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Abstract: The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is 
argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system 
described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh-
Hurwitz, Lyapunov criteria, Feinberg’s Defi ciency Zero theorem) would impose the limitations of very high algebraic order 
on the kinetic rates and stoichiometric coeffi cients, and there are no natural laws that would guarantee their unconditional 
validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple 
Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fl uctuations 
quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equa-
tions. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto 
Distribution with temporal sequence of pulses forming the set of constituent-specifi c Poisson processes. Being applied to 
intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the 
biology of gene expression.
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Introduction
“Will a large complex system be stable?” This question posed by R. May in his seminal paper1 in 1972 
has reverberated in many hundreds of papers since then. In qualitative terms, the question may be 
reformulated as follows: Is that possible that a large collection of units interacting at random would 
create a stable system? We write this paper with intracellular biochemical networks in mind, such as 
those involved in gene expression (see2 for a more detailed discussion). It is obvious, however, that the 
same question is equally applicable to many other types of systems, such as predator-prey food chains, 
socio-economic structures, language, termite colonies, internet, energy and traffi c infrastructures, to 
name just a few.

The properties of being large and being complex require some deliberation. Obviously, a system 
may be called large if it consists of a large number of individual elements. An ideal gas in a vessel of 
a macroscopic size is a large system because it contains 6 1023⋅  molecules per mole. This system, how-
ever, cannot be regarded as complex since all the elements interact by simple laws of classical or quan-
tum mechanics that are uniformly applicable to all the events of interaction. One may call a system 
complex either if there is a wide variety of interactions between the system’s components, or if the 
system consists of a large number of distinctly different subsystems interacting with each other, or both. 
Thus, one may call transportation infrastructure in a big city to be a large, but not complex, system, 
whereas the city itself is a large and complex system. It is typical for such systems that the disturbances 
that occur in one layer of the system easily penetrate to other layers threatening its entire collapse if 
not taken care of. Due to numerous connotations which the term complex may have in various contexts, 
in this paper we will refer to a complex system as diverse.

There are four major mechanisms of maintaining stability in large diverse systems. First, the system 
may be controlled by some overlaying structure which is different from the system-to-be-controlled and 
largely independent on it. Continuing the analogy with a transportation infrastructure, a minor car acci-
dent causing a traffi c jam in a city can lead to a large-scale citywide disaster due to the domino effect 
propagating to all the levels of the system. In reality, however, such unfortunate developments are rare 
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events despite numerous daily car accidents, and 
a natural question to ponder about is why it is so? 
The reason is that the transportation system per se 
is externally supervised. That is, there are other 
overlaying systems that have information-gathering 
capabilities, energy resources and independent 
transportation tools (e.g. police, helicopters, traffi c 
cams, etc.) always ready to intervene into any 
unwanted event to prevent irreversible conse-
quences. It is also important to realize that any such 
supervision always involves a “mind” of some sort, 
either genuinely human or the one mediated 
through large-scale computerized systems. There-
fore, in a very general sense, an actual stabilizing 
force of supervision is in understanding the pro-
cesses in the system-under-control and awareness 
regarding the ways of suppressing instabilities 
which may occur naturally and spontaneously.

Another scenario of stability in a large and 
diverse system is the case where a system is stable-
by-design. To avoid misconception, we need to 
note that the word design is taken here in its literal 
meaning, which is, according to the Cambridge 
Dictionary of American English, “an outline, 
sketch, or plan, as of the form and structure of a 
work of art, an edifi ce, or a machine to be executed 
or constructed”. A similar defi nition is given in the 
Encyclopaedia Britannica. The concept of stability-
by-design means that there exists a designer who 
intentionally provides a system with a set of hard-
wired feedback loops for suppressing instabilities 
should they occur. Design and building of such a 
system is usually a cumbersome technical task 
involving sophisticated mathematical modeling, 
extensive testing, large-scale optimization and 
multifunctional decision making. Knowledge of 
laws governing the system is again a key element 
in creating a system stable-by-design. In evolution-
ary terms, only the fi ttest system has a chance to 
survive, but it is important that the selection in such 
a process should be regarded as unnatural. This 
means that it occurs not due to some kind of natural 
competition between the systems, but rather, it is 
the designer’s mind that decides which device is 
the fi ttest. In qualitative terms, the result by R. May 
cited above basically states that if we provide all 
the necessary components and allow them to inter-
act randomly, i.e. to be driven only by blind forces 
without a designer, then the probability that sooner 
or later a stable configuration will be self-
assembled is infi nitesimally small in a large diverse 
system. Notably, examples in1 are taken from the 

predator-prey population dynamics and assume 
that the system may be regarded as large when the 
number of subunits is in dozens. It is a far cry from 
the genetic regulatory systems in which dimension 
may easily surpass thousands.

