not 
properties (or “roles” in DL jargon). Our reasons 
for that include: (1) uniformity in representing all 
relationships, a signifi cant fraction of which is not 
binary and thus cannot be represented by a DL-role, 
and (2) the need for rich annotation of the 
relationships themselves. For example, the 
relationship Validate_Internal (when a model is 
validated within a study) requires further annotations 

such as the type of validation performed (independent 
prospective sample? N-fold cross validation? Leave 
One Out cross validation?) Modeling relationships 
using classes instead of roles will add complexity 
to reasoning; however, for the foreseeable 
applications, we envision that a relational database 
with indexed relationship tuple tables will be 
adequate (for implementation and reasoning) for 
typical queries. Please see section on inference and 
implementation. Using classes to model relationships 
may also make reuse of this ontology more 
cumbersome, and is a limitation of this ontology. 
The four retrievable classes along with a subset of 
relationship classes are shown in Figure 6.

Research and discovery within the domain of 
clinical bioinformatics can be conceptualized as 
an overarching process that consists of: (a) 
collection of high-throughput molecular profi ling 
data through molecular assays, (b) analysis of such 
data using specialized techniques, and (c) generation 
and validation of respective decision Models. 
These processes can be represented via a set of 
axioms that constrain relationships between classes 
in our ontology. Such constraints represent implicit 
domain knowledge such as: “In a Paper, one or 
more Datasets are assayed,” or “An Algorithm is 
applied on a Dataset to produce a Model”. Some 
of those constraints can be inferred from the UML 
diagram in Figure 6.

Currently, relationships between objects are 
manually annotated. Annotated relationships will 
be used to support the third step in the query 
process (semantic organization and display). These 
relationship instances are indexed and will be used 
to construct edges between the objects returned by 
the query and to drive the visual organization of 
results.

Support for evidence annotation 
and fi ltering
As mentioned earlier, decision Models vary in 
the degree of validity and of generalizability 
outside of the population from which they were 
formulated. This variability results from the 
different methods with which the investigators 
validate their models and from the different 
experimental designs.

The performance of decision Models is usually 
evaluated on independent samples within the 
study Dataset, or on Datasets collected from 
different studies altogether. The former case is 
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represented through the “Validate_Internal” 
relationship, and the latter through the “Validate_
External” relationship. Both are subclasses of 
the Validate ternary relationship class (Fig. 6). 
Note that internal validations are sometimes done 
on non-independent samples. This is a bad prac-
tice that likely leads to over-fi tting of the resultant 
decision Models, and is therefore an important 
attribute to highlight when displaying results. 
The Validate_Internal relationship is annotated 

as being done on either non-independent or 
independent samples.

The class ValidationMethod is a property of the 
Validate relationship class. Instances of this class 
correspond to specifi c validation methods such 
“Leave-One-Out Cross Validation,” “N-Fold 
Cross Validation,” etc. Statistical (Aphinyanaphongs 
et al. 2005; Wilczynski et al. 2005) classifi cation 
methods have been used successfully before to 
classify the nature of evidence based on document 

Retrievable Objects and Relationship Classes

<<OmicsRetrievalObject>>

<<OmicsRetrievalObject>><<OmicsRetrievalObject>>

<<OmicsRetrievalObject>>

<<OmicsRelationship>>

<<OmicsRelationship>>

<<OmicsRelationship>>

<<OmicsRelationship>>

<<OmicsRelationship>>

<<OmicsRelationship>>

Paper

Validate

Validate_External

Validate_Internal

Model Dataset

Apply Algorithm

Invent

Assay

Evaluate

title : String
author : Person [*]
source : String

validationMethod: ValidationMethod

evaluationMethod: EvaluationMethod

url : String [0..1]

name : String
usage : UsageEnum [1..*]
family : AlgorithmFamily [1..*]

