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Abstract: Missing data pose one of the greatest challenges in the rigorous evaluation of biomarkers. The limited availability 
of specimens with complete clinical annotation and quality biomaterial often leads to underpowered studies. Tissue microarray 
studies, for example, may be further handicapped by the loss of data points because of unevaluable staining, core loss, or 
the lack of tumor in the histospot. This paper presents a novel approach to these common problems in the context of a tissue 
protein biomarker analysis in a cohort of patients with breast cancer. Our analysis develops techniques based on multiple 
imputation to address the missing value problem. We fi rst select markers using a training cohort, identifying a small subset 
of protein expression levels that are most useful in predicting patient survival. The best model is obtained by including both 
protein markers (including COX6C, GATA3, NAT1, and ESR1) and lymph node status. The use of either lymph node status 
or the four protein expression levels provides similar improvements in goodness-of-fi t, with both signifi cantly better than 
a baseline clinical model. Using the same multiple imputation strategy, we then validate the results out-of-sample on a larger 
independent cohort. Our approach of integrating multiple imputation with each stage of the analysis serves as an example 
that may be replicated or adapted in future studies with missing values.
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Introduction
When confronted with missing data, investigators often choose to drop cases with missing values from 
their analysis (case deletion). Sometimes, this is a conscious decision, while at others it is a side-effect 
of statistical software. Occasionally, missing values are “fi lled in,” perhaps by inserting the mean or 
median of the non-missing values. The term imputation is used to describe the general act of fi lling in 
missing data, and many approaches to imputation have been proposed and studied. The evolution of 
the EM algorithm (Dempster, Laird, and Rubin, 1977) and techniques related to Markov chain Monte 
Carlo (MCMC) led to the development of multiple imputation (see Rubin, 1987, 1996; and Schafer, 
1997, for example). As implied by the name, the imputation of missing values is conducted multiple 
times, leading to multiple realizations of complete data sets. The statistical analysis is conducted on 
each imputed data set in turn, and the results are pooled. When values are missing at random (see Rubin, 
1976), multiple imputation can lead to more effi cient, statistically valid inferences than case deletion 
or other methods of imputation. A full discussion of the fi eld is beyond the scope of this paper, and we 
refer interested readers to approachable references such as Schafer (1999). This paper presents the 
analysis of the prognostic value of protein biomarkers measured on a tissue microarray from a 
hospital-based cohort of breast cancer patients from Yale. In this study, about 20% of the expression 
levels were missing because of unevaluable staining, core loss, or lack of tumor in the histospot. We 
developed a technique based on multiple imputation to address the missing value problem, fi rst selecting 
markers using a training cohort and later validating the results out-of-sample on a validation cohort.

Breast cancer is increasingly recognized as a disease marked by heterogeneous cellular behavior and 
response to anticancer therapies. Different, highly targeted anticancer therapeutic agents play an 
increasing role in cancer treatment, driving the need to identify molecularly defi ned subtypes of breast 
cancer as well as predictive and prognostic biomarkers for characterizing particular subsets of patients. 

http://creativecommons.org/licenses/by/3.0/
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The rise in popularity of molecularly defined 
diagnostic tests, such as the OncotypeDx test in 
breast cancer (Paik, 2004), illustrates the desire of 
patients and oncologists to customize therapy using 
information about the biological features of tumors. 
However, this type of analysis depends upon 
mRNA expression from the primary tumor and 
does not refl ect the most relevant targets: proteins 
which are misregulated within the cancer cell. 
Furthermore, RNA has less stability than proteins 
and is more diffi cult to preserve. Although protein 
expression levels are routinely assessed using 
immunohistochemistry in determining therapeutic 
regimen in breast cancer patients, their usage, 
historically, has been limited by non-quantitative 
methods.

The recent development of AQUA™ algorithms 
allows quantitative assessment of protein expression 
levels within specifi c subcellular compartments. 
A series of images are collected by a custom 
microscope platform. The amount of protein 
expressed within the compartment is then quantifi ed 
by co-localization using molecular methods to defi ne 
subcellular compartments. This methodology, 
including details of the out-of-focus light subtrac-
tion imaging methods required is described in 
Camp (2002).