Due to the vast complexity of  biological systems, 
and due to the unavoidable limitations of common 
language in characterizing their numerous proper-
ties and behaviors, it often happens that the termi-
nology developed in a certain domain of human 
experience percolates into biology bearing only 
superfi cial similarity. In this context, it is some-
times speculated that in biology the role of designer 
may be ascribed to evolution; to a certain extent 
this may create no confl icts in understanding. 
However, in the context of this paper, we insist that 
the notion of stability-by-design should be strictly 
segregated from the notion of stability-by-evolution. 
This is because evolution, in the Darwinian sense, 
is thought to be a blind process of trial and error; 
it unfolds without the participation of a supervising 
mind which could be attributed to a designer. 
Although the term design principles is often 
applied to naturally occurring biological phenom-
ena, strictly speaking, it is a misnomer; a design 
principle in a biological contexts refl ects a natural 
order of things rather than a plot envisioned and 
implemented by an intelligent designer. It is espe-
cially important for a natural scientist to keep this 
terminology unambiguous and avoid verbal simi-
larities with the theories of intelligent design. At 
last, the concept of dynamical stability should be 
strictly distinguished from the concept of biological 
robustness. Dynamical stability, as we are discuss-
ing it in this paper, is thought of as a property of 
the dynamical systems in their narrow mathemati-
cal sense, that is, systems that can be described by 
deterministic time-dependent differential and/or 
difference equations. Below, in the Discussion 
section, we offer some further refl ections on these 
important topics.

Both of the above scenarios of stability, i.e. 
stability under supervision and stability-by-design, 
involve external control by some kind of intelligent 
being who uses its/his/her understanding of the 
laws governing the system for designing it to be 
stable or/and for suppressing spontaneous insta-
bilities. The third possibility for the system to be 
stable involves the concepts of dynamical equilib-
rium and asymptotic stability. A fundamental dif-
ference with the fi rst two possibilities is that, 
generally speaking, a dynamical equilibrium may 
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occur by itself as a natural consequence of the laws 
governing the system. This scenario of stability is 
a central topic of this paper and will be addressed 
in more detail in the next section. Here we only 
mention that the conditions of equilibrium and 
asymptotic stability are tremendously complex in 
multidimensional systems of any nature, including 
high-dimensional biochemical networks. It is 
therefore important to understand what are the 
natural laws that guarantee validity of such com-
plex rules of interaction in very large and diverse 
systems. Stated differently, since this kind of sys-
tem is imbedded in any living cell, it is of great 
importance to understand what are the governing 
principles that bring such complex systems to 
stability and maintain this stability through gen-
erations of the cell. It is commonplace in biology 
to simply declare that such complex systems are 
the results of slow development under the so-called 
evolutionary pressure, which is a metaphor for the 
Darwinian principle of natural selection. By logi-
cal meaning, the notion of evolutionary pressure 
is nothing more than a post hoc justifi cation of the 
existence of stable systems by the assumption that 
throughout the previous developmental history 
there was some natural purpose for that. Although 
it is not the author’s intention to dismiss the exis-
tence of the evolutionary pressure in principle, it 
should be nevertheless unambiguously stated that 
the mechanism of how this pressure actually works 
on molecular level is a wide open question still 
waiting to be resolved.3,4

The fourth guiding principle frequently invoked 
to explain stability of large systems is the principle 
of self-organization. The idea of self-organization 
stems from some fundamental facts established 
in theoretical physics. It has been shown in non-
equilibrium thermodynamics that a system may be 
dynamically stable even far from thermodynamic 
equilibrium. In this case, a system may assume the 
form of the so-called dissipative structure in which 
dynamical stability is maintained at the expense of 
constant fl ow of energy through the system.5 There 
are a large number of experimentally observed 
phenomena—with Belousov-Zhabotinski auto-
catalitic oscillations and Reileigh-Benard cellular 
convection being the celebrated examples—which 
are in agreement with this guiding principle.6 
However, it is important to keep in mind that 
theoretical results, as well as experimental observa-
tions, available in the literature so far have never 
dealt with massively large and diverse systems. 

