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Abstract: We demonstrate the use of Semantic Web technology to integrate the ALFRED allele frequency database and the 
Starpath pathway resource. The linking of population-specifi c genotype data with cancer-related pathway data is potentially 
useful given the growing interest in personalized medicine and the exploitation of pathway knowledge for cancer drug 
discovery. We model our data using the Web Ontology Language (OWL), drawing upon ideas from existing standard formats 
BioPAX for pathway data and PML for allele frequency data. We store our data within an Oracle database, using Oracle 
Semantic Technologies. We then query the data using Oracle’s rule-based inference engine and SPARQL-like RDF query 
language. The ability to perform queries across the domains of population genetics and pathways offers the potential to 
answer a number of cancer-related research questions. Among the possibilities is the ability to identify genetic variants 
which are associated with cancer pathways and whose frequency varies signifi cantly between ethnic groups. This sort of 
information could be useful for designing clinical studies and for providing background data in personalized medicine. It 
could also assist with the interpretation of genetic analysis results such as those from genome-wide association studies.

Introduction
Semantic technologies1 provide a useful means of categorizing and relating biological data. General 
purpose ontology languages such as OWL (Web Ontology Language) allow the biologist to create a 
formal structure for a knowledge domain that is both precise and logically sound.2 Numerous biological 
ontologies have been created in recent years with probably the most well-known being the Gene Ontology 
(GO).3 A major advantage of the ontological approach is that it allows us to express our data in the 
domain-specifi c terms we have defi ned in our ontology. This expressivity combined with logical rigor, 
allows us to query data based upon its meaning rather than simply how it is stored. This is generally 
referred to as “semantic” querying.4 The promise of the “Semantic Web” lies in its ability to provide 
links between individual semantic data stores. In this way, multiple unrelated sources of information 
can be queried based upon the use of commonly recognized terms. As a result, considerably more insight 
can be gained than from the individual data stores in isolation.5

The ability to query across multiple domains is especially useful in a landscape as variegated as that of 
biomedical informatics. Here the researcher must interact with data from a plethora of disciplines, at 
numerous levels of granularity and in widely divergent formats. Cancer research is further complicated 
by the fact that we don’t fully understand many of the mechanisms that are involved. It is to be expected 
then that the fi eld of biomedical ontology has grown rapidly in recent years. Capitalizing on the success 
of early ontologies such as the GO6 and the Foundational Model of Anatomy (FMA),7 the Open Biomedical 
Ontologies (OBO) consortium now incorporates a growing collection of some 60 ontologies in an attempt 
to cover all areas of “biological reality”.8 The World Wide Web Consortium (W3C) has formed an interest 
group to facilitate discussion on the use of Semantic Web technology in the Health Care and Life Sciences.9 
The National Cancer Institute’s NCI Thesaurus provides a controlled vocabulary covering a broad spectrum 
of topics related to all facets of cancer research.10 It seeks to provide a means for cancer scientists to share 
research in a consistent and standardized manner. The cancer Biomedical Informatics Grid (caBIG) proj-
ect hopes to integrate all cancer-related research into a single massive grid, with a multi-tier semantic 
metadata framework to mediate between individual data sources and simplify queries across them.11
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In order to explore the capabilities of semantic 
web technology, we have attempted to semantically 
link two disparate biological databases. The 
ALFRED database collects allele frequency values 
from a wide range of human populations.12,13 
Starpath is a database of biological pathways and 
the individual interactions that comprise them.14 
Both resources store data in traditional tables 
using a relational database management system 
(RDBMS). There is little else in common between 
these two databases. They were developed by 
different groups with different goals and using 
different strategies. To start, we needed to create 
an OWL ontology for each of the resources and 
then load existing relational data into RDF triples 
based upon this ontology. With these new triple 
stores in place, we were able to locate terms used 
by both ontologies and issue semantic queries using 
the common terms to bridge the two data stores. 
We used Oracle’s Semantic Technologies15 to 
perform these tasks within the context of an 
existing relational database. Using this approach, 
we were able to search for a number of genes 
involved in cancer pathways that show genetic 
variation within and among populations.