Several breast cancer studies (Zhang, 2003; 
Makretsov, 2003; Korsching, 2002; Arnes, 2005; 
Foulkes, 2004; Foulkes, 2003; Nielsen, 2004; van 
de Rijn, 2002; Makretsov, 2004; Jacquemier, 2005) 
have developed models for predicting survival 
using positive/negative immunohistochemistry 
(IHC) scoring. Here, we use AQUATM to develop 
a prognostic model of patient outcomes based on 
protein expression levels that is as effective as a 
model utilizing the nodal status determined by an 
axillary lymph node biopsy. Specifi cally, we use a 
training cohort of 236 patients to identify a small 
subset of protein markers important in predicting 
patient survival. We then use an independent 
validation cohort of 338 patients to examine the 
relative prognostic value models containing these 
markers and/or nodal status. Each step of the 
analysis depends on multiple imputation to address 
the missing value problem. We found that the 
addition of either nodal status or the four protein 
expression levels provides similar (and signifi cant) 
improvement over a baseline model consisting of 
age, tumor size, and nuclear grade. However the 
best models combine the nodal status with the 
protein expression data.

This paper is able to confi rm the importance of 
several protein markers known from previous 
studies and points to the possible importance 
additional markers. Second, we introduce a strategy 
for statistical analysis in the presence of missing 
measurements, and hope this will provide basis for 
similar analyses in the future. A simple simulation 
demonstrates the advantage of the procedure over 
several alternatives. We recommend both the use of 
multiple imputation and out-of-sample validation 
of results.

Methods

Patient cohorts
The full breast cancer cohort consists of 677 samples 
of archived invasive ductal carcinoma tissue 
which have been described in previous studies 
(Dolled-Filhart, 2006). The training set of 250 cases 
(McCabe, 2005) was selected from the full cohort 
taking into account tumor availability and designed 
to contain half node-positive and half node-negative 
specimens; 14 of these cases were excluded because 
of insuffi cient breast tumor epithelium or lack of 
clinical follow-up. The remaining 427 cases 
comprised the validation set; 89 of these cases were 
excluded because of either insuffi cient breast tumor 
epithelium or lack of clinical followup. Thus, the 
fi nal training and validation cohorts contain 236 and 
338 cases, respectively. Yale University Human 
Investigation Protocol 8219 approved all personal 
health information collection by informed consent 
signed at the time of surgery.

Tissue microarray construction
Details of the tissue microarray construction are 
available in previously published studies (Camp, 
2003; Dolled-Filhart, 2005; Dolled-Filhart, 2004; 
McCabe, 2005). We used formalin-fi xed paraf-
fin-embedded breast cancer tumors from the 
archives of the Yale University from 1961 to 1983 
with approximately half node-positive specimens 
and half node-negative specimens, as assessed 
in other studies (Dolled-Filhart, 2003; Kang, 
2003; Ocal, 2003; Chung, 2004; Kluger, 2004; 
Camp, 2003; McCarthy, 2005). The regions of 
invasive ductal carcinoma were selected by 
pathologists, and cores were 0.6mm in diameter. 
We used a manual Tissue Microarrayer (Beecher 
Instruments, Silver Spring, MD), and adhered 
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5um sections of the tissue microarrays to slides 
using an adhesive tape-transfer method 
(Instrumedics, Inc., Hackensack, NJ) and UV 
crosslinking.

The published results of breast cancer RNA 
expression profi ling studies were used to con-
struct a list of candidate biomarkers for screening 
by AQUA™ analysis of breast cancer tissue 
microarrays. The list was narrowed to those 
with available antibodies with previous western 
blotting or immunohistochemical validation in 
the literature. Table 1 presents the 42 markers 

and antibodies used in studying the training 
cohort; a subset of markers was assessed in the 
validation cohort.

Immunofl uorescence staining 
and image analysis
The tissue microarrays were deparaffi nized by 
two thirty-minute xylene rinses, two one-minute 
100% ethanol rinses, and a one-minute rinse in 
water. The slides were pressure cooked in a sodium 
citrate buffer (pH 6.0) to allow antigen retrieval. 

Table 1. Primary antibody details. *denotes those variables selected for analysis with the training cohort.

Antibody Source Species (Dilution, time)
ACADSB Gift of Gerry Vockley {He, 2003} rabbit polyclonal (1:5000, 1 hour)
AGR2 Gift of Devon Thompson 

{Thompson, 1998}
rabbit polyclonal (1:1000, 1 hour)