Quite the contrary, general theory usually encounters 
insurmountable mathematical diffi culties in deal-
ing with even low-dimensional systems. So far, 
the theory is able to elucidate self-organization 
(“pattern formation” is a more modern and, notably, 
more down-to-earth term7) only within extremely 
simple, largely abstract toy models. In experiments, 
even very simple systems in a stringently controlled 
environment still require careful handling and 
adjustments to be actually driven into a self-
organized mode. Therefore, it is yet to be demon-
strated that such small-scale manifestations of 
self-organization are indeed capable of serving as 
building blocks for large diverse stable systems.

The goal of this paper is to demonstrate that 
extremely stringent conditions of dynamical 
stability have very little chance to materialize in 
the realm of large biochemical networks. We claim 
that any large biochemical network almost for sure 
is dynamically unstable. It does not mean, however, 
that such a system is doomed to collapse due to 
implosion or explosion, as a simple linear analysis 
would suggest. It is possible that the system main-
tains a mode of existence in which the events of 
instability occur in a more or less random order, 
but generally, over a period of time, compensate 
each other.

The question of stability is of primary impor-
tance in studying genetic regulatory networks 
(GRN). The analogy with traffi c in a big city dis-
cussed above is fully relevant to GRN. Dense 
interconnectedness of GRN is the reason why 
smooth behavior of GRN as a whole may be 
strongly dependent on seamless functioning of 
each gene. Proteins translated from mRNAs of 
some genes serve as transcription factors for many 
other genes; therefore, large sections of gene 
expression machinery may be halted by mere short-
age, even temporary, of a few proteins that resulted 
from the transcription of other genes. Since the 
processes of protein production and delivery to 
appropriate regulatory sites are essentially random 
and involve many fl uctuations and uncertainties,8 
the traffi c jams in such a system are rather mundane 
events. Since we assume (at least in the mainstream 
science, see9) that there is no supervisory intelli-
gent system in the cell which knows where the 
bottleneck has occurred and which has independent 
resources to eliminate it, each such event may 
cause development of an avalanche of secondary 
events threatening to bring the entire system to 
collapse. This unavoidable sporadicity in GRN 
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functioning has strong implications for gene 
expression profi ling using modern high-throughput 
technologies.10 For instance, in microarray exper-
iments, due to sporadic fl uctuations of mRNA 
levels known as burstiness,11,12 the results of their 
measurements may be strongly dependent on the 
relation between duration of the mRNA harvesting 
and characteristic times between mRNA pulses. 
Therefore, a simplistic vision of mRNA profi le as 
a more or less invariable attribute of the cell may 
lead to misinterpretations and errors. Poor repro-
ducibility is an inevitable consequence of such an 
internal sporadicity and is a major obstacle for 
applications of microarrays in clinical practice.13

Stability of Large Biochemical 
Networks: Defi ciency Zero Theorem
Biochemical networks may be seen as a special 
case of nonlinear dynamical systems. As such, their 
stability may be studied by general principles of 
nonlinear dynamics. As discussed in,2,14 the Routh-
Hurwitz and Lyapunov criteria of stability would 
impose a set of highly stringent constraints of high 
algebraic order on kinetic rates and stoichiometric 
coeffi cients. There are no known fi rst principles or 
fundamental laws in statistical mechanics, thermo-
dynamics and nonlinear dynamics that would draw 
a large diverse biochemical system into the state 
in which these constraints would emerge naturally, 
unless the system is externally controlled or/and 
is stable-by-design.

The Defi ciency Zero Theorem (DZT) in weakly 
reversible chemical networks15,16 provides an addi-
tional avenue for studying stability, the one that 
does not have an analogue in the nonlinear dynam-
ics in general. This theorem, a cornerstone of the 
Chemical Reaction Network Theory,15 is a far 
reaching generalization of the principle of detailed 
balance (PDB) known in classical chemical kinet-
ics. In somewhat loose terms, the DZT states that 
weakly reversible chemical networks, i.e. the ones 
in which each direct chemical reaction is balanced 
by the chain of inverse reactions, are globally 
asymptotically stable, provided that the network 
has the defi ciency zero. The defi ciency of a network 
is an integer quantity, Δ = m l s− − ,  where m is 
the number of complexes, l is the number of link-
age classes, and s is the rank of stoichiometric space 
(see16 for further defi nitions, details and extensive 
bibliography). It is also known that if a network is 
not weakly reversible, and/or if its defi ciency is not 

