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Abstract: A novel technique of automatically selecting the best pairs of features and sampling techniques to predict the stage 
of prostate cancer is proposed in this study. The problem of class imbalance, which is prominent in most medical data sets is 
also addressed here. Three feature subsets obtained by the use of principal components analysis (PCA), genetic algorithm 
(GA) and rough sets (RS) based approaches were also used in the study. The performance of under-sampling, synthetic minor-
ity over-sampling technique (SMOTE) and a combination of the two were also investigated and the performance of the 
obtained models was compared. To combine the classifi er outputs, we used the Dempster-Shafer (DS) theory, whereas the 
actual choice of combined models was made using a GA. We found that the best performance for the overall system resulted 
from the use of under sampled data combined with rough sets based features modeled as a support vector machine (SVM).
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1. Introduction
Prostate cancer is the leading type of cancer in men with a 27% incidence. The Canadian Cancer Society 
estimates about 72,700 cancer deaths, of which 3500 are in men with prostate cancer.1 There are several 
different types of treatments for prostate cancer, although some of the treatment techniques can substi-
tute each other. The choice of a treatment is dependant upon the stage of the disease, i.e. the extent of 
cancer spread and whether the cancer has spread beyond the prostate. This information results in stag-
ing the cancer. In essence, on the information gathered about the disease through biopsy and/or pros-
tatectomy, staging categorizes a patient. Since different treatments result in variable outcomes, staging 
helps assess the risk of cancer progression and death based on the current extent of cancer, tumor char-
acteristics, metastasis in the lymph nodes, and the spread of the disease to other parts of the body. 
Staging also helps in establishing a tradeoff between the risks of death due to cancer and death or 
medical complications due to treatment. This is particularly true for prostate cancer since a majority of 
men diagnosed with the disease are older adults, often suffering from multiple comorbidities.

Typically, medical doctors assess the clinical and the pathological data about the individual patient 
to assign a cancer stage and to choose the most appropriate treatment procedure. This is also known as 
clinical decision making and it is a complex process. Cancer staging performed by a doctor involves 
weighing multiple variables and processing information gathered by patient examination and by con-
ducting various tests. However, this process may be subjective and therefore depends heavily on the 
doctor’s experience, skills and knowledge. Machine learning techniques can also be employed to learn 
and model the underlying theory when provided with relevant information and data. A variety of 
statistical, probabilistic and optimization tools under the umbrella of machine learning can be used to 
learn from past examples and a number of information systems have been developed to aid the clinical 
decision-making process.2

An automated cancer staging system was developed and is described in this paper. A classifi er based 
framework was used to draw a distinction between two primary stages of the disease: organ-confi ned 
disease and extraprostatic disease. The classifi er was modeled using past data from patients diagnosed 
with prostate cancer who are selected to undergo surgery (or prostatectomy). One of the key issues with 
such data sets is the class imbalance, resulting from the number of patients with organ-confi ned disease, 
which considerably exceeds the number of patients with extraprostatic disease. Data imbalances pose 
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problems when less observed patterns are of higher 
relevance, because most of the machine learning 
techniques tend to generalize the patterns observed 
over the majority of data and ignore those observed 
over smaller portions of the data.3 Three approaches 
of dealing with the class imbalance problem were 
explored in this study. We also investigated the 
feature space reduction, because the data can 
potentially contain more information than required 
to perform the classifi cation.

There are a number of machine learning tech-
niques that can be used to develop a classifi er, but 
it is well known that specifi c techniques are more 
suitable for certain domains. That is, for a particu-
lar problem, specifi c techniques have superior 
performance, while other techniques are only able 
to produce mediocre or acceptable results. Even 
within one problem domain, different techniques 
can differ in the effi ciency for different (partial) 
ranges of the problem space. This leads to the 
conclusion that it is most appropriate when solving 
a problem, such as the one considered here, to 
primarily rely on actual data and information about 
the problem, rather than trying to generalize the 
performance of certain machine learning tech-
niques in a generic manner.

Lately, a number of machine learning based 
tools have been developed for cancer diagnosis 
and prediction. And a majority of this work can be 
categorized into those which are heavily dependant 
upon expert domain knowledge or on extensive 
historic data. Garzotto et al.4 and Spurgeon et al.5 
sequentially developed a decision tree approach, 
specifi cally CART (classifi cation and regression 
tree) to classify patients with aggressive prostate 
cancer based on ultrasound and biopsy markers. 
Sensitivity and specifi city were adopted as perfor-
mance metrics in the study. Zlotta et al.6 developed 
a set of two artifi cial neural networks (ANN), 
where the fi rst ANN predicts the pathological stage 
of the patient and the second ANN classifies 
patients in groups based on cancer stage and the 
model performance was measured using the 
Receiver Operating Characteristic (ROC) curve. 
Veltri et al.7 favorably compared an ANN model 
to logistic regression for prostate cancer prediction 
and staging. Percentage of correctly classifi ed cases 
was adopted as the performance metric.

In this paper, we propose a novel system which 
selects the features automatically and couples appro-
priate techniques in order to maximize the system 
performance. Specifi cally, performance of three 

re-sampling techniques and three feature selection 
techniques were evaluated. A GA is used to search 
for optimal pairs of feature selection and sampling 
techniques; where optimality is based on the perfor-
mance of the system. Once such pairs are identifi ed, 
respective classifiers are developed and a DS 
method8 is used to combine the component classifi er 
performances. The performance of such a system 
has been shown for two different types of classifi ers; 
the k-nearest neighbor (KNN) method and the sup-
port vector machines (SVM). ROC curves9 are used 
as performance measures for the proposed cancer 
staging system. The next section describes the data 
used for this study and Section 3 provides justifi ca-
tion for the use of ROC as a performance metric. 
Section 4 introduces the proposed method along 
with brief descriptions of the component classifi ers 
and feature extraction and sampling methods. 
Section 5 details the classifi er fusion and the obtained 
results. Section 6 provides details on the generic 
applicability of this method by validating it on a 
simulated prostate cancer dataset and on two pub-
licly provided datasets of breast and lung cancer.