BCL2 DAKO, clone 124 mouse monoclonal (1:40, 1 hour)
BNIP3 BD Pharmingen rabbit polyclonal (1:500, overnight)
CA12* Gift of William Sly {Wykoff, 2001} rabbit polyclonal (1:2000, 30 minutes)
CAV1* Transduction Labs, clone 2297 mouse monoclonal (1:100, overnight)
CD24 Neomarkers, clone 24C02 Ab-2 mouse monoclonal (1:50, 1 hour)
CDH3* BD Transduction Labs clone 56 mouse monoclonal (1:200, overnight)
COX6C* Molecular Probes clone 3G5 mouse monoclonal (1:100, overnight)
CTSD DAKO rabbit polyclonal (1:1000, 1 hour)
EEF1D Gift of Ong Lee Lee {Ong, 2003} rabbit polyclonal (1:5000, 1 hour)
ESR1* DAKO Estrogen Receptor 

antibody clone 1D5
mouse monoclonal (1:50, 1 hour)

GATA3* Santa Cruz, clone HG3-31 mouse monoclonal (1:100, 1 hour)
GGH Gift of Thomas J. Ryan {Rhee, 

1998}
rabbit polyclonal (1:400, 1 hour)

GLUL BD Transduction Labs clone 6 mouse monoclonal (1:1000, overnight)
GRB7 Santa Cruz rabbit polyclonal (1:250, 1 hour)
GSTP1* DAKO clone 353-10 mouse monoclonal (1:50, 1 hour)
HER2 DAKO rabbit polyclonal (1:8000, 1 hour)
HSP27 Neomarkers clone Ab-1 G3.1 mouse monoclonal (1:50, 30 minutes)
IGFBP2 Santa Cruz goat polyclonal (1:1000, 30 minutes)
IGFBP4* Austral Biologicals mouse monoclonal (1:50, 1 hour)
IGFBP5* Austral Biologicals mouse monoclonal (1:100, 1 hour)
IRAK1 Santa Cruz rabbit polyclonal (1:100, 1 hour)
JUP BD Transduction Labs mouse monoclonal (1:1000, overnight)
KRT7 DAKO clone TL 12/30 mouse monoclonal (1:50, 1 hour)
KRT8 DAKO clone 25BH11 mouse monoclonal (1:100, 1 hour)

(Continued)
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Following a brief rinse in 1xTris-buffered saline 
(1xTBS), endogenous peroxidases were blocked 
with a thirty minute 2.5% hydrogen peroxide/
methanol incubation. The one hour incubation 
with 0.3% bovine serum albumen (BSA) reduced 
nonspecific background staining. Tissue 
microarrays were incubated overnight at 4 ºC with 
anti-cytokeratin antibody (monoclonal anti-
cytokeratin clone AE1/AE3 or rabbit anti-
cytokeratin wide spectrum, DAKO, Carpinteria, 
CA, 1:100) and the target antibody for each slide. 
The dilutions, incubation times, and sources of 
each of the 43 antibodies utilized in this study are 
included in Table 1. Following three washes of 
fi ve minutes each in 1xTBS, 1xTBS/Tween and 
1xTBS, slides were incubated with secondary 
antibodies: cytokeratin detection (Alexa 488 goat 
anti-mouse or Alexa 488 goat anti-rabbit, 
1:100, Molecular Probes, Eugene, OR), DAPI 
(6-diamidino-2-phenylindole, 1:100, DAKO) and 
species specifi c horseradish peroxidase (HRP) 
with a dextran-polymer backbone (Envision, 
DAKO) for the rabbit and mouse target antibodies. 
Goat primary target antibodies were incubated with 

biotinylated anti-goat (1:200, Vector, Burlingame, 
CA) and Cy-2-donkey anti-mouse to detect 
cytokeratin (1:50, Jackson Laboratories, Bar 
Harbor, Maine), followed by TBS washes and 
incubation with Streptavidin HRP (1:200, Perkin 
Elmer) and DAPI (6-diamidino-2-phenylindole, 
1:100, DAKO) for one hour. Following the 
TBS washes, all slides were incubated for ten 
minutes with Cy-5 tyramide for all target antibodies 
(1:50 dilution in Amplifi cation Diluent, Perkin 
Elmer) because its emission spectra are outside 
the tissue autofl uorescence spectra. The slides 
were mounted in 0.6% n-propyl gallate (an anti-
fade mounting medium) and coverslipped.