exactly zero, then such a network is unstable. The 
DZT is a powerful statement which may serve as 
a solid heuristic principle in designing the stable 
reactors in chemical engineering. It is hard to 
escape a temptation to declare the DZT to be a 
design principle of nature itself and to hypothesize 
that the evolutionary pressure takes care about 
survival of only the systems which satisfy the DZT. 
Such a hypothesis, although highly attractive, 
would be a far reaching extrapolation of the facts 
at hand to completely unknown territories. It would 
also task the theory with a new fundamental prob-
lem of fi nding a natural (i.e. unsupervised) mecha-
nism that draws a system into the state in which 
DZT is valid. We prefer to be cautious and side 
with J. Gunawardena17 saying that “It is still unclear 
to what extent the Chemical Reaction Network 
Theory is directly applicable to biological settings. 
Even if it is not, by understanding its mathematical 
basis we might hope to derive other results that are 
more appropriate to biology.”

In this work, we intend to go beyond a mere 
expression of doubt and to conjecture that in the 
vast majority of intracellular biochemical net-
works, the DZT cannot be valid. There are at least 
two reasons for such a conjecture. First, in a system 
where the number of chemical species is in hun-
dreds of thousands and the number of chemical 
reactions between them perhaps in millions, it is 
diffi cult to envision how the defi ciency zero can 
be maintained. Even if such a precise balance does 
exist at a certain stage of the lifecycle of a cell, 
random partitioning during mitosis would imme-
diately destroy it.18 Numerous processes of intrin-
sic stochasticity in gene expression (often 
disrespectfully called simply noise!19) make it 
impossible to even characterize the system in terms 
of ordinary differential equations, as required by 
DZT; stochastic differential equations are widely 
viewed to be a more appropriate analytical tool.

Second, in biochemical networks even the very 
notion of a system is largely uncertain and admits 
wide latitude in selection of compartmentalization, 
descriptors and quantitative characterizations. For 
example, on a certain level of abstraction, the pro-
cess of transcription may be seen as an individual 
biochemical reaction between RNA polymerase 
and DNA molecule, whereas a more detailed view 
reveals a complex sequence of rearrangements 
involving hundreds of molecules and thousands of 
elemental steps, each representing a separate 
chemical reaction.20 Obviously, the fact of presence 



5

Patterns of stochastic behavior in dynamically unstable high-dimensional biochemical networks

Gene Regulation and Systems Biology 2009:3

or absence of global stability cannot depend on the 
granularity of details a researcher selects for mod-
eling the system. Therefore, in order for the system 
to be stable, the defi ciency zero requirement has 
to be, so to speak, structure-invariant. This is a 
draconian requirement! It is hard to believe that 
real-life systems indeed have natural mechanisms 
to maintain such a structure-invariant defi ciency 
zero. The global structure-invariant stability is only 
possible in the state of full thermodynamic equi-
librium, and the PDB is a precise expression for 
that. The PDB, however, is not applicable to the 
weakly reversible chemical networks, the ones for 
which the DZT has been established.

Qualitative Behavior of Large, 
Diverse, Inherently Unstable 
Biochemical Networks
Based on the analysis in the previous section, we 
come to the conclusion that in large diverse bio-
chemical networks, the conditions of asymptotic 
stability are so stringent that they have very little 
chance to materialize, unless they are controlled 
externally or designed artifi cially. Hence, a natural 
question arises how do such unstable systems 
behave? This topic has been discussed in detail in 
the works2,14 by the author. In this paper we provide 
a brief summary.

A natural basis for the description of chemical 
kinetics in a multidimensional network is the 
power-law formalism, also known as S-systems. 
Being algebraically similar to the Law of Mass 
Action (LMA), S-systems proved to be a useful 
tool in the analysis of complex biochemical sys-
tems and metabolic pathways. Importantly, in the 
vicinity of equilibrium any nonlinear dynamical 
system may be represented as an S-system.21 
Unlike mere linearization which replaces a non-
linear system by the topologically isomorphic 
linear one, the S-approximation still retains essen-
tial traits of nonlinearity but often is much easier 
to analyze.