2. Study Population
Staging and analysis of prostate cancer may be 
regarded as a function of the information (predic-
tors) gathered during the diagnosis of every 
patient. Data from a total of 1174 patients with 
prostate cancer positive biopsies matched with 
their radical prostatectomies were used for this 
study. All specimens were processed in one labo-
ratory between 07/2000 and 04/2005 and were 
reported using standard synoptic reports. The 
biopsy and the prostatectomy data were col-
lected from the information system (Cerner) of 
the Calgary Laboratory Services. Various biopsy 
predictors that were considered are: Patient Age, 
Primary Gleason Grade, Secondary Gleason 
Grade, Biopsy Gleason Score, Prostate Specifi c 
Antigen (PSA), PSA Density (PSAD), Digital 
Rectal Exam (DRE), Transrectal Ultrasound 
(TRUS), Gland Volume, Number of Positive 
Cores, Total percent of Cores Involvement, and 
Total Cancer Length in mm. Prostatectomy data 
included: Disease Stage (pTNM), Primary Glea-
son Grade, Secondary Gleason Grade, Prostatec-
tomy Gleason Score, Tumor Volume, Seminal 
Vesicle Involvement, Surgical Resection Margin 
Status, and Pelvic Lymph Node Involvement. The 
prostate cancer dataset contained multiple stages 
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Table 1. Patient characteristics.

Clinical parameters Patients with Organ
confi ned PCa

(n = 934)

Patients with
Extraprostatic

extension
(n = 120)

All patients
(n = 1054)

Age (years):
median (range)

59.9 (36.2–77.4) 63.4 (42.7–74.2) 60.4 (36.2–77.4)

Age categories (years):
 �50 (%) 103 (11) 5 (4.2) 108 (10.2)
 �50–60 (%) 368 (39.4) 34 (28.3) 402 (38.1)
 �60–70 (%) 404 (43.3) 67 (55.8) 471 (44.7)
 �70–80 (%) 59 (6.3) 14 (11.7) 73 (6.9)
PSA (ng/ml): 
median (range)

5.7 (0.29–55) 6.9 (1.8–80) 5.8 (0.29–80)

PSA categories (ng/ml):
 �4 (%) 169 (18.1) 12 (10.0) 181 (17.2)
 �4–10 (%) 662 (70.9) 73 (60.8) 735 (69.7)
 �10–20 (%) 98 (10.5) 27 (22.5) 125 (11.9)
 �20–50 (%) 3 (0.3) 6 (5.0) 9 (0.9)
 �50–100 (%) 2 (0.2) 2 (1.7) 4 (0.4)
Prostate Gland Volume (cc):
median (range)

35.6 (7–193.2) 32.1 (10.02–176.6) 35.15 (7–193.2)

Prostate Gland Volume 
categories (cc):
 �25 (%) 188 (20.1) 33 (27.5) 221 (21.0)
 �25–50 (%) 503 (53.9) 61 (50.8) 564 (53.5)
 �50–100 (%) 243 (26.0) 26 (21.7) 269 (25.5)
PSA Density:
median (range)

0.15 (0.01–2.1) 0.22 (0.03–2.5) 0.16 (0.01–2.5)

(Continued)

for the disease, and thereby the stage data was 
converted into a binary format where extrapros-
tatic disease represented by stages pT3 and pT4 
was denoted by 1 and the organ-confi ned disease 
represented by stage pT2 was represented with a 0. 
Table 1 presents the statistical description of the 
data used in this study. Of the 1174 patient 
records, 1054 records were retained after remov-
ing the ones with missing variables; 934 patients 
in the organ-confi ned stage and a 120 with an 
extra prostatic extension.

3. Performance Metric
A classifi er’s performance typically refl ects how 
well it can discriminate between the objects belong-
ing to different classes (two in this case). But the 
proposed system is expected to play a critical role, 

particularly for patients where treatment modality 
may have a substantial impact on the post-treatment 
prognosis and survival. Therefore, in terms of the 
classifi cation performance, the cost of wrongly 
classifying a patient with extraprostatic disease is 
much higher than the cost of wrongly classifying 
one in the organ-confi ned stage. Conventional 
measures of performance therefore will not provide 
a relevant estimate of the classifi er performance; 
therefore an ROC curve and the area under the 
curve (AUC) were used as performance indices in 
this study.

An ROC curve is obtained by plotting the true 
positive rate (TPR) against the false positive rate 
(FPR) for varying decision thresholds. As shown 
in Table 2, TPR (and FPR) is representative of the 
number of positive (negative) examples correctly 
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Table 1. (Continued)

Clinical parameters Patients with Organ
confi ned PCa

(n = 934)

Patients with
Extraprostatic

extension
(n = 120)

All patients
(n = 1054)

PSA Density categories:
 �0.10 (%) 231 (24.7) 18 (15.0) 249 (23.6)
 �0.10–0.25 (%) 535 (57.3) 49 (40.8) 584 (55.4)
 �0.25–0.50 (%) 139 (14.9) 38 (31.7) 177 (16.8)
 �0.50–1.0 (%) 25 (2.7) 11 (9.2) 36 (3.4)
 �1 (%) 4 (0.4) 4 (3.3) 8 (0.8)
PCa Length (mm):
Median (range)

5.25 (0–117) 19 (0.15–102.75) 6 (0–117)

PCa Length Categories:
 �10 (%) 615 (65.8) 41 (34.2) 656 (62.2)
 �10–20 (%) 174 (18.6) 25 (20.8) 199 (18.9)
 �20–40 (%) 107 (11.5) 37 (30.8) 144 (13.7)
 �40–60 (%) 31 (3.3) 12 (10.0) 43 (4.1)
 �60 (%) 7 (0.7) 5 (4.2) 12 (1.1)
No. of cancer-positive cores:
median (range)