Overview of Existing Technologies
ALFRED, the allele frequency database, provides 
allele frequency data for anthropologically defi ned 
human population samples.16 It contains both 
public data from literature and unpublished data 
from our host research laboratory and its collabo-
rators. For data derived from literature, we tried to 
select those polymorphisms which have been 
studied in a wide variety of populations. ALFRED 
covers a broader spectrum of anthropologically 
defined populations than HapMap,17 another 
frequently sited source of allele frequency data. 
Over 95% of the polymorphisms in ALFRED have 
frequency data from more than 10 different 
populations. This is without considering the 
samples from different regions within the same 
population. We implemented ALFRED using a 
traditional relational structure which is illustrated 
in Figure 1. An individual polymorphism (or Site) 
is contained within a locus on the genome. Ethnic 
populations are organized by their geographic 
location (Geographic_Region). Multiple samples 
may be drawn from a particular population. For 
such highly heterogeneous populations as African 
American or European American, special care is 

taken to delineate the specifi c geographic region 
of the population. Population samples are typed to 
determine the frequency of alleles at a site. The 
Typed_Sample table bridges samples and poly-
morphisms and also associates the typing method, 
which is detailed in the Typing_Method table. The 
allele frequency values for a Typed_Sample are 
stored in the Frequencies table. Information about 
the contributor of particular allele frequency data 
is kept in the Contributors Table.

The ALFRED project is part of an international 
effort organized by JBIC (Japan Biological 
Informatics Consortium) to provide a standardized 
object model for genome sequence variation data. 
In June 2005, the initial version of this model, 
represented in XML through the Polymorphism 
Markup language (PML1), was approved by the 
Object Management Group (OMG).18 In September 
of that year, discussions began to expand this model 
to include phenotype data and genotype to 
phenotype (G2P) mappings. This extended model, 
called PAGE-OM (Phenotype and Genotype 
Experiment Object Model) intends to provide a 
common framework for management of any DNA 
variation data, phenotype data or G2P experimental 
findings. Although the model is not officially 
expressed in a technology-specifi c form, such as 
an XML or database schema, an XML representation 
called PAGE Markup Language (PML2) is being 
developed. PAGE-OM is currently under consid-
eration as an OMG standard (PAGE-OM 2008). 
ALFRED currently supports export of its data in 
PML1 format for those polymorphisms that have 
rs identifi ers in the dbSNP database. The two PML 
domains that can be used to represent ALFRED 
data are the SAMPLE domain and the GENO-
TYPE domain. While populations and their 
samples are defi ned separately in the ALFRED 
database, in the PAGE model, a population and the 
multiple samples taken from it are all represented 
by a single ‘panel’ class. We achieve the proper 
relationship by nesting multiple sample ‘panels’ 
within a population ‘panel’. Polymorphism sites, 
alleles and frequencies are represented using 
PML’s GENOTYPE domain. Site corresponds to 
the ‘genomic_polymorphism’ class, alleles to the 
‘genomic_allele’ class and frequencies to the 
‘genomic_allele_population_frequency’ class.

Starpath is a collection of resources for research 
on biological pathways. The goals of the project are 
to integrate information on pathways from a wide 
variety of sources and to provide tools that allow 
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this information to be easily browsed and analyzed, 
with primary focus on statistical methods and visu-
alization. Starpath is a three-tier application, built 
using Java/J2EE technology, with an Oracle 
relational database at its core. The relational tier is 
mapped to an object graph on the application server 
using JPA/Hibernate. An Application Programming 
Interface (API) is provided through Enterprise Java 
Beans (EJB) to allow a presentation layer to interact 
with the database. The presentation tier is a rich 
client application using Java’s Swing user interface 
library that can be activated using Java Web Start 
technology. It is possible that in the future, a web 
interface may be provided as an alternative 
presentation layer. A Web Service interface to the 
remote API is also planned for the near future.

The contents of the Starpath database have been 
determined largely based upon the interests of 
database users. Our researchers have typically 
wanted to see what genes are highly or differen-
tially expressed in certain pathways based upon 
the results of microarrays and other types of high 
throughput analysis. As a result, our database 
schema is somewhat “gene-centric” in its design. 
We denote what individual events comprise par-
ticular pathways and the biological and chemical 
entities that make up these events. Wherever pos-
sible, these entities are linked to one or more genes; 
for example, proteins and enzymes are linked to 
the genes which encode them. In turn, individual 
genes are linked to those “gene products” with 
which they are related; such products include 
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Figure 1. The ALFRED database schema.
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microarray probes, SNPs and so forth. Starpath 
holds information on all pathways from KEGG,19 
Biocarta,20 GenMAPP,21 Ricecyc22 and Cancer Cell 
Map23 where it applies to the following five 
organisms: human, mouse, rat, dog and rice. An 
automated build system was designed to keep 
Starpath up-to-date and to allow new sources to be 
easily incorporated. We have incorporated several 
new sources since inception and many more are 
planned for the near future. A parser for the BioPAX 
pathway exchange format24 has been developed as 
part of our build suite to facilitate this process.