Let F(x) and G(x) be the vector-functions, 
R RN N

+ +→ . We consider an autonomous dynamical 
system

 dx dt F Px G Qx= −( ) ( ),  (1)

where P & Q are matrices of all positive ele-
ments such that P−Q is invertible. As shown in,19 

dynamical system (1) always has at least one fi xed 
point, x0, and in its vicinity the system is represent-
able as
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Formally, system (2) is equivalent to an S-System22,23 
describing the biochemical reactions with “con-
centrations”, exp(xk ). In the vicinity of the fi xed 
point, x0,  the Jacobian matrix of (2) is neither 
symmetric nor anti-symmetric; hence, generally, 
its eigenvalues are complex numbers with both 
negative and positive real parts. The latter 
means that such systems are dynamically unsta-
ble. This conclusion is in line with the analysis 
by R. May.1

A conceivable scenario of behavior of such sys-
tems has been proposed by this author in2 and termed 
the Stochastic Cooperativity Paradigm (SCP). In 
the SCP we take into consideration the fact that in 
a system of an asymptotically large dimension, the 
vectors Px Qx&  fl uctuate around zero most of the 
time except the comparatively rare events of 
stochastic cooperativity when majority of the x tk ( ) 
simultaneously reach their respective maxima thus 
producing large sporadic excursions. These excur-
sions are grossly amplifi ed by exponentiation and 
result in a signal quite similar to the shot noise, thus 
giving rise to the Langevin-type equations

 dx

dt
t ti

i
ik ik

k

Li

= −
=

∑1

1τ
μ δ ( )  (3)

where tik are the moment of excursions (burstings) 
and μik are random amplitudes. Qualitatively, the 
SCP signifi es transition from the purely determin-
istic description containing in (1) to the stochastic 
description in terms of random walks and Fokker-
Plank equations.

In,14 we have provided a more rigorous quanti-
tative approach supporting these heuristic 
considerations of SCP. In the very core, the prob-
lem may be reduced, after a series of algebraic 
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transformations, to studying the set of stochastic 
processes, z,

 dz dt h t x t y t= = −σ σ σ( ) [ ( )] [ ( )],exp exp  (4)

where x t y t( ) & ( )   are the (approximately) Gauss-
ian processes and σ is the parameter controlling 
complexity of the network. Exact analytical form of 
the distribution of  h tσ ( ) is unknown. We have shown 
by simulation that this process may be accurately 
represented through the Generalized Pareto Distri-
bution (GPD)

 
G x x

G x x

ξ β
ξ

ξ β

ξ β ξ

β ξ
,

,

( ) ( ) , 0;

( ) ),

= − + ≠

= − =

−1 1

0

1

exp(  (5)

with the parameters, ξ  and β , depending on σ. 
These dependencies are found to be

ξ σ σ σ
β σ σ

( ) . . . ;

( ) . [

= − + −
= − −

0 376 0 745 0 088

0 392

2

exp(1.162 ) exp( 2.7553 )].σ
 
(6)

The fact that the process h tσ ( ) can be repre-
sented by a heavy-tailed GPD means that a sub-
stantial amount of its spectral energy is contained 
in the exceedances, that is, in short sporadic pulses 
beyond certain predefi ned bounds. If, for example, 
σ =1 5. , then the process h tσ ( )  spends about 95% 
of time between the 2.5% and 97.5% quantiles. 
Nevertheless, the variance of the exceedances 
beyond this interval is overwhelmingly greater than 
that within (7698 and 183, respectively). On this 
basis, one may regard h tσ ( )  as a pulse process 
slightly distorted by a small background noise. If 
we ignore the noise, then equation (4) is reduced 
to the Langevin form (3), where tik is the set of 
(constituent-specific) random point processes 
coinciding with the events of bursting. Theory of 
level-crossings predicts that these processes are 
asymptotically, a σ → ∞ , equivalent to the Poisson 
processes with the parameter, ζ ,

 ζ π τ σ= − [ ]{ }( / ) ( / ) ,1 2 1 0
2exp 2 2a  (7)

where a is the threshold of excursions, and τ 0 
and σ 2 are the correlation radius and variance of 
the generating Gaussian process, respectively. 