clinical_outcome : Purpose
description : String

sample_size : Integer
feature_size : Integer

Run_On_Produce

<<OmicsRelationship>>

Analyse

anlysisMethod: AnalysisMethod

Figure 6. A UML diagram showing the four retrievable classes (subclasses of the abstract OmicsRetrievalObject class), some relationship 
classes (subclasses of the abstract OmicsRelationship class), and their associations. Some relevant properties of the retrievable classes 
are shown here as well. Apply, Invent, Assay, and Analyze are binary relationship classes, whereas the rest are ternary. The knowledgebase 
will contain instances of the retrieval and the relationship classes (as well as others not shown here, such as Context-related classes). For 
example, a given paper p (instance of Paper) may describe how a given model m (instance of Model) was validated using a dataset d 
(instance of Dataset). An instance v of the Validate relationship will be created referencing the objects p, m, and d. If d was the same data-
set that was used to produce m, then v will belong to the Validate_Internal. class. Validate_Internal and Validate_External are subclasses 
of the ternary relationship, Validate. As such, they inherit its properties but offer more specialized properties such as specifying whether the 
validation method described by the Validate_Internal instance was done on independent samples within the related Dataset or not.
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content. We plan to automatically identify the 
ValidationMethod classes based on Paper 
contents.

Brief discussion of inference 
and implementation
This paper addresses representational requirements 
of the information retrieval task at hand and the 
expressiveness of the model and underlying 
formalism. However we will briefly discuss 
inference and implementation of this model. In 
the fi rst phase of our work, the papers were col-
lected and organized manually. As we added more 
objects, and as the model was formulated we 
found that a simple relational model was enough 
to store and execute our simple queries. The 
objects were stored in their own tables, the 
relationships between the objects were stored in 
join tables, “Context” tuples were stored in a 
separate table, etc. It can be easily shown that 
matching the pattern of a “Context” query can 
be done via simple SQL queries that are dynam-
ically generated. With the correct choice of index 
keys, the retrieval process has been very effi cient 
and we expect it to scale effi ciently for simple 
queries. We used a simple (PHP-based) web 
framework with a browser interface and a 
MySQL database backend to build an application 
for storing and retrieving representations of our 
objects and their relationships. We have not yet 
implemented graph extraction and visualization. 
Graph extraction should be a trivial problem 
(identifying objects a certain depth from a model 
of interest, fi ltering out/in objects with specifi c 
properties, etc.) Graph visualization can be done 
via any of available graph-layout software 
(e.g. Graphviz). Graph elements can be passed 
to a web browser for rendering using a mark-up 
standard like SVG.

Semantically, we modeled the relevant objects 
of the domain, their relationships and the domain 
knowledge using OWL-DL axioms. This OWL 
fi le is available for download as indicated earlier. 
This leaves the door open for future storage and 
retrieval of the objects using DL-based databases 
and query languages; however, we do not see a 
need in the near future for DL-based inference 
and implementation. We think that using OWL to 
model the domain will facilitate semantic 
integration of this framework with other resources 
in the future. We envision implementing this 

framework as a web service that will be compatible 
with standard web services technology.

The inference task that we fi nd most challenging 
is the automated identifi cation of relevant papers 
from the literature and the automated annotation of 
the objects (for now only papers) by the correct 
“Context” tuples. Again, using automated or semi-
automated methods is essential for building a 
comprehensive and up-to-date knowledgebase. This 
has motivated our drive towards simple representation 
formalism. Our current work is focused on building 
machine learning filters for identifying and 
annotating domain papers using text categorization, 
and on investigating different approaches for tuple 
extraction. The purpose, and subsequent evaluation, 
of this effort is done along two lines. The evaluation 
of information retrieval recall and precision is done 
using a human-annotated corpus of papers that 
serves as a gold standard (currently exists for two 
domains, Lung Cancer and Breast Cancer with more 
annotations by domain experts underway). The 
individual papers are labeled for many things such 
as whether they describe the domain of clinical 
bioinformatics, whether they correspond to single 
gene vs. high throughput experiments, as well as all 
the Context tuple assignments that apply to each 
specifi c paper. The second dimension of evaluation 
relates to the adequacy of these automated techniques 
as means for building the knowledgebase required 
for this purpose, and how users interact with the 
resultant system.
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