AQUA™ software linked to an Olympus AX-51 
epifl uorescence microscope provided measurements 
of the proteins within the epithelial regions of each 
tissue microarray core (as previously described in 
Camp (2002). High resolution monochromatic 
images of each histospot (1024 × 1024 pixels, 0.5 um 
resolution) were captured for each fl uorescent signal 
(DAPI staining to identify nuclei, Alexa488 for 
cytokeratin, and Cy5 for target antibodies). AQUA™ 
analysis separated epithelial cells from stromal 

Table 1. (Continued)

Antibody Source Species (Dilution, time)
KRT18 DAKO clone DC10 mouse monoclonal (1:50, 1 hour)
KRT19 DAKO clone RCK108 mouse monoclonal (1:50, 1 hour)
MUC1 Novocastra mouse monoclonal (1:100, overnight)
MYC* DAKO clone 1D5 mouse monoclonal (1:200, 1 hour)
NAT1* Gift of Edith Sim {Stanley, 1996} rabbit polyclonal (1:1000, 1 hour)
PCNT1 Gift of Stephen Doxsey {Doxsey, 

1994}
rabbit polyclonal (1:500, 1 hour)

PFK Gift from George Dunaway 
{Dunaway, 1988}

rabbit polyclonal (1:2000, 1 hour)

RNF110 Santa Cruz rabbit polyclonal (1:400, overnight)
SERPINA3 DAKO rabbit polyclonal (1:3200, 10 minutes)
SLC7A5 Serotec rabbit polyclonal (1:50, 1 hour)
SLC9A3R1 Gift of Vijaya Ramesh {Stemmer-

Rachamimov, 2001}
rabbit polyclonal (1:50, overnight)

TFF1 DAKO clone BC04 mouse monoclonal (1:5000, overnight)
TFF3 Gift of Daniel Podolsky {Suemori, 

1991}
rabbit polyclonal (1:500, 1 hour)

THBS1 Neomarkers clone A6.1 Ab4 mouse monoclonal (1:50, overnight)
TIMP3* Oncogene Research clone 

136-13H4 Ab-1
mouse monoclonal (1:50, overnight)

XBP1* Santa Cruz rabbit polyclonal (1:200, overnight)
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regions based on cytokeratin expression. 
Similarly, nuclear regions were identifi ed using 
DAPI positivity. The target pixel intensity is divided 
by the total area of epithelial regions (or DAPI 
positive regions for nuclear expression) to generate 
an AQUA™ score normalized for differences in 
microarray core epithelial area.

Statistical analysis: overview
All analyses were conducted in the R statistical 
programming environment (R Development Core 
Team, 2007, http://www.R-project.org), and baseline 
clinical variables (age at diagnosis, tumor size, and 
nuclear grade) were included in every model.

Forty-two proteins were evaluated in the training 
cohort. Initial analysis of the training cohort identi-
fi ed 15 of the most promising markers (marker 
selection). At the same time, a “best” model was 
identifi ed (model selection), consisting of 4 of these 
15 markers. The results were validated using the 
validation cohort (out-of-sample validation), 
providing an objective and rigorous means of 
evaluating the candidate model. Measurements on 
the validation cohort were obtained only for the 
15 identifi ed markers, and were used to compare the 
prognostic value of several models (described 
below). All measurements were log transformed and 
normalized to have zero mean and unit variance, 
and we used Cox proportional hazards models of 
patient survival time. Approximately 20% of the 
tissue microarray measurements were missing 
because of core loss, unevaluable staining or the 
lack of tumor in the histospot. As a result, the marker 
and model-selection methodologies as well as 
the out-of-sample validation utilized multiple 
imputation techniques.

The most common approach to dealing with 
only a few missing values—casewise deletion—
is impractical with many missing values. The 
alternative is imputation, the general act of fi ll-
ing in missing data, and many approaches to 
imputation have been proposed and studied 
(see Schafer for, 1999 an overview). Investigators 
may sometimes fi ll in missing values using the 
mean or the median of each variable; a more 
advanced approach would rely on the k-nearest 
neighbor algorithm (fi lling in missing values 
based on the mean or median of the k nearest 
neighbors as identifi ed by non-missing variables). 
Neither of these approaches is ideal, because the 
subsequent analyses fail to account for the 

uncertainty due to the missing values, but mul-
tiple imputation specifi cally addresses this issue. 
The imputation of missing values is conducted 
multiple times, leading to multiple realizations of 
complete data sets, the statistical analysis is con-
ducted on each imputed data set in turn, and the 
results are pooled. When values are missing at 
random, multiple imputation can lead to more 
effi cient, statistically valid inferences than case 
deletion or other methods of imputation.