Data Conversion
The fi rst step of our workfl ow was to convert each 
of the two datasets from their extant relational form 
into something that could be queried semantically. 
To do this, it was necessary to define a new 
ontology for each, extract data from each dataset 
and load it into the “N-Triples” format used by 
Oracle’s Semantic Technologies API. For the 
purposes of this paper, we simplifi ed the overall 
data models of ALFRED and Starpath somewhat 
in order to conserve space. We selected the 
10 pathways defi ned by Sloan-Kettering’s Cancer 
Cell Map23 project as being representative 
cancer-related pathways in humans. Exporting 
these into our simplifi ed ontological model for 
Starpath yielded around 230,000 triples. Export of 
the entirety of ALFRED into its simplifi ed ontology 
produced approximately 2.5 million triples.

Oracle releases from 10 g onward have included 
support for semantic data storage.1 Oracle’s RDF 

storage works by treating the triple store as an 
application within a running database instance. 
Essentially, individual RDF triples are stored as 
rows in a conventional database table. For this 
reason, the amount of storage is not limited by the 
size of main memory as it is with the majority of 
RDF storage engines. Additionally, Oracle’s triple 
store can take advantage of the scalability and 
cost-based performance optimizations of Oracle’s 
relational storage engine. As a side-effect, we can 
combine semantic queries with relational query 
constructs, since the triples are actually stored as 
Oracle objects in a conventional relational table. 
This has its advantages as it allows for certain types 
of query that are typically diffi cult using semantic 
query languages. Oracle Semantic Technologies 
also provides a powerful inferencing engine. The 
engine implements the full set of RDF/S inference 
rules and OWLPrime, an important subset of the 
OWL DL vocabulary. OWLPrime consists of 
around 50 rules selected from OWL DL that 
Oracle felt would suffi ciently balance expressivity 
with efficient performance. Support for user-
defi ned rules is also provided. Finally, the Oracle 
RDF inference engine includes mechanisms for 
analyzing ancillary information, such as semantic 
distance and proofs, about triples and for validating 
semantic data models. Benchmarks conducted by 
Oracle indicate that the performance of the 
inference engine scales linearly for datasets into 
the hundreds of millions of triples.25

Conversion of a data model from a relational 
structure to a semantic one can be a diffi cult process. 
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We have found, however, that if there exists a class 
model such as one would design to represent the 
data in an object-oriented (OO) language such as 
Java, the transition is more direct. Much has been 
written about the “object-relational” disconnect, but 
the object-semantic disconnect seems less onerous. 
Typically, we can recast OO classes as OWL classes 
and fi elds of the classes as OWL properties. OWL 
subclasses and superclasses behave like their OO 
counterparts. OWL datatype properties would be 
analogous to primitive types such as int or fl oat or 
standard library classes such as String. Properties 
that are composed of objects of other classes 
defi ned in our model would correspond with OWL 
object properties. OWL properties with cardinality 
greater than one would be modeled as collections 
such as Lists or Sets. The analogy is not entirely 
perfect; e.g. OWL classes support multiple inheri-
tance while many OO languages, including Java 
do not and OWL’s support for transitive properties 
and sub-properties would require some fancy foot-
work in an OO language. However, for the common 
case, object modeling and semantic modeling 
match up fairly well. There are in fact tools that 
will generate stub Java classes from existing OWL 
ontologies.26 We found the Protege application27 to 
be quite helpful in generating OWL ontologies. We 
discuss specifi c features of the two ontologies 
below.

Our ontology for the ALFRED data (illustrated 
in Fig. 3) is based upon the subset of PML that 
ALFRED uses for data export. In most cases, the 
class names and properties are drawn directly from 
the elements and attributes defi ned in PML’s xsd 
schema. A notable exception is in the handling of 
populations and samples, a central feature of the 
ALFRED database. Whereas in the PML format, 
each of these are treated as Panel elements with 
differing attributes, for the ALFRED ontology, we 
created distinct Population and Sample classes. 
We also defi ne a sample object property of multiple 
cardinality within the Population domain to 
express the fact that individual Populations can 
have more than one sample. The Population class 
is further specified by a unique id from the 
ALFRED database and by datatype properties for 
ethnicity, geographicRegion, languageFamily 
and primaryLanguage. A paragraph-length 
description of the Population is also provided. 
A GeographicLocation class is defi ned to hold 
latitudinal and longitudinal data for the Population 
and is specifi ed as an object property bounded by 