2 (1–10) 4 (1–10) 2 (1–10)

No. of cancer-positive cores 
categories:
 �4 (%) 767 (82.1) 74 (61.7) 841 (79.8)
 �4–6 (%) 109 (11.7) 27 (22.5) 136 (12.9)
 �6 (%) 58 (6.2) 19 (15.8) 77 (7.3)
Percent total core 
involvement on biopsy: 
median (range)

3.5 (0–78) 12.5 (0.1–68.5) 4 (0–78)

Percent core involvement 
categories:
 �3 (%) 441 (47.2) 20 (16.7) 461 (43.7)
 �3–10 (%) 280 (30.0) 30 (25.0) 310 (29.4)
 �10–20 (%) 140 (15.0) 42 (35.0) 182 (17.3)
 �20 (%) 73 (7.8) 28 (23.3) 101 (9.6)
Biopsy Gleason Score: 
median (range)

6 (4–9) 7 (6–9) 6 (4–9)

Biopsy Gleason Score 
categories:
 �6 (%) 683 (73.1) 39 (32.5) 722 (68.5)
 7–8 (%) 246 (26.3) 77 (64.2) 323 (30.6)
 �8 (%) 5 (0.5) 4 (3.3) 9 (0.9)

Abbreviations: PSA, prostate specifi c antigen; PCa, prostate cancer.
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(incorrectly) classifi ed. They may be computed as 
follows,

 

TPR
TP

TP FN

FPR
FP

FP TN

=
+

=
+

;

;
 

The decision threshold or boundary for binary 
classifi cation refers to a threshold, below which the 
object is classifi ed as negative and above which it 
is classifi ed as positive. Such a threshold can be 
adjusted to trade off the cost of TP against the cost 
of  FP, and each threshold setting provides a (FP, TP) 
pair. A series of such pairs produced by varying the 
decision threshold are used to plot the ROC curve. 
The ideal point on the ROC curve would be (0, 1) 
where all positive examples are classifi ed correctly 
and no negative examples are misclassified as 
positive. (0, 0) is the point where all the examples 
are predicted as negative. (1, 1) corresponds to clas-
sifying all examples as positive.

One should note that, depending on the outcome 
of misclassifi cation, ideal decision thresholds may 
vary. For example, if the cost of misclassifying a 
patient with extraprostatic disease is lower than 
misclassifying a patient with organ-confi ned dis-
ease, then a reciprocal ROC curve (to the one dis-
cussed above) will be preferred. But in this study, 
a classifi er with an ROC tending towards the top-left 
of the graph indicates better performance than the 
ones with a lower ROC. In addition, ROC curves 
for different classifi ers tend to intersect each other; 
in which case AUC is used as an alternate metric. 
AUC ranges between the interval [0, 1] and greater 
the value of AUC, better is the technique. The AUC 
of a classifi er is equivalent to the probability that 
the classifi er will rank a randomly chosen positive 
example higher than a randomly chosen negative 
example. AUC as a measure has been proved to 
be equivalent of the Wilcoxon test statistic10 and 
the Gini Index11 i.e. unlike a typical measure of 

classifi cation accuracy, the AUC quantifi es the 
likelihood that the underlying method will assign a 
higher probability of success to a patient having 
extraprostatic disease compared to a patient where 
the cancer is contained. Therefore such a measure 
will provide a true insight even in the case of imbal-
anced data. Another important advantage is that the 
respective ROC is invariant to monotone transfor-
mations of feature values,12 which renders fl exibil-
ity in manipulating the feature set if necessary.

4. Proposed System 
and Methodologies
The proposed system consists of four major parts: 
feature extraction, data sampling, classifi cation and 
classifi er fusion. Feature extraction helps identify 
the most prominent features in the search space 
thereby reducing the required computational and 
interpretational effort. Data sampling provides a 
mechanism to eliminate the bias or imbalance that 
exists in the data by over-sampling the minority 
class or under- sampling the majority class or a 
selective combination of both. Feature extraction 
and sampling enable the implementation of a clas-
sifi er in order to model the class disparity in the 
data. A GA is then used to identify compatible sets 
of features, sampling techniques and classifi ers in 
order to maximize the performance of subsequent 
DS classifi er fusion. The adopted methods are indi-
vidually described in the following subsections.

A. Feature selection
Features extracted or selected from the input data, 
can be categorized into continuous, discrete or 
projected features. Existing processes of selecting 
features can be classifi ed as: those based on sta-
tistical information, those based on empirical 
information and those based on search in the 
sample space. Following this approach, three 
techniques associated with the major types of fea-
tures have been adopted. Selection of RS based 
discretized features relies on empirical information 
about the system, PCA based transformed feature 
selection relies on the statistics of the data and GA 
based continuous feature selection relies on intel-
ligent search through the sample space.

1. RS features
Rough Set Theory13 adopts an equivalence relation 
such that two objects (x, y) form an indiscernible 

Table 2. ROC confusion matrix.

Predicted class
  Positive Negative
Actual class Positive TP FN
 Negative FP TN

Abbreviations: TP, true positive; FN, false negative; FP, false positives; 
TN, true negatives.
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pair over the attribute a, only if a(x) = a( y); and 
assuming that (x, y) Є Ra, then Ra would be called 
the a-indiscernibility relation and denoted by the 
symbol INDa. Given that, a lower approximation 
set consists of all objects which can certainly be 
classifi ed as elements of X over an indiscernibility 
relation R, i.e.

 R X Y U R Y X= ∈ ⊆∪{ : } (1)

The lower approximation set is also known as 
the Positive region i.e.