Our multiple imputation procedure is one of the 
simplest, based on the multivariate normal 
distribution. With p variables, however, it requires 
estimation of p + p(p + 1)/2 parameters (p means 
and a covariance matrix); this would be infeasible 
with the original 42 markers in a study of this size 
(a training cohort of approximately 1500 would 
be needed). As a result, we limited its use to no 
more than a subset of 9 variables at a time from 
the training set. This choice is based on the size of 
this particular study; a different choice would be 
needed for other studies. We used the multiple 
imputation tools in the “norm” package (Novo 
2002) in the R Statistical software, to obtain 
random draws from the incomplete multivariate 
normal distribution of missing data conditional on 
the non-missing values. Each application of 
multiple imputation involves the analysis of many 
different complete data sets (differing in the 
imputed values), leading to many slightly different 
analyses. The results of these analyses are then 
combined, providing a natural way of incorporating 
the uncertainty due to the missing values.

Statistical analysis: marker selection
In the fi rst phase of the study, we chose 15 of 
the most promising markers for subsequent 
measurement on the validation cohort. This number 
was chosen partly in recognition of the anticipated 
use of multiple imputation with 338 cases in the 
validation cohort, and partly to help conserve the 
scarce resources of Yale’s breast cancer archive. 
With 236 patients in the training cohort and approx-
imately 20% missing values, we decided to use 
multiple imputation on subsets of no more than 9 
of the 42 markers. Figure 1 outlines the variable 
selection procedure; note that we are not concerned 
with model coeffi cients or prediction at this point.

We proceeded by conducting 1000 random 
allocations of the 42 markers to 5 groups of size 8, 
8, 8, 9, and 9. For each of the resulting 5000 subsets 



34

Emerson et al

Cancer Informatics 2009:7

of markers (with each marker appearing in 
1000 subsets), multiple imputation was used to cre-
ate 10 complete data sets. For each of these complete 
data sets, we fi t a Cox proportional hazard model 
using a backwards stepwise variable selection pro-
cedure and the AIC penalty, collecting the t-statistics 
of the retained markers from each of the resulting 
subset models (as well as noting which variables 
were retained and which were eliminated by the 
stepwise procedure). Thus, each marker was studied 
in 10,000 subset models (with 1000 different random 
subsets of markers and 10 multiply imputed data 
sets for each subset). This use of random subsets of 
variables and the subsequent stepwise variable 
selection helps explore the high-dimensional space 
of models and focus attention on those markers of 
greatest prognostic value. We examined the mean 
t-statistics for coeffi cients of markers retained by the 
repeated stepwise procedures as well as the 
proportion of times each marker was retained. 
We then chose 15 of 42 markers for further study 

on the validation cohort. This procedure using 
multiple imputation is computationally intensive 
(taking approximately 2 hours in our study) 
compared to single-imputation methods (taking 
approximately 10 minutes).

Statistical analysis: model selection
A secondary analysis of the training cohort 
identifi ed a single, hypothesized “best” model 
containing baseline variables (age, tumor size, 
nuclear grade) and a smaller subset of markers. 
Again using multiple imputation, we used a 
procedure similar to forward stepwise selection to 
build the model. Variables were added one by one, 
each time by selecting that variable contributing 
the most to improving the log-likelihood (averaged 
over 100 multiply imputed data sets) and avoiding 
the inclusion of redundant markers. Our goal 
(guided by the biomedical research aims) was to 
identify a model containing not more than four to 

Full Training Set
(236 patients,
42 markers)

Missing Values

8 markers

Missing Values

8 markers

Missing Values

8 markers

Missing Values

9 markers

Missing Values

9 markers

Missing Values

8 markers

Complete data
Version 1

Randomly allocate 
42 markers to
5 groups of 

sizes
8, 8, 8, 9, and 9.

Multiple Imputation:

Create 10 complete
data sets

8 markers

Complete data
Version 10

8 markers

Complete data
Version 2

Stepwise Variable
Selection

(AIC)

Subset model 1

Collect t-statistics of
retained markers

Stepwise Variable
Selection

(AIC)

Subset model 10

Collect t-statistics of
retained markers

Stepwise Variable
Selection

(AIC)

Subset model 2

Collect t-statistics of
retained variables

Repeat the randomization and subsequent
analysis 1000 times.

Figure 1. Marker Selection.
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fi ve markers; we examined improvements in the 
log-likelihood and Harrell’s R2 (Harrell, 2002) in 
choosing between four or fi ve markers.

Statistical analysis: out-of-sample 
validation
Candidate models were identifi ed and fi t using only 
the training cohort; out-of-sample validation tests 
the goodness-of-fi t and compares the models using 
the validation cohort. This provides an objective 
and rigorous means of validating the results of the 
study. Once again, missing values required 
specialized statistical analysis. Figure 2 outlines 
the validation procedure used to compare three 
models to a baseline clinical model including age 
at diagnosis, nuclear grade, and tumor size. 
The fi rst model included positive nodes, the second 
included the four selected markers, and the full 
model added both positive nodes and the protein 
markers to the baseline model.