We have shown by simulation that (7) is valid for 
the sequences, tik , in (3) even when a σ  is not so 
big, say, a =1 35. .σ  It is also worth mentioning that 
the density of peaks per unit of time generated by 
the process (4) is close to that predicted from the 
asymptotic theory (e.g. 696 and 703, respectively, 
within the interval of length 10000. These exam-
ples indicate that equation (7) is applicable under 
much milder conditions than a σ → ∞ . We may 
reach, therefore, an overall conclusion that the 
stochastic phenomenon of burstiness is implicitly 
contained in the purely deterministic dynamical 
description (1).

The fact that in a system of asymptotically large 
dimension, deterministic dynamics may be reduced 
to the Langevin equation describing a pseudo-
random walk is signifi cant. In classical statistical 
physics, such a derivation is only possible if the 
system is stable, and there is a trivial reason for 
that: random excitation should be balanced by 
deterministic damping. This is the essence of the 
fundamental Fluctuation-Dissipation theorem stem-
ming from the seminal works by Einstein, Langevin 
and Smolukhovski.24 The approach offered here 
illustrates that even in an inherently unstable sys-
tem, such as a biochemical network of very high 
dimension with non-zero defi ciency, some kind of 
equilibrium is still possible since the sporadic 
excursions impact both production and degradation, 
and in the long run may balance each other.

Burstiness in Genetic Regulation
As mentioned above, burstiness is a well documented 
phenomenon in gene expression. This phenome-
non is given considerable attention in the litera-
ture.25 Usually, burstiness is associated with some 
special circumstances surrounding gene expres-
sion, for instance, with very low concentration of 
macromolecules of a certain type leading to essen-
tial discreteness of the process and large relative 
fl uctuations. What is apparently overlooked in 
existing theories is that in the systems of such 
tremendous complexity, it is simply impossible 
that every transcription factor would be delivered 
in a timely, “assembly-line” manner to any regu-
latory site of any of 25,000 genes. Since the pro-
teins transcribed from some genes serve as 
regulatory factors in numerous others, even a 
minor and temporary delay in supply immediately 
suspends the next set of transcription events 
downstream on the metabolic pathway, thus 



7

Patterns of stochastic behavior in dynamically unstable high-dimensional biochemical networks

Gene Regulation and Systems Biology 2009:3

threatening to halt big interdependent sections of 
the system. The situation is quite similar to a traffi c 
jam in a city. The difference, however, is that there 
is no supervisory intelligent being in the cell which 
is permanently on the alert for correcting the 
unwanted situations; therefore, returning back to 
normal should somehow happen by itself. The 
concept of stochastic cooperativity helps to envi-
sion a possible scenario of such self-correcting. If 
some group of genes temporarily stops functioning, 
then a number of the proteins transcribed from 
other genes remain unclaimed and begin to accu-
mulate in excessive quantities, thus engaging 
alternative pathways for circumventing the stum-
bling blocks. After all the transcription factors fi nd 
their alternative ways to the corresponding regula-
tory sites, the RNA polymerase begins to move 
and synthesize the mRNA. Figuratively speaking, 
all the transcription factors should fi rst come to 
cooperation through assembling the team support-
ing RNA polymerase functioning. The entire 
regulatory process, therefore, is a sequence of 
sporadic events analogous to the above described 
events of stochastic cooperativity. Exact order of 
these events, i.e. trajectories in the phase space, 
may vary from time to time and from cell to cell. 
As experimentally observed in,12 even in two 
daughter cells after mitosis the exact sequences of 
turning the genes on and off may be quite different. 
Nevertheless, the entire ensemble of the trajectories 
may be described in probabilistic terms using the 
FPE refl ecting the deterministic evolution of the 
probability. Smooth evolution of this probability 
is what in biology is conceptualized as stability.

