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Abstract: In this paper, we outline the status quo and approaches to further development of the systems biology concepts 
with focus on applications in cancer prevention science. We discuss the biological aspects of cancer research that are of 
primary importance in cancer prevention, motivations for their mathematical modeling and some recent advances in com-
putational oncology. We also make an attempt to outline in big conceptual terms the contours of future work aimed at 
creation of large-scale computational and informational infrastructure for using as a routine tool in cancer prevention science 
and decision making.

Keywords: cancer prevention, systems biology, mathematical modeling, biological networks, genetic regulation, general 
systems theory, dynamical stability

Introduction
Cancer is a collective term for a number of multi-factorial and heterogeneous diseases characterized 
by uncontrolled cellular growth. In the multi-step process, normal cells are initiated and transition 
through hyperplasia, different degrees of dysplasia and carcinoma in situ and eventually become inva-
sive to adjacent tissue and metastasize to other organs and tissues. Cancer prevention aims to disrupt 
oncogenesis by chemical, biological, or nutritional intervention and thereby prevent, reverse or delay 
the development or recurrence of cancer. Primary prevention aims to block initiation and the secondary 
prevention strives to delay or reverse promotion or progression of carcinogenesis.

Biological systems (organism, organ, tissue, cellular, subcellular, molecular systems) are comprised 
of multiple interactive complex networks with redundant, convergent and divergent signaling pathways 
including numerous positive and negative feedback loops. They may be represented by abstract bio-
logical networks which aim to depict the essential elements and activities of the former via integrative 
and dynamic simulations. Systems biology represents an integrated approach to understand functions 
of biological systems and effects of perturbations on them.

Attempts to inject systemic views into biology have a long history. For example, an interesting per-
spective entitled “The Systems View of Man: Implications for Medicine, Science, and Ethics” has been 
published as early as in 1973 [1]. From a biological standpoint, systems biology is the large-scale 
dynamic study of functional and physical relationships between the molecules that make up life. This 
includes interactions within cells, between cells and between cells and their environments [2–5]. Systems 
biology aims to understand and describe complex biological systems and develop predictive models 
for physiological and pathological processes and apply them to control of disease states such as carci-
nogenesis. Four distinct aspects (system structure, system dynamics, system controls, and system design 