Multiple imputation was used to obtain 100 pairs 
of complete training and validation data sets. For 
each pair, candidate models were fi t using the 
training cohort, and tested on the validation cohort. 
Goodness-of-fi t statistics (the log-likelihood and 
Harrell’s R2) were obtained for each model on each 
of the imputed validation data sets. We compared 
the models by examining the distributions of the 
differences of the statistics between each of the three 
models of interest and the baseline model; p-values 
were calculated using the likelihood ratio test on 
the median improvement in the log-likelihood.

Results

Clinical and pathological variables
The training and validation cohorts included 236 and 
338 patients, respectively, with histologically 
confi rmed breast carcinoma. Ideally, the cohorts 
would have been selected completely at random, 

Reduced Training Set 
(236 patients 15 markers) 

Full validation set 
 (338 patients, 15 markers) 

Missing Values

Complete training and 
validation data sets 

Version 1

Multiple Imputation:

Create 100 complete 
training data sets

Complete training and 
validation data sets 

Version 2

Complete training and 
validation data sets 

Version 100

Create 100 complete 
validation data sets

Fit candidate models 
on training data 

Version 1

For each candidate model:
 obtain log-likelihood and

       Harrell’s R2 for 
complete validation data 

Version 1 

Fit candidate models 
on training data 

Version 100

For each candidate model:
obtain log-likelihood and 

Harrell’s R2 for 
complete validation data 

Version 100 

Fit candidate models 
on training data 

Version 2

For each candidate model:
obtain log-likelihood and 

Harrell’s R2 for 
complete validation data 

Version 2 

Multiple Imputation:

Figure 2. Out-of-sample validation.
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but this was infeasible given the limited tissue 
availability for some patients. The training cohort 
contained 110 events (46.6%), while the validation 
cohort contained 167 events (49.4%). Table 2 
provides a comparison of the cohorts with respect 
to age at diagnosis, nuclear grade, tumor size and 
positive nodes using a univariate Cox proportional 
hazard analysis of survival. The cohorts were 
generally similar, although some differences were 
observed with respect to nuclear grade.

Marker and model selection
Table 1 indicates the 15 markers (marked with an 
asterisk) selected for exploration in the validation 
cohort. In contrast, casewise deletion within the same 
randomly assigned subsets of variables followed by 
stepwise variable selection yielded a somewhat 
different set of recommended markers.

A baseline model was constructed using 
only clinical and pathological characteristics that 

would be available without axillary lymph node 
dissection. The model selection procedure 
examined the improvements from the baseline in 
the training cohort when adding nodal status 
and/or multiplexed biomarker protein expression 
level data. Analysis of the training cohort and 
consultations with the medical researchers resulted 
in a hypothesized “best” model, including COX6C, 
GATA3, NAT1, and ESR1. The addition of another 
marker provided negligible improvements in the 
log-likelihood and Harrell’s R2. Table 3 presents 
goodness-of-fi t comparisons of several models 
including various combinations of markers and 
nodal status. We note that the study of the 
training set indicated that the markers might 
prove more useful than nodal status (“M4” 
provides significantly better improvements in 
goodness-of-fi t than “Nodes” in Table 3), but that 
the best model includes both markers and 
nodal status.

Table 2. A comparison of the training and validation cohorts. Univariate Cox proportional hazard coeffi cients 
(with 95% confi dence intervals) show the similarities between the cohorts with the exception of nuclear grade 
(which appears to have a statistically signifi cant relationship to survival in the validation cohort, but not the 
training cohort).