 POS X R XR ( ) =  (2)

The signifi cance of a variable is then expressed 
as a function of the dependency (γ) of a variable 
in classifying the objects into the classes of  
U IND D| ( ). The dependency of decision variable 
D on independent variable R is given as:

 γ R
RD

POS D

U
( )

( )

| |
=  

(3)

where U  denotes the cardinality of set U ,  i.e. the 
number of elements contained in that set. The 
signifi cance of a variable a is the increase of depen-
dency between the independent variables and the 
decision variable after the addition of a, i.e.

 SGF a R D Y D Y DR a R( , , ) ( ) ( ){ }= −+  (4)

Because dependency (defi ned by Equation 3) 
only considers the number of rules that cover 
various instances and not the number of instances 
that each of the rules represents, a parameterized 
average support heuristic method has been adopted 
to include both, the number of rules and the num-
ber of instances supporting each rule in computing 
the average support function (similar to the mea-
sure of dependency), given as:

 
F D POS D

n
S R dR R

i

n

i( ) | ( ) | ( , )= ×
=
∑1

1

 (5)

where di is a possible value of decision variable D, 
and S R d x X POSi IND R IND R R( , ) max{| [ ] |: [ ]( ) ( )= ⊂
( )}D di= indicates the maximal size of the 
equivalence classes included in the positive 
region of { }D di= i.e. the support of the most 
signifi cant rule for the decision class { }D di= . 

The signifi cance of a variable (Equation 4) is 
redefi ned as:

 SGF a R D F D F DR a R( , , ) ( ) ( ){ }= −+  (6)

2. PCA features
PCA14 reduces the feature space by projecting 
the complete feature set onto fewer variables known 
as the principal components with the objective of 
maximizing the variance in a least squares sense. 
This produces uncorrelated components with 
minimal information loss. X denotes a {n × p} 
matrix for n instances of a system represented 
through a p-dimensional feature space. Applying 
PCA begins by fi rst normalizing X into a feature 
set with zero mean and unit variance. PCA aims to 
transform this p-dimension into an m-dimensional 
feature space where m � p, but typically the fi rst few 
components represent the largest portion (~90%) 
of the original information, therefore effectively 
using only the fi rst m* (�� p) components. The 
correlation matrix SX of X is given as:

 
S

X X

nX

T

=
−1

 (7)

If  Y represents the {n × m} matrix for n instances 
of  a system represented through a reduced 
m-dimensional feature space, the transformation 
is achieved by weighting the original features using 
m number of principal components. The m com-
ponents are identifi ed as the eigenvectors corre-
sponding to the fi rst m largest eigenvalues of the 
correlation matrix SX. The transformation of the 
feature space is therefore given as:

 Y V Xm= ⋅  (8)

where Vm is a { p × m} matrix made up of the m 
eigenvectors. Singular value decomposition of X 
is performed as:

 X U L V T= ⋅ ⋅  (9)

where U is column-orthogonal matrix of size 
{n × p}, L is a square diagonal matrix of size 
{ p × p} where the diagonal elements are square 
roots of the eigenvalues of the correlation matrix 
SX and V is also a square matrix of size { p × p} 
where the columns correspond to the eigenvectors 
of the correlation matrix. Vm consists of the fi rst 
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m eigenvectors in V. The number of principal 
components or eigenvectors (m) is determined as 
per a set threshold.

3. GA features
GA15 based search depends on a user defi ned fi tness 
function; in this study, the product of the number 
of features and the average error in the predicted 
output class has been adopted as the fi tness func-
tion. GA based search uses a chromosome repre-
sentation of the solutions and a set of genetic 
manipulations in order to arrive at an optimum 
solution. First, a chromosome of the length equal 
to the total number of features in the input space 
is created. The value of the bit associated with a 
feature is set to 0 to indicate that the feature is not 
considered, whereas a bit value of 1 indicates 
that the feature will be considered. The search 
process begins with an initial generation where 
the population is generated randomly; all of the 
chromosomes in this generation are evaluated 
against the fi tness function and the best chromo-
somes (representing better solutions) are chosen 
to propagate into the next generation. Through 
heuristic manipulation of the chromosome struc-
tures in every generation, it is ensured that the 
newer generations always have an average fi tness 
higher than the previous generations. The search 
stops either when a fi tness threshold is achieved, 
or when the search runs out of the threshold on the 
number of generations. In this study, the population 
size per generation was set to 25 and the limit on 
the generations used in the search was set to 1000. 
These numbers were selected after a short sequence 
of random trials. Mutation and crossover operators 
were utilized to generate off springs for the next 
generation, and a simple natural selection based 
on the current fi tness values was used to identify 
potential parents.

B. Data sampling
Two re-sampling methods are often used in order 
to overcome an imbalance; one is to under-sample 
the majority class to match the size of the minority 
class and the other is to over-sample the minority 
class to match the size of the majority class. 
Over-sampling and under-sampling techniques 
have been previously evaluated for imbalanced 
datasets,16 and a conclusion that both meth-
ods were effective was drawn. In one study,17 
combined over-sampling of the minority class and 

under-sampling of the majority class was used, but 
the combination did not provide significant 
improvement in the performance. Over-sampling 
in these cases was done by duplicating the original 
examples from the minority class, which does not 
cause minority class decision boundary to spread 
into the majority class region, but instead creates 
decision regions similar to those existing for the 
minority class. This shortfall may be overcome 
using an approach called SMOTE, as proposed in 
one study.18

SMOTE is an over-sampling of the minority 
class by creating “synthetic” examples. SMOTE 
is actually an interpolation approach where the 
synthetic examples are created along the line 
segments joining the example under consideration 
and any/all of its k nearest neighbors in the minority 
class. The synthetic examples are created in the 
following manner:
1. For each minority class example, fi nd its k 

nearest neighbors in the minority class.
2. Randomly choose m (m � k) examples from the 

k nearest neighbors depending upon the over-
sampling amount. For instance, if the required 
over-sampling amount is 200%, then only 
2 neighbors are randomly selected from the k 
nearest neighbors.