the Population class. The Sample class also holds 
a unique id generated by the ALFRED database 
and datatype properties indicating countUnit and 
size for the sample. A brief description further 
details the procedure used to gather the sample. 
The second central feature of the ALFRED 
semantic store is the GenomicPolymorphism 
class. In addition to its database-derived id, this 
class acts as domain for datatype properties 
representing the snpID from dbSNP,28 the valida-
tionStatus and zero to many corresponding 
geneIDs from the NCBI’s Entrez database. Two 
other classes are defined for ranges of object 
properties on the GenomicPolymorphism class. 
The GenomicAllele class defi nes the one or more 
alleles in question by its database-generated id. 
The ReferenceGenomicLocationInAssembly 
class details the location of the polymorphism 
upon the chromosome by specifying the strand, 
chromosomeName, start and end of the sequence. 
Finally, we defi ne a GenomicAllelePopulation-
Frequency class to join information about the 
polymorphism with information about the population. 
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Figure 3. The core of the Starpath Pathway data model.
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Along with object properties pointing to the 
genomicAllele and the sample, there are datatype 
properties giving the frequency value and count.

Full conversion of the Starpath database into 
RDF would generate something on the order of 
hundreds of millions of triples. For the purposes 
of this paper, we wished to deal with a much 
smaller volume of data and so several decisions 
were made to create a simplifi ed ontology. As 
mentioned earlier, we decided to look at only the 
10 pathways defi ned by the Cancer Cell Map23 
project as indicative of cancer pathways. We also 
decided not to include several of the table attributes 
which were of lesser signifi cance to this endeavor, 
especially those directly related to database meta-
data such as timestamp, owner and versioning 
information. We limited traversal of links between 
objects to one level and disregarded some other 
associations between objects in an attempt to limit 
the breadth of data. For example, while we included 
all gene products linked to a gene of interest we 
did not perform the reverse join and collect all other 
genes connected to each gene product. Because, 
we already had an object-oriented graph of the 
Starpath data model that is used in the object-
relational mapping layer of the application, it was 
relatively straightforward to generate OWL classes 
and properties.

Starpath models pathways as networks of 
objects which can be nested to form a tree of 
arbitrary depth. The basic model is illustrated in 
Figure 2. The base unit is, of course, the Pathway 
which defi nes a collection of Events. Each Event 
is composed of two Parties arbitrarily designated 
as Party1 and Party2. Each Party, in turn, is 
composed of one or more PartyMembers. These 
Members can be any of several types including 
Genes; GRelateds, which are other entities such 
as proteins, enzymes or microarray probes that can 
be linked to a gene; and Compounds, which are 
chemical or physical entities that are not associated 
with genes. PartyMembers can also be other 
Parties, Events or Pathways. Although there is 
no limit to the level or recursion that is allowed in 
a Pathway structure, circular object references 
have been eliminated. Each of these six components 
of the pathway tree is defi ned as subclasses of an 
abstract SPElement class which specifi es properties 
common to each component. These are the 
name of the object, its provenance and its 
ref-id as designated within its originating source. 
Provenance is an object property whose range is 

a class called Reference which provides a name 
and description of the data source from which an 
SPElement derived.

Figure 4 shows the full Starpath ontology. Each 
of the SPElement subclasses defi nes a few custom 
properties. Compounds indicate their cas-id from 
the Chemical Abstract Services and their chemical 
formula. Events designate their type and use 
object properties to point to their constituent 
party1 and party2. These object properties are 
members of a special class called EventParty 
which joins Event and Party and further specifi es 
which side of the Event the Party occupies and 
in which direction the Event proceeds. The 
EventParty also holds references to masked-
events. A MaskedEvent is an event as described 
by a pathway where only a portion of the event in 
question is signifi cant to defi nition of the pathway. 
For example, though by defi nition any biochemical 
reaction is reversible given the necessary condi-
tions, often the reaction will only proceed in one 
direction within a metabolic pathway. An instance 
of the Mask class is used to indicate given a certain 
pathway from a particular reference what 
masked-events are in effect. The MaskedEvent 
class in turn indicates given the event-party and 
mask, which members will participate and on 
which side and direction. The Gene class holds 
datatype properties that provide the common 
symbol for a gene and whether this symbol is 
governed by a particular authority such as HUGO 
for human genes. Gene also specifi es zero to many 
grelated objects that are associated with it and zero 
to many orthologs. Orthologs are described by 
the Orthology class which delineates their 
provenance through a Reference object and their 
ref-id from that provenance. The organism of a 
gene is an instance of an Organism class, which 
provides its biological-name, common-name and 
taxon-id. As mentioned above, the GRelated class 
can describe any of several objects that can be 
linked to a gene. Its actual type is indicated by 
datatype property and its organism by the organism 
object property defi ned for Gene. A common type 
of GRelated in Starpath is the microarray probe; 
for GRelateds of this type, the parent chip is 
specifi ed in an object property whose range is the 
Chip class. The Chip class indicates its full name, 
short-name and type using datatype properties. 
The Party class adds no additional properties to 
its base class other than zero to many members 
whose range is any subclass of SPElement. 
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Finally, we have the Pathway class, which contains 
object properties that list the events that comprise 
them, the organism in question and what mask if 
any is to be applied.