Variable Training (236) Validation (338)
Age at Diagnosis
 Missing values (percent) 0 (0%) 0 (0%)
 Mean (standard deviation) 59.9 (12.4) 56.8 (12.0)
 Hazard ratio (95% confi dence interval) 1.00 (0.989–1.02) 1.00 (0.987–1.01)
Nodal Status and Positive Nodes
 Missing values (percent) 1 (0.4%) 0 (0%)
 Node positive (percent) 119 (50.4%) 169 (50%)
 Node negative (percent) 116 (49.2%) 169 (50%)
 Positive nodes: Mean (standard deviation) 6.6 (8.0) 6.0 (6.1)
 Hazard ratio (95% confi dence interval) 1.04 (1.02–1.07) 1.06 (1.04–1.07)
Nuclear Grade
 Missing values (percent) 9 (3.8%) 28 (8.3%)
 1 36 (15.3%) 64 (18.9%)
 Count (percent) 2 118 (50%) 169 (50%)
 3 73 (30.9%) 77 (22.8%)
 Hazard ratio (95% confi dence interval) 1.12 (0.846–1.49) 1.39 (1.1–1.77)
Tumor Size
 Missing values (percent) 0 (0%) 37 (10.9%)
 Mean (standard deviation) 2.97 (2.24) Mean = 2.79 (2.12)
 Hazard ratio (95% confi dence interval) 1.10 (1.05–1.16) 1.15 (1.08–1.23)
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Out-of-sample validation
We validated the proposed four-marker model 
using the larger cohort of 338 patients. Figure 3 
shows the distribution of differences in the 
goodness-of-fit statistics between the three 
candidate models and the baseline model. There 
were only a few missing values for nodal status 
(compared to 20% of the marker values), so we 
see less variability in the distribution of the 
statistics corresponding to the node model. 
The addition of these four markers provides 
signifi cant improvements in the goodness-of-fi t. 
The out-of-sample validation results differ 
somewhat from the study of the training set; we 
had expected markers to be more valuable than 
nodal status. The out-of-sample validation shows 
that the addition of either nodal status or the four 
protein expression levels provides similar (and 
signifi cant) improvement over the baseline model 
(p-value � 0.001, and 0.028, respectively), while 
a full model using all available information 
provides the best improvement. The combined 
model provides a signifi cantly better fi t than the 
marker model (p-value � 0.001) or the nodal 
model (p-value 0.043). The distributions of the 
goodness-of-fi t statistics resulted from the analysis 
of multiply imputed data sets, reflecting the 
uncertainty attributed to the missing protein 
expression measurements.

Simulation
Investigators often drop cases with missing values 
from their studies. Other times, they may impute 
missing values using the mean or median values of 
each variable. A more sophisticated approach would 

use the k-nearest neighbor procedure for the 
purpose of imputation. Our approach, based 
on multiple imputation, offers an attractive 
alternative.

To demonstrate the advantages of our procedure, 
we generate 42 variables using the multivariate 
normal distribution with mean and covariance 
determined by the study data (and missing values 
assigned at random). We create a model for patient 
survival using the Weibull distribution and four 
coeffi cients for markers of decreasing levels of 
signifi cance (taking values 4, 2, 1, and 0.5). The 
remaining 38 coefficients are set to 0, and we 
repeatedly simulate patient survival using this 
model. We would like a procedure to identify the 
helpful markers and yet not mistakenly select 
unimportant markers. For each of 50 simulated data 
sets, we apply four stepwise variable selection 
procedures to randomly selected blocks of data: our 
procedure, dropping cases with missing value, 
imputing with variable medians, and imputing 
using k-nearest neighbor value. To enable a fair 
comparison of these methods, each of the procedures 
selects variables based on t-statistics above 2 in 
absolute value.

Table 4 presents the results, showing, in 
particular, the danger of conducting an analysis by 
simply dropping cases having missing values. 
As expected, this is the worst alternative, rarely 
succeeding in identifying important variables. 
Imputing values using variable medians or 
k-nearest neighbor values does the best in terms 
of including important markers, but these methods 
also include a huge number of unimportant 
markets; they fail to account for the uncertainty 
due to the imputation of values, acting as if they 

Table 3. Model selection on training data.

Model name Variables Mean (standard deviation) Improvement over 
Baseline Clinical Model

R2 Log-likelihood
Baseline Age at Diagnosis 

Nuclear Grade Tumor Size
NA NA

M1 Baseline + COX6C 0.0537 (0.0157) 6.78 (2.05)
M2 M1 + GATA3 (N) 0.0655 (0.0158) 8.33 (2.08)
M3 M2 + ESR1 (N) 0.0693 (0.0155) 8.82 (2.06)
M4 M3 + NAT1.Total 0.0743 (0.0170) 9.48 (2.26)
Nodes Baseline + Positive Nodes 0.0312 (0.0011) 3.89 (0.13)
Combined Baseline + M4 + Positive Nodes 0.0993 (0.0171) 12.85 (2.35)
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have a complete data set. In contrast, our procedure 
based on multiple imputation does almost as well 
at selecting the important variables (having trouble 
only with the least signifi cant of the four markers), 
but avoids including excessive numbers of 
irrelevant variables (only about 3 per attempt, 
compared to 5–6 for the other procedures).