3. Calculate the differences between the minority 
class example under consideration and its m 
nearest neighbors, which are randomly chosen.

4. Multiply the differences by a random number 
between 0 and 1, and add the results to the 
minority class example under consideration to 
produce m synthetic examples for this minority 
class example.
In this study, we used three re-sampling tech-

niques: 1) under-sampling 2) SMOTE and 
3) combined under-sampling and SMOTE in the 
multi-classifi er fusion diagnosis system.

C. Classifi ers
Classification, an operation of assigning an 
unknown sample to one of the output classes can 
typically be performed by either fi tting a model 
around the independent variables or through aver-
aging or majority voting. In order to exemplify the 
proposed system for both types, we used SVM, 
which identifi es a nonlinear model of the input 
variables, and KNN, which is based on majority 
voting.
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1. Support vector machines
SVM19 is a supervised machine learning methodology 
used for classification and regression. Compared 
with the traditional statistical and neural net-
work methods, SVM has the advantage to effec-
tively avoid a local minimum due to its 
convexity property. On the other hand, SVM 
uses the kernel trick to apply linear classification 
techniques to nonlinear classification problems. 
When Gaussian kernels are used, the resulting 
SVM corresponds to a radial basis function 
(RBF) network with Gaussian radial basis func-
tions. In comparison with traditional RBF net-
work, SVM has the ability to automatically 
determine the model size by selecting the sup-
port vectors based on quadratic programming 
(QP) procedure. Hidden neurons correspond to 
the support vectors. The support vectors serve 
as the centers of basis function in the RBF net-
work. For linear SVM, the decision function is 
given in a linear form as:

 f x w x b( ) = ⋅ +  (10)

The decision value produced by SVM is not 
the estimate of posterior probability. Here, the 
binning technique is used to transform the output 
of the SVM into calibrated probability.19 The 
binning technique proceeds by fi rst sorting the 
training examples according to their decision 
values, and then dividing the value range into k 
equal sized intervals or bins. Given an exam-
ple x, place it in a bin according to its decision 
value. The conditional probability of x is esti-
mated as:

 
p c x x

m

n
( ( ) | )=1

 
(11)

where n is the number of training examples that 
fall within the bin, m is the number of positive 
examples among these n training examples.

2. K-nearest neighbor
KNN20 is a statistical method for classifying 
objects based on their k nearest training examples 
in the feature space. KNN classifies a new 
example by fi rst calculating the distances of the 
new example from all other examples in the train-
ing set, and then selects k nearest training exam-
ples. The class of the new example is the most 

frequent class label presented among the k nearest 
examples:

 c x k km m i
s

i( ) ,= = =ω max 1  (12)

where s is the number of classes, ki is the number 
of examples belonging to class ωi among the k 
nearest examples, ∑ki = k; i = 1… s. The output 
of KNN classifi er is not probability. For the two-
class problem, the conditional probability can be 
directly estimated as:

 
p c x x

k

k
( ( ) | )=1 1

 
(13)

where k1 is the number of positive examples among 
the k nearest neighbors of x and SMOTE in the 
multi-classifi er fusion diagnosis system.

D. Classifi er fusion
Suppose the universal set Θ = {A1… Am} is a set 
of all propositions under consideration and its 
power set 2Θ is formed by all possible subset of  Θ, 
including the empty set ∅, a one-element subset 
{Ai} is called a singleton and a subset {Ak , Al} 
represents a proposition denoting the disjunction 
Ak ∪ Al (k, l ∈ {1, 2 … m}). DS theory assigns a 
numerical value to each subset of the power set 2Θ 
using mass function or basic probability assign-
ment m: 2Θ → [0, 1]. The mass function has the 
following properties:

 
m m A

A
( ) , ( )∅ = =

∈∑0 1
2Θ  

(14)

Subsets A ∈ 2Θ that satisfy the condition 
m(A) � 0 are called the focal elements of mass 
function m. Since a subset A is the disjunction of 
all its elements. If the proposition B ⊆ A is true, 
then the proposition A is also true. Hence, given a 
subset A, the belief bel (A) is defi ned as the sum 
of all the masses of its subsets:

 
bel A m B

B A
( ) ( )=

⊆∑  
(15)

The belief value bel(A) indicates the degree 
that evidence supports the proposition A. When 
two evidences exist, there will be two different 
mass functions m1 and m2. If these two evidences 
are independent of each other, then the two mass 
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functions can be combined into a new mass 
function m using Dempster’s rule21:

m A m m A

K
m A m A

m A m A

A A A

A

( ) ( ) ( )

( ) ( )

( ) ( )

= ⊕

=

=

∩ =∑
1 2

1 1 2 2

1 1 2 2

1
1 2

where
Κ

11 2∩ =∅∑ A

 
(16)

 
=1 − m A m A

A A 1 1 2 21 2
( ) ( )

∩ ≠ ∅∑
 

is a normalizing factor, which measures how much 
m1(A1) and m2 (A2) are in confl ict with each other. 
So K is also called the confl ict measure. If K = 0, 
the combination of m1 and m2 does not exist, it means 
m1 and m2 are totally contradictory. When more than 
two evidences exist, the mass function can be com-
bined by sequentially using the formula:

 m m m mk= ⊕ ⊕ ⊕1 2 �  (17)

Multiple classifi er fusion
For the prostate cancer stage prediction problem, 
there are two exhaustive and mutually exclusive 
propositions Ai. Proposition A1 denotes that input 
example x is negative, and proposition A2 denotes 
that input example x is positive. The power set 
2Θ = {Ø, {A1}, {A2}, {A1, A2}}. The key step in 
the DS fusion process is to assign a basic prob-
ability assignment (BPA) to each subset of 2Θ. 
After calibrating, if the outputs of each of the 
classifi ers as conditional probabilities p (Ai|x), let 
D k (x) = [dk,1(x), dk,2(x)] denote the output of clas-
sifi er ck, then dk,1(x) + dk,2(x) = 1; k = 1, 2. Given 
classifi er ck, assign the BPA values of subset {A1} 
and {A2} as:

 

m A d

m A d

k k

k k

( )

( )

,

,

1 1

2 2

=

=
 (18)

where mk(Ai) indicates the degree of belief 
that proposition Ai is true, provided by classifi er 
ck, k = 1, 2. Combining the evidence provided by 
the individual classifi ers, the belief value of each 
proposition is given as:

 bel A m Ai i( ) ( )=  (19)

where m is the combined mass function calculated 
by the sequential use equation (hello)

 

m m m m

m m m
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(20)

The fi nal decision is made according to the 
approach dealing with the imbalanced data. If 
re-sampling is used in the fused diagnosis system, 
the fi nal decision is made by assigning the label of 
the class with the largest belief value:

 

c x m m

bel A bel Am i i

( ) ; ,

( ) max ( )

= =

= =

1 2

1
2

 (21)

If the imbalance is dealt with by changing the 
decision threshold, the class of the example is 
determined by changing the threshold on belief 
value of the positive class:

 

c x bel A T

c x else

( ) , ( )
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= >
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0
1

 
(22)

where T is the threshold.

5. Results
Experiments were done to assess the performance of 
all of the feature extractor-sampling-classifi er pairs. 
The available data set was divided into two: one for 
building the models and the other to test the developed 
models. Appropriate ratio of the training and testing 
data sizes for SVM was identifi ed by running differ-
ent trials as shown in Figure 1. The best testing per-
formance was observed when 70% of the total 
samples were used for training. The dip in the perfor-
mance of the SVM beyond the training data size of 
70% can be attributed to overfi tting, when the trained 
model lost its ability to generalize, and was rather 
rigid to the training data. As the performance of the 
KNN depends on the number of neighbors considered 
in the output class allocation, the optimum number 
of neighbors was identifi ed by running trials with 
different sizes, and 5 was the most optimal. Although 
higher number of neighbors may seem to have the 
ability to generalize, it is the separability of the data 
according to assigned classes that has the highest 
infl uence on the appropriate number of neighbors.

The AUC curves were generated for all of the 
feature-sample-classifi er sets by altering the decision 
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Figure 2. KNN performance for different number of neighbors.
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Figure 3. ROC curves of SVM and Rough Set Features.
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Figure 4. ROC curves of KNN and Rough Set Features.

30 40 50 60 70 80 90
50

55

60

65

70

75

80

85

90

95

100
Optimum training data size

A
U

C
 (%

) 

Training data size (%)

Figure 1. SVM performance for different training data sizes.

threshold. When the outputs of the classifi ers for all 
combinations were transformed into conditional 
probabilities, altering the decision threshold simply 
meant altering the respective probability threshold. 
By varying the probability threshold, the testing 
examples are re-labeled, giving out a series of 
(FP, TP) pairs. Each pair of (FP, TP) is a point on the 
ROC curve. For individual classifi ers, ROC curves 
are created by changing the threshold on conditional 
probability p (c(x) = 1|x). ROC curve for the fused 
classifi er is created by changing the threshold on 
belief value of the positive class. The outputs of  SVM 
and KNN are then fused using DS fusion approach 
and ROC curves are plotted for the individual clas-
sifi ers (Figures 3–14). AUC of the generated plots 
were tabled per classifi er in Tables 3 and 4.

To show the effect of combining multiple sets 
of features and the effect of combining different 
types of sampling, DS fusion of the classifi er 
outputs was performed over various combinations 
of sampling and feature selection methods. The 
following notation was adopted to refer to the clas-
sifi ers developed in this study;

 Notation: ‘C’ – ‘F’ – ‘S’. 

where ‘C’ represents the type of classifi er used, i.e. 
{SVM, KNN}; ‘F’ represents the type of feature 
selection tool used, i.e. {R (rough sets), P (princi-
pal component analysis), G (genetic algorithm)} 
and ‘S’ represents the type of data sampling 
adopted, i.e. {U (under sampling), S (SMOTE), 
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Figure 5. ROC curves of SVM and PCA Features.
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Figure 6. ROC curves of KNN and PCA Features.

Figure 7. ROC curves of SVM and GA Features.

Figure 8. ROC curves of KNN and GA Features.

Figure 9. ROC curves of SVM and Under-sampling.
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Figure 10. ROC curves of SVM and SMOTE.
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Figure 13. ROC curves of KNN and SMOTE.
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Figure 14. ROC curves of KNN and combined sampling.

Table 3. AUC values with SVM for PCa.

Under Smote UnderSmote DS
RST 0.8409 0.7223 0.8326 0.8611
PCA 0.8075 0.7439 0.8334 0.8392
GA 0.7704 0.7425 0.7112 0.7597
DS 0.8313 0.7461 0.8420

Table 4. AUC values with KNN for PCa.

Under Smote UnderSmote DS
RST 0.7295 0.8088 0.7764 0.8065
PCA 0.6543 0.7450 0.7787 0.7891
GA 0.7383 0.7454 0.7560 0.7926
DS 0.7484 0.8001 0.7798
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Figure 11. ROC curves of SVM and combined sampling.
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Figure 12. ROC curves of KNN and Under-sampling.

US (under-sampling + SMOTE)}. Therefore 
SVM-P-S would imply the classifi er based on 
SVM trained over PCA features obtained from 
SMOTE sampled data.