With our ontologies in place, we move to the 
next stage, the conversion of data to the new model. 
This is done in two phases. First, the existing data 

is loaded into an object graph made up of stub 
classes generated from the ontology. Secondly, the 
Java object graph is converted into an RDF graph 
which follows our ontology. If the data is stored in 
a database, the relational to Java stage is handled 
by calling a stored procedure through JDBC. This 
procedure returns arrays of Oracle records which 
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correspond to our ontology classes; for simpler 
cases we may need only to return rows from 
particular tables. For data in another XML format, 
we populate the object graph by using a DOM 
parser such as Dom4j.29 The object to RDF phase 
performs two passes over the object graph. In the 
fi rst pass, RDF nodes are created for each instance 
of each class in the ontology. The Data Properties 
are fi lled in with their literal values. At this point, 
we can’t resolve the Object Properties to RDF nodes 
because not all of the RDF nodes have been created. 
Therefore, on the fi rst pass, we store pointers parsed 
nodes in a hash table. On the second pass, we use 
this hash table to resolve the Object Properties to 
existing RDF nodes. We use Hewlett Packard’s 
open source Jena Semantic Web framework30 to 
generate the RDF fi les. The entire process requires 
writing quite a lot of code, most of it repetitive and 
verbose. We hope to create a framework for gener-
ating a lot of this code using some type of mapping 
fi le in the near future. A SPARQL endpoint for the 
datasets that were generated for this project as well 
as the complete set of RDF triples and OWL 
ontologies are available at “http://bioinformatics.
med.yale.edu/sparql/spalfred”.

Example Queries
Having created ontological models for our two 
domains and populated them with relevant data, our 
next task is to determine what meaningful semantic 
queries can be performed. A number of languages 
for querying semantic data have been created over 
the years. Recently, SPARQL has emerged as a clear 
leader, having been standardized by the World Wide 
Web Consortium.31 The Oracle Semantic Web 
interface supports a subset of SPARQL functional-
ity. For example, it lacks implementations of 
OPTIONAL and UNION clauses. These absences 
are partially mitigated, however, by the ability to 
apply traditional SQL to the table returned by the 
semantic query. Like SPARQL queries, Oracle’s 
semantic queries are made up of sequences of triple 
patterns of the form (subject predicate object). 
Variables preceded by a ‘?’ can be substituted for 
any of these terms; matching triples will bind actual 
values to the placeholder variables. Returned are 
those results that satisfy all of the triple patterns in 
the sequence. In the Oracle Semantic Technologies 
API, this is implemented as a call to a stored 
procedure and the results can be returned in a 
conventional table. Oracle also offers support for 
user-defi ned rules through which we can state that 

given a set of antecedent triple patterns, a consequent 
triple pattern can be inferred.25 A simple example 
is the ‘grandfather’ rule: given (A father Of B) 
(B father of C) it can be inferred that (A grandfather 
Of C). Custom rules are useful for a number of 
reasons. They can simplify complicated logical 
relationships and allow for cleaner and more intuitive 
queries. Additionally, we can create entailments in 
which all results of a rule are pre-calculated and 
indexed. This can provide signifi cant performance 
improvements.

One way in which semantic queries are 
particularly helpful for exploring Starpath data is 
that they can flatten the tree structure to find 
elements at any of multiple levels. Suppose that 
we are searching within a pathway for a particular 
gene that is linked to a protein that is part of a 
complex of proteins that is part of an enzyme that 
catalyzes a particular reaction. In the terms of 
Starpath’s data model, this would involve fi ve 
joins: Pathway-Event (the catalysis); Event-
Party (the enzyme); Party-PartyMember (the 
protein complex); Party-PartyMember (the indi-
vidual protein); and Grelated (the protein)-Gene. 
Because the Party-PartyMember join can be an 
arbitrary number of levels deep, we cannot fully 
resolve it with conventional SQL. Two possible 
solutions are the use of database-specifi c hierarchi-
cal query features such as Oracle’s START WITH 
and CONNECT BY or use of a stored procedure to 
walk the full extent of the tree. We use the second 
option for Starpath, because the Party-PartyMember 
join behaves differently depending on the type of 
Party Member with which we are dealing. By 
defi ning a handful of rules and creating entailments 
upon them we can perform this type of query on 
any SPARQL implementation or “SPARQL-ish” 
syntax like that of Oracle’s Semantic Web APIs. 
First we create a consequent property called 
‘memberOfParty’ which is defi ned by two rules. 
MEM_PARTY_RULE1 states that if (?Xrdf:
type :Party) (?X #member ?Y) then (?Y #memberOf-
Party ?X). This is fairly obvious in that if X is of 
class Party any member property of it can also be 
called a memberOfParty of X. In MEM_
PARTY_RULE2 (if (?X #memberOfParty ?Y) 
(? X#memberOfParty ?Z) then (?Y #memberOf-
Party ?Z)), we further specify that if any member 
of a Party is also a Party itself then that Party’s 
members are also members of the initial Party. 
This in effect fl attens the hierarchy tree when it is 
run to closure. We create a consequent property 
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called ‘memberOfEvent’ which moves up the 
hierarchy to state that members of Parties are also 
members of the Events to which the Parties 
belong. It requires two rules: a. if  (? X#memberOfParty 
?Y) (? Z #partyl ?Y) then (?Y memberOfEvent ?X) 
and b. if (?X memberOfParty ?Y) (?Z #party2 ?Y) 
then (?Y #memberOfEvent ?X). Finally ‘mem-
berOfPathway’ is defi ned by stating that if (?X 
memberOfEvent ?Y) (?Z #event ?Y) (?Z rdf:type 
#Pathway) then (?X #memberOfPathway ?Z). This 
simply means that members of Events are also 
members of the Pathways the Events comprise. 
Now, we can retrieve a list of all genes that are 
involved in a particular pathways by asking 
(?X rdf:type :Gene) (?X #memberOfPathway ?Y) 
(?Y :ref-id “InterestingPathway”). We can use 
these custom rules to defi ne further rules as well. Here 
is a possible rule to defi ne two genes as “neighbors”, 
i.e. participants in the same Event in the same 
Pathway: if (?GENE1 :memberOf Event ?EV) (?GENE1 
rdf:type :Gene) (?GENE2 :memberOfEvent ? 
EV)(?GENE2 rdftype :Gene) (?PW :event ?EV) 
(?PW rdf:type :Pathway) then (?GENE1 #neigh-
boringGene ? GENE2).

For the purpose of our analysis, the queries on 
the ALFRED semantic store are comparatively 
straightforward. We need to collect all frequency 
values from all samples that have been typed for 
a specifi c polymorphism of interest. Because none 
of the relations between these concepts can form 
multi-level hierarchies, we need not use recursion 
to reach closure. Creating additional entailments 
does not offer us any advantages and we can get 
results through a conventional join query. One 
possible form is the following sequence of triple 
patterns: “(? poly  rdf:type alf:GenomicPolymorphism) 
(?poly alf:genelD ?ref_id) (?poly alf:genomic 
Allele ?allele) (?poly alf:id ?poly_id) (?allele alf:
id ?allele_id) (?gapf rdf:type alf:GenomicAllele-
PopulationFrequency) (?gapf alf:genomicAllele 
?allele) (?gapf alf:value ?value) (?gapf alf:sample 
?sample) (?pop rdf:type alf:Population) (?pop alf: 
sample ?sample) (?pop alf:ethnicity ?eth).”

Now that our queries are in place on both stores 
separately, we need to perform the semantic link to 
obtain population data on polymorphisms that are 
also part of signifi cant cancer pathways. Oracle 
Semantic Technologies makes this easy by allowing 
us to query across multiple semantic models within 
the database. We use the ‘alf’ prefi x to reference the 
ALFRED ontology and the ‘sp’ prefi x to reference 
the Starpath ontology. Our final query looks 

like this: “(?gene rdf:type sp:Gene) (?gene sp:ref-id 
?ref_id) (?gene sp:symbol ?symbol) (? poly rdf:type 
alf:GenomicPolymorphism) (?poly alf:genelD 
?ref_ id) (?poly alf:genomicAllele ?allele) (?poly 
alf:id ?poly_id) (?allele alf:id ?allele_id) (?gapf 
rdf:type alf:GenomicAllelePopulationFrequency) 
(?gapf alf:genomicAllele ?allele) (?gapf alf:value 
?value) (?gapf alf:sample ?sample) (?pop rdf:type 
alf: Population) (? pop alf:sample ? sample) (?pop 
alfethnicity ?eth).” One possible optimization we 
can perform is to create an entailment that computes 
which polymorphisms we are retrieving from 
ALFRED based upon whether they are derived from 
genes which are also members of the Starpath path-
ways of interest. The following rule would be 
applied: “if (?gene rdf:type sp:Gene) (?gene sp:
ref-id ?ref_id) (?poly rdf:type alf:GenomicPolymor-
phism) (?poly alf:genelD ?ref_id) then (?poly alf:
inStarpath “T”).” We may now fi lter out polymor-
phisms which are in Starpath pathways with one 
triple: “(?poly alf:inStarpath “T”).”

Discussion
The work presented in this paper can be considered 
an example of what is known in web circles as a 
“mashup”. In a typical mashup, divergent data are 
joined in a comparatively loose fashion to provide 
new understanding that cannot be attained from 
the data sources separately. Instead of aiming for 
total integration of disparate data sources, develop-
ers of mashups typically try to use as light-weight 
an approach as possible. The focus is on integrat-
ing data sources only as much as is needed for the 
task at hand. This allows for rapid development 
and promotes loose coupling of data. A semantic 
mashup (or “smashup”) is simply a mashup where 
the data are joined in a semantic fashion, i.e through 
RDF, OWL or similar technologies. Examples of 
this approach are starting to emerge in the fi eld of 
biomedical science.32 Tools like TAMBIS33 and 
BirnLex33 provide broad frameworks through 
which data sources can be combined and queried. 
At a recent meeting of the World Wide Web 
Consortium’s Health Care and Life Sciences Inter-
est Group, a demonstration was created that 
mashed images from the brain with data from the 
Entrez database and the Gene Ontology.35 Others, 
such as Sahoo et al.36 and Villanueva-Rosales and 
Dumontier37 use semantic mashup techniques to 
create knowledge bases focusing upon specialized 
areas of interest. Our work is similar to that of these 
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last in that it focuses on tackling an immediate 
problem. Although aspects of our approach may 
be applied to semantic mashups in general, we do 
not propose a universal solution for merging all 
divergent biomedical data sources. We hope that 
other researchers may adapt some aspects of our 
methodology while modifying the rest to suit their 
individual needs. One distinction in our approach 
is that we defi ne our own ad-hoc ontologies for the 
purpose of the mashup. This is possible because 
we control both of the data sources that are being 
merged. This allows us to link the data stores 
without many of the difficulties in joining 
heterogeneous ontologies. Of course this involves 
additional effort in the design stage of the project 
but it makes the interactions between data sources 
cleaner and more loosely coupled. Another issue 
is potential lack of portability. In the future it may 
become desirable to write code to translate our data 
from the custom ontology to a more universal 
format.

Having integrated pathway and allele frequency 
data presents us with a number of possibilities for 
analysis. As a proof of concept demonstration, we 
performed the relatively simple FST calculation38 
on the 488 polymorphisms that were linked 
between ALFRED and Starpath. The FST calculation 
measures the proportion of total genetic variance 
within a sub-population to the total genetic 
variance.39,40 Other more involved methods are 
possible.41 It is important to recognize also that 
because our knowledge of pathways is still nascent, 
a large number of genes known to be involved in 
tumorigenesis have not yet been associated with 
any particular cancer-related pathways. By the 
same token, there are also genes for which 
ALFRED does not have polymorphism data at 
present. Locating and incorporating high throughput 
genotype and allele frequency datasets from whole 
genome association studies is a key area of focus 
for the ALFRED project. One of the fi rst dataset 
we uploaded was the allele frequency data for 
11,555 SNPs typed on 12 population samples using 
whole genome sampling analysis (WGSA) 
technology.42 The next set we are interested in is 
the 650,000 Illumina-assayed SNPs typed on the 
HGDP-CEPH Human Genome Diversity Cell Line 
Panel which covers 51 different populations.43 
The infusion of this new population data combined 
with advancing knowledge of cancer pathway 
mechanisms should greatly increase the effectiveness 
of our analyses.

A common issue in linking multiple semantic 
stores is the resolution of common terms. Biology 
and medicine are fi elds in which many equivalent 
terms are in circulation. For this paper, the common 
term in the data stores is the Entrez database 
identifi er for a gene. This was easy to determine 
because we are knowledgeable about both data 
stores. Resolution can be much more diffi cult if 
we are dealing with more complicated links or with 
semantic data whose formats or even domains are 
unfamiliar to us. In such cases, controlled 
vocabularies are essential. The NCI Thesaurus and 
its parent the UMLS44 are important examples for 
the domain of cancer research. Ontologies that 
conform to these controlled vocabularies can 
communicate with each other without fear of 
meaning being lost through use of synonymous 
terms. For example, caBIG uses NCI Thesaurus 
terms as the basis for semCDI,45 which provides a 
common syntax for querying multiple data sources. 
As we further our exploration of linkage between 
pathway and genotype data for the purposes of 
cancer research, especially if we wish to integrate 
our data with caBIG, it will become useful to 
employ NCI Thesaurus terms in our ontologies.