Discussion
This study examines the relative merits of using 
protein expression levels, invasive lymph node 
sampling and conventional clinical factors 
in breast cancer survival prognostic models. 
Automated quantitative analysis (AQUA™) was 
used to measure the protein expression levels of 
42 markers on a breast cancer training cohort of 
236 cases. We identify a small subset of markers 
(including COX6C, GATA3, NAT1, and ESR1) 

important in predicting patient survival, resulting 
in a model capable of predicting patient outcomes 
as effectively as a model utilizing nodal status 
alone. We validate the results on an independent 
cohort of 338 cases, fi nding that the addition of 
either nodal status or the four protein expression 
levels provides similar (and signifi cant) improve-
ment over a baseline model, while a full model 
using all available information provides the best 
patient predictions.

The availability of extensive tissue reposito-
ries coupled with annotated clinical information 
provide an opportunity to take advantage of the 
rich source of biologically relevant information 
in tissue specimens. Tissue microarrays provide 
a valuable resource for combining pathological, 
clinical, and biological data to develop predictive 
models for diseases such as cancer. Unfortu-
nately, missing values are unavoidable in tissue 
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Figure 3. Validation of four-marker model. Each plot depicts the distribution of improvements in the goodness-of-fi t statistics for three candidate 
models compared to the baseline model containing only the clinical factors: “Nodes” (lymph node status and clinical factors); “Markers” (four selected 
protein markers and clinical factors), and “Combined” (including clinical factors, protein markers, and nodal status).

Table 4. Simulation results. The table shows the number of times (out of 50) that the four markers were captured 
by the variable selection process. The last column indicates the mistaken inclusions of spurious variables.

Method Beta1 Beta2 Beta3 Beta4 Others
stepMI 50 50 50 6 159
Drop 9 4 2 0 35
Median 50 50 50 43 572
KNN 50 50 50 37 512
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microarray data for a variety of reasons. The 
tissue core might not contain tumor epithelium, 
cores might be missing, or the cores may be 
uninterpretable because of debris or other slide 
defects. In order to take full advantage of 
all available data, we incorporate multiple 
imputation with Cox proportional hazards 
modeling. This allows identifi cation of a subset 
of markers of likely predictive value. Our simu-
lation resulted provide one comparison of various 
methods of dealing with missing values; we note 
that an analysis of our training cohort that simply 
dropped cases with missing values would 
have overlooked the importance of two of the 
identifi ed best markers.

It is not surprising that ESR1 (estrogen receptor 
alpha) is identifi ed as an important component of 
the model since hormonal status was not otherwise 
used in the selection of the cohort. The biological 
relations that provide the additional value of these 
markers in the four marker model are not well 
studied, but deserve further exploration. Previous 
studies have shown that NAT1 expression is 
increased in breast tumors compared to normal 
breast tissue (Stanley, 1996). Bièche at al 
(2004) provide evidence that NAT1 may be an 
ERα-responsive gene in human breast cancer. 
NAT1 mRNA status (which has been shown to 
correlate well with immunohistochemistry for the 
NAT1 gene product) in this study also provided 
evidence of effect on prognosis independent of 
lymph node status. The mRNA levels of the 
transcription factor GATA3 and the Cytochrome 
c oxidase subunit Vic (COX6C), have both been 
reported to be important in discriminating hormone 
responsive breast cancer or with the ER+ subtype 
of tumors (for example, Gruvberger, 2001; Perou, 
2000; West, 2001; Hoch, 1999; Pusztai, 2003). 
Mehra et al. (2005) recently reported that low 
expression of the transcription factor GATA3 was 
commonly present in invasive carcinomas with 
poor clinical outcome; its association with out-
come has been reported by others (van de Rijn, 
2002), along with its potential role in predicting 
hormonal therapy response (Parikh, 2005). Our 
results provide further evidence of the importance 
of low levels of this marker in poor risk breast 
cancer.

In summary, we propose a methodology 
for marker selection from a large number of 
biomarkers with missing data, and apply the 
methodology to biomarker discovery using breast 

cancer tissue microarrays. We found that a model 
including GATA3, COX6C, NAT1, and ESR1 
provides equivalent prognostic value as lymph 
node status alone, and provides further information 
when combined with lymph node status. These 
results are strongly supported by out-of-sample 
model validation, and our methodology may be 
easily applied to other problems with missing data. 
The ability to conduct analyses in the presence of 
missing data will become increasingly important 
as tissue microarrays are used in research studies 
of drug responsiveness and clinically for patient 
prognosis.
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