Discussion
In physics, formalized theoretical models of com-
plex physical phenomena are often called toy 
models. This terminology explicitly highlights that 
fact the model is not intended to be a comprehen-
sive theory behind a phenomenon; rather, it 
attempts to provide a reasonably realistic descrip-
tion of certain core elements of this phenomenon. 
Obviously, it would be a fallacy to attack a toy 
model on the basis that it is unable to provide a 
realistic description of the phenomenon in its 
entirety, however complex it is. In biology, this 
contrast between the theoretical toy models and 
the structure of complex biological entities is even 
more drastic than in physics. The theoretical con-
siderations offered in this paper do not intend to 

provide a comprehensive framework for description 
of cellular dynamics in its entirety. It only focuses 
on one fundamental property of biochemical 
networks, that is, on their unavoidable dynamical 
instability. In qualitative terms, asymptotic dynam-
ical stability is the property of dynamical systems 
of having trajectories that with time approach a 
certain bounded domain in the system’s phase 
space and stay within that domain forever.26 This 
defi nition covers both stable fi xed points and stable 
periodic orbits (i.e. limit cycles). It is useful to keep 
in mind that asymptotic dynamical stability is a 
fairly rare occurrence in the world of multidimen-
sional nonlinear systems. Therefore, it should not 
be regarded as a big surprise that a multidimen-
sional system of intracellular biochemical reactions 
is dynamically unstable unless a set of extremely 
complex conditions for its stability are satisfi ed.

Observed biological robustness of living organ-
isms and their resilience in the face of external 
perturbations is not a counterargument to dynam-
ical biochemical instability. Robustness differs 
from stability in that it deals with maintaining the 
system’s functions as opposed to the system’s 
states.27 Generally, biological robustness does not 
assume structural invariance of the system: the 
fail-safe mechanisms for maintaining homeostatic 
equilibrium may turn on and off as required by 
different circumstances.28 A tremendous asset in 
the struggle for functional stability is the modular 
structure of large biological systems;29 it prevents 
the system from global failure should such a failure 
occurs in an individual module. The question to be 
resolved by science is how functional robustness 
can originate from the elements that are inherently 
dynamically unstable. The seeming contradiction 
between functional stability of a vast organizational 
structure consisting of a large number of bio-
chemical networks and possible dynamical insta-
bility in each of them is fi ctitious; it attempts to 
oppose different levels of biological organization. 
A logically satisfactory way of looking into these 
issues is through the paradigm called dual causal-
ity formulated by Palsson.30 He writes in Chapter 12: 
“Unlike physiochemical sciences, biology is sub-
ject to dual causality or dual causation. Biology is 
governed not only by the natural laws but also by 
genetic programs. Thus, while biological functions 
obey the natural laws, their functions are not pre-
dictable by the natural laws alone. Biological 
systems function and evolve under the confi nes of 
the natural laws according to basic biological 
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principles, such as generation of diversity and 
natural selection. The natural laws can be described 
based on physicochemical principles and used to 
defi ne constrain under which organisms must oper-
ate. How organisms operate under these constrains 
is a function of their evolutionary history and sur-
vival.” Within the paradigm of dual causality, 
inherent dynamical instability represents the 
“natural laws” and “physicochemical principles” 
whereas biological robustness is a result of evolu-
tionary history in which this dynamical instability 
is either suppressed or is effectively used for gain-
ing evolutionary advantages and survival. The role 
of fast fl uctuations in evolution has been exten-
sively discussed in the literature.4 In essence, what 
is shown in our paper is that such fl uctuations in a 
system are not necessarily created by external 
forces, and do not necessarily originate from 
unmodeled realities within the system. They may 
be a natural consequence of high dimensionality 
coupled with high nonlinearity. The notion that 
short-term instabilities may manifest themselves 
as “noise” at a higher level of organization is not 
new and has a long history in nonlinear dynamics 
(see31 and references therein). It is also worth 
mentioning that dynamical instability may play an 
essential role in the very process of search for 
stability; without fl uctuations created by these 
instabilities, a system would not be capable of 
exploring the topology landscape around its current 
state and making a step towards stability.5,32

The engineering concepts of negative and posi-
tive feedback regulatory loops have been exten-
sively used in the analyses and interpretations of 
complex biological data (e.g.33,34). However, in 
biological literature, the prerequisites which make 
application of such concepts to biochemical 
networks justifi able are rarely formulated explicitly 
or even mentioned. Since biochemical networks, 
whether high- or low-dimensional, are strongly 
nonlinear dynamical systems, such prerequisites are 
very far from trivial. First of all, the system has to 
possess at least one asymptotically stable regime, 
either in the form of a fi xed point or of a limit cycle. 
As seen from the analysis presented in the previous 
sections, a number of intricate criteria should be 
satisfi ed to make such asymptotic stability possible. 
If a stable asymptotic regime does exist, then the 
deviations from this regime may be analyzed (with 
an additional assumption of “smallness” of perturba-
tions) using the concepts of linear theory. This step 
is equivalent to the Jacobian analysis of (linear) 