It is evident in Table 3 that the SVM trained 
over RST based features had a superior perfor-
mance. Similarly, under-sampling combined with 
SMOTE trained SVM had the best performance 

among the types of sampling. DS fusion of 
SVM-R-[U, S, US] has 86.1% under favorable 
AUC. KNN performed poorly as a classifier over 
all sampling and features. Although much lower 
than average SVM, the combination of KNN-R-S 
has the highest favorable AUC at 80.9%, as illus-
trated in Table 4. In general, DS fusion improved 
the performance over any single model. We also 
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note that under sampling proved a more efficient 
method of re-sampling the data than generating 
synthetic samples. As it has been observed pre-
viously,18 generating synthetic samples can 
cause the decision boundary to spread, resulting 
in a poor performance. Despite the fact that 
fewer samples make parameter estimation dif-
ficult in SVM and neural networks, under sam-
pling of the data should be preferred, since 
performance degradation is higher when using 
synthetic sampling than using SVM trained over 
smaller data sets.

B. Comparison between different 
methods
Methodology proposed in this study relies on the 
use of GA to identify the most optimal set of 
classifi ers for fusion, where fi tness is defi ned as 
the overall fused performance. A total of 18 models 
(9 each for SVM and KNN with variations in the 
sampling method and features) were developed, 
and GA was used to choose the best set of fusion 

classifi ers. Once an x set of classifi ers for best 
fused performance were identifi ed, the AUC (of 
ROC for changing thresholds) was determined for 
the test samples alone. The results for the overall 
performance from all model combinations 
obtained by fusing 2, 3, 4 and 5 models are shown 
in Table 5 (A) with the highest classification 
accuracy at 90.1% and a respective ROC AUC of 
0.8640. Clearly, the number of fused models does 
not have a considerable impact on the perfor-
mance, which is the reason why the trials were 
stopped after the fusion of  5 models. A combination 
of the outputs of 4 models has the best overall 
performance on the testing data. In this study, 
under sampling was observed to be the most 
effi cient for data sampling. KNN (with average 
performance for all models much lower than 
SVM) seems to have contributed equally in the 
best overall performance. As observed from 
Tables 3 and 4, overall effi ciency of rough sets 
based features was highest of all subsets. Rough 
sets based discretized features increase the dis-
tance between different output classes, and thus 

Table 5. Performance of GA optimized fusion for PCa.

2-models 3-models 4-models 5-models
Models SVM-R-U SVM-R-U SVM-R-U SVM-R-U

SVM-R-US SVM-P-US SVM-P-U KNN-R-S
SVM-R-US KNN-R-S SVM-P-US

KNN-G-U SVM-R-US
KNN-G-U

AUC 0.8617 0.8626 0.8640 0.8631
Accuracy 89.4% 89.7% 90.1% 89.8%

A. Comparison between different model combinations.

Proposed C4.5 ANN DS (C4.5 + ANN)
AUC 0.8640 0.8049 0.8359 0.8580

Accuracy 90.1% 83.0% 86.0% 88.5%

Table 6.  AUC values with SVM for SimPCa.

Under Smote UnderSmote DS
RST 0.8376 0.7340 0.8312 0.8535
PCA 0.8076 0.7195 0.8304 0.8310
GA 0.7763 0.7707 0.7738 0.7790
DS 0.8403 0.7716 0.8336

Table 7. AUC values with KNN for SimPCa.

Under Smote UnderSmote DS
RST 0.7290 0.8166 0.7705 0.8166
PCA 0.7130 0.7576 0.7701 0.7710
GA 0.8334 0.7358 0.7660 0.8346
DS 0.8360 0.8202 0.7740
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tend to impact the overall classifi cation performance 
in a favorable manner.

In order to contrast the performance of the 
proposed method with existing techniques, a C4.5 
decision tree and a two-layer neural network have 
been additionally developed using the same data. 
C4.5, similar to the likes of expert systems and 
nomograms, is a simple and transparent technique 
which can also be regarded as means of knowledge 
representation. ANN, similar to the likes of SVM 
and nonlinear regression, on the other hand is a 
complex nonlinear model. These two models have 
been chosen to represent the majority of present 
day classifi ers. As can be observed from Table 5 
(B), the proposed method fairs very well compared 
to the two other. Moreover, the performance of a 
2-model combination (AUC: 0.8617, Accuracy: 
89.4%) is better than that of the DS (C4.5 + ANN) 
method (AUC: 0.8580, Accuracy: 88.5%).

6. Validation with Other Datasets
A number of such techniques have been reported 
in the literature and these techniques perform very 
well for individual datasets that the techniques have 
been built for. Data used in the previous section is 
a large, unbiased and consecutive patient cohort 
originating from one institution. Therefore it should 
be comparable to other current patient data obtained 

from patients who undergo prostatectomy in the 
larger North American centers. Although currently 
we have no access to data sets from different hos-
pitals, we present the results of applying the pro-
posed method to three different cancer datasets to 
testify that the proposed method is generic in appli-
cability and that it outperforms other existing 
techniques, Firstly, we considered a simulated 
prostate cancer (SimPCa) dataset. 1000 patient 
records were synthetically generated using a com-
bination of the under-sampling and SMOTE meth-
ods. It was ensured that the overall statistics of the 
data remained consistent with the dataset reported 
in Table 1. In order to facilitate comparison, the 
same classifi ers, feature extractors and sampling 
techniques were adopted. ROC curves were gener-
ated and the respective AUC given in Tables 6–8. 
The performance of the classifi er is very similar to 
the results in Section 5. SVM trained over RST 
identifi ed features had the best performance and 
KNN remained a weak classifi er for this dataset. 
Consistent with the other results, GA optimization 
identifi es the same four model fusion.

The other two datasets considered for this pur-
pose have been adopted from the University of 
California-Irvine data repository. Using the two 
public datasets we demonstrate that the proposed 
method compares favorably to the existing 
techniques. The Wisconsin Breast Cancer (BCa) 

Table 8. Performance of GA optimized fusion for SimPCa.