For the queries we have performed both data 
sources are co-located within the same instance of 
an Oracle database. This will not always be 
convenient or even possible when performing 
queries across multiple semantic stores. Constraints 
of time and space often limit fully incorporating 
entire data sources locally. For this reason, Web 
Services, which provide access to remote data 
through a platform-independent XML-based 
format, have become increasing prevalent in 
medical informatics. For example, the Pathway 
Commons project provides web service access to 
information on their collection of biological 
pathways46 and the caBIG project provides a Web 
Services interface to its bioinformatics grid.47 
Emerging standards such as OWL-S allow remote 
ontologies to be discovered and queried through 
Web Services.48 Starpath currently provides EJB 
access to its database for its rich client platform, 
but Web Service access to the same API is planned 
for the near future. We also hope to expose 
ALFRED’s data to a Web Service soon.

Comparisons will naturally be drawn between 
the Starpath ontology and that of the BioPAX 
project, since both use OWL to model the domain 
of biological pathways. Our ontology differs in 
part because it is derived from databases which 
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preceded the standardization of BioPAX Level 1. 
Despite this, we have closely followed BioPAX’s 
growth and it has infl uenced the development of 
our data model. A key difference in strategy is that 
whereas BioPAX strives for rigorous defi nition of 
pathway mechanics, our central focus is on a 
format suffi ciently generic to incorporate a variety 
of conceptions of pathways. More precise defi nition 
can be supplied through various descriptive 
properties such as the Event class’s type property. 
The trade-off of course is that it is more diffi cult 
to enforce structural rules with our model. The 
Starpath model can currently support any sort of 
pathway, including many not currently supported in 
BioPAX. For example, support of gene expression 
is currently being developed as part of BioPAX 
level 3. Ability to interact with the BioPAX spec-
ifi cation is a key goal of the Starpath project. We 
have developed a BioPAX parser that is used to 
import a variety of pathways including the Cancer 
Cell Map 22 pathways that we examined for this 
paper. We plan to create a utility to export our 
pathways into BioPAX format in the near future.

The extended version of PAGE-OM discussed 
above incorporates both genotype and phenotype 
modeling. While ALFRED does not hold phenotype 
data, the PAGE-OM model can be used to represent 
information by combining two different but related 
databases, one holding genetic variation data and 
other disease related data. We feel that in this way, 
the PAGE-OM schema could potentially be used 
to represent Starpath-ALFRED integrated data. The 
‘Observable_features’ class is given a recursive 
association with itself, allowing related phenotypes 
to be nested. For instance, an Observable_features 
instance “Type II Diabetes Disease Status” may be 
assigned other instances “body-mass-index” and 
“Glucose tolerance”. The EXPERIMENT domain 
is used to unite the PHENOTYPE and GENOTYPE 
domains. The ‘Experiment_result’ class in the 
EXPERIMENT domain is provided with asso-
ciations to classes such as ‘Observable_feature’, 
‘Observed_value’ (the phenotype measurement 
being considered), ‘Genomic_variation’ (the 
marker examined) and ‘Genomic_observation’ 
(the genotype measurement).

Semantic Web technology plays a central role in 
the future plans of the Starpath project. Work is 
already under way to expand our ontology to cover 
the entirety of the Starpath data model and to convert 
increasing amounts of our data into RDF triples. 
As we do this, we hope to make our data available 

to public inquiry through Semantic Web Services 
and possibly through integration with caBIG. 
We intend for the Starpath ontology to serve as the 
central data model for our entire project. We are 
working on ways of directly tying our database 
schema and object-relational model directly to 
the OWL ontology through the development of code 
generation utilities.

Conclusion
Semantic Web technologies offer powerful new ways 
to integrate data from disparate sources. They also 
provide us with meaningful new ways to query this 
data. We have explored some of the issues involved 
with the semantic linking of pathway data with 
population-based allele frequency data. We have also 
illustrated examples of interesting queries that can 
be performed upon this linked data. Finally, we have 
presented some potential future benefi ts that can be 
derived from the combining of pathway and popula-
tion genetics data and from the use of semantic 
technologies in this area of cancer research.
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