stability in which the eigenvalues with negative and 
positive real parts would correspond to negative and 
positive feedback loops, respectively. Only negative 
feedback loops provide stability, and the conditions 
for their existence (i.e. for negativity of real parts of 
eigenvalues) are very complex. In biological studies, 
all these important prerequisites are often either 
bypassed or assumed to be in place or simply pos-
tulated to be the natural outcomes of evolution. 
Quite a characteristic example may be found in a 
comprehensive treatise devoted to biological feed-
back by Thomas and D’Ari.35 After careful discus-
sion of verbal, logical, and differential levels of 
description in biology (Introduction), and after sta-
bility analysis of logical cycles (Chapter 3), we fi nd 
the following statement (page 65): “If we wish to 
fi nd logical solutions in which our cycle is a stable 
attractor, the easiest way is to impose stability, rather 
than testing the stability of the cycle in randomly 
chosen combinations of functions” (italics by 
Thomas and D’Ari). In this example, as well as in 
innumerable other instances scattered throughout 
the biological literature, the conditions of stability 
are simply imposed. Metaphorically speaking, if it 
is assumed that elephants are capable of fl ying, then, 
guided by this assumption, a nice theory may be 
developed regarding mechanics and aerodynamics 
of their fl ight. Furthermore, the theory may become 
a basis for data analysis and model parameterization, 
and should a contradiction occur between the theory 
and observations, it may be attributed to the laws 
yet unknown and to be discovered in future. The 
essence of this metaphor is that as long as the ques-
tion of stability of high-dimensional biochemical 
networks is not carefully addressed, all the results 
based on the assumption of stability remain purely 
phenomenological and therefore lacking a solid 
theoretical basis and predictive force.

The question of dynamical stability of large 
biochemical networks is not of a purely academic 
interest but has far reaching practical implications 
in the systems and computational biology. It is often 
the case that the software packages specifi cally 
designed for computational modeling of intracel-
lular biochemistry leave the question of asymptotic 
stability largely unaddressed. These packages—
usually equipped with easy-to-use graphical inter-
faces and convenient scripting languages—allow 
one to design any imaginable system in chemical 
kinetics (see,36 Table 1.3, and37). What is easy to 
overlook in this design is the question of dynamical 
stability. If no attempts are made to take care of 
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asymptotic dynamical stability, then according to 
the central result by R. May,1 the probability that 
the system turns out to satisfy these conditions due 
to a miraculous coincidence is miniscule. Therefore, 
almost surely such a model will be dynamically 
unstable. As known from mathematics, if a system 
does not possess the property of asymptotic stability 
then, in a time-course dynamics, its computational 
convergence to a certain limit may have nothing to 
do with the properties of the system-to-be-modeled; 
it may be a purely computational artifact. To avoid 
such an unpleasant situation, existence of a stable 
steady state is often hypothesized, and only small 
perturbations to this hypothesized state are actually 
modeled. However, as follows from the above dis-
cussion, existence of such a steady state should not 
be taken for granted. It should be either proven 
mathematically or should have a very strong exper-
imental justifi cation. Heeding the lessons learned 
from biology, one may expect that modularity and 
careful separation of time scales would serve as a 
stabilizing measure in computational models. These 
questions are discussed in more detail in the recently 
published work38 by the author.

Conclusion
The central message of this paper is extremely 
simple and may be easily expressed without 
explicit mathematical modeling. A large diverse 
network with the number of units in tens of 
thousands and link density in hundreds cannot 
behave in a smooth assembly-line manner. Spon-
taneous failures like traffic jams, bottlenecks, 
backlogs, delays, loss of synchronization, etc., are 
absolutely unavoidable circumstances surrounding 
their functioning. In the absence of independent 
external forces capable of supervising and quickly 
repairing these failures, each of them initiates a 
wave of secondary failures thus moving the system 
unidirectionally towards destabilization. In the 
systems where dynamics is a game of many con-
fl icting forces, such as source versus sink, produc-
tion versus degradation, attraction versus repulsion, 
this destabilization may impact both parts of the 
game. As in a comedy of errors, these opposite 
tendencies in the long run may compensate each 
other thus bringing the system to erratic, but gen-
erally successful, functioning.

Disclosure
The author reports no confl icts of interest.
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