2-models 3-models 4-models 5-models
Models SVM-R-U SVM-R-U SVM-R-U SVM-R-U

SVM-R-US SVM-P-US SVM-P-U KNN-R-S
SVM-R-US KNN-R-S SVM-P-US

KNN-G-U SVM-R-US
KNN-G-U

AUC 0.8596 0.8620 0.8632 0.8610
Accuracy 88.8% 89.4% 89.8% 89.3%

Table 9.  AUC values with SVM as the classifi er for BCa.

Under Smote UnderSmote DS
RST 0.8917 0.9301 0.9680 0.9691
PCA 0.9342 0.9385 0.9360 0.9429
GA 0.9965 0.9737 0.9920 0.9965
DS 0.9965 0.9753 0.9921

Table 10.  AUC values with KNN as the classifi er for BCa.

Under Smote UnderSmote DS
RST 0.9202 0.9243 0.9236 0.9270
PCA 0.9233 0.9230 0.9240 0.9240
GA 0.9289 0.9276 0.9318 0.9333
DS 0.9296 0.9290 0.9330
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data22 consists of 683 patient records, each described 
using a set of 9 features. The objective was to accu-
rately distinguish patients suffering from benign 
and malignant breast cancer. The Hong-Yang Lung 
Cancer (LCa) data23 consists of 32 patient records, 
each described with a set of 56 features. The objec-
tive was to classify the patients into groups of three 
types of lung cancer. Tables 9–10 present the per-
formance of SVM and KNN as classifi ers over all 
sampling and feature extraction combinations for 
the breast cancer data and Tables 13–14 for the lung 
cancer data. Tables 11 and 15 depict the perfor-
mance of the GA optimized classifi er fusion.

It can be observed from the above Table 9 that 
SVM outruns KNN as a classifi er and the best 
SVM classifi er was built using GA for feature 
extraction and under-sampling as a remedy for 
data imbalance. Unlike in the prostate cancer data, 
GA optimization identifi ed a three model fusion 
with the same AUC as for higher combinations. 

The best overall classification accuracy was 
99.4%. Table 12 summarizes the performance 
of  different methods in the literature for the same 
data. Not all the works listed in Table 12 use ROC 
as a metric; therefore classifi cation accuracy has 
been used to draw a comparison between all of 
them. Quinlan24 and Pena-Reyes and Sipper25 
applied C4.5 decision tree and fuzzy-GA methods. 
Although these methods are relatively simpler and 
yield a transparent and user-friendly model, the 
overall accuracy of the methods is compromised. 
On the other hand, Goodman et al.26 Ubeyli,27 
Polat and Gunes28 and Akay29 applied thoroughly 
non-linear techniques. But it is evident that the 
proposed method, although marginal compared to 
Akay,29 has a superior performance than the other 
techniques.

For the lung cancer data, KNN and SVM have 
a similar performance. The combination of 
under-sampling and SMOTE with PCA feature 

Table 11. Performance of the GA optimized fusion for BCa.

2-models 3-models 4-models 5-models
Models SVM-G-U SVM-G-U SVM-G-U SVM-G-U

SVM-G-US SVM-G-US SVM-G-US SVM-G-US
KNN-G-US KNN-R-US KNN-R-US

KNN-G-US KNN-G-US
SVM-G-S

AUC 0.9965 0.9994 0.9998 0.9998
Accuracy 99.1% 99.4% 99.4% 99.4%

Table 12. Classifi cation accuracy for BCa.

Work (Year) Method Classifi cation 
accuracy %

Quinlan24 C4.5 94.74
Pena-Reyes and
Sipper25

Fuzzy-GA 97.36

Goodman et al.26 LVQ 96.80
Ubeyli27 EM-NN 98.85
Polat and
Gunes28

LS-SVM 98.53

Akay29 SVM 99.02
Proposed
method

GA-Fusion 99.40

Abbreviations: LVQ, linear vector quantization; EM, expectation 
maximization, LS, least squares.

Table 13.  AUC values with SVM as the classifi er for LCa.

Under Smote UnderSmote DS
RST 0.9265 0.9310 0.9305 0.9356
PCA 0.9000 0.9184 0.9376 0.9380
GA 0.9366 0.9298 0.9275 0.9349
DS 0.9366 0.9327 0.9401

Table 14.  AUC values with KNN as the classifi er for LCa.

Under Smote UnderSmote DS
RST 0.9297 0.9140 0.9139 0.9321
PCA 0.9308 0.9384 0.9381 0.9396
GA 0.9350 0.9367 0.9330 0.9371
DS 0.9385 0.9390 0.9387
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extraction had the best performance for SVM as 
a standalone classifi er, whereas the combination 
of SMOTE and PCA feature extraction had the 
best performance for a single KNN based classi-
fi er. GA optimization yielded a four model fusion 
as shown in Table 15 with an overall classifi cation 
accuracy of 97.5%. Table 16 compares the per-
formance of the proposed method to two other 
methods from the existing literature. The proposed 
method has a much better performance when 
compared to that of Aeberhard’s30 RDA model 
and the neuro-fuzzy model adaptation used by 
Luukka.31 Although Luukka31 reports a 99.99% 
accuracy for a larger training-testing ratio, a per-
formance of 65.48% is given for a 70:30 ratio, 
which is the same as used for this work. Therefore, 
it is concluded that the proposed GA based opti-
mization of multiple model fusion is generically 
applicable across a wide range of data and in 
addition ensures better performance than most 
existing techniques.

7. Conclusions
A number of classifi er models based on KNN and 
SVM have been developed to test the automatic 
prediction of cancer stage using different features 
and data samples. We propose a novel approach of 

using a GA to select the best models and to combine 
their outputs using the DS theory. Owing to DS 
fusion and GA optimization, the overall performance 
improved in all tested models. In particular, three 
sampling and three feature selection methods have 
been employed in this study. Under-sampling and 
rough sets based features were identifi ed to be most 
useful in improving overall performance of the 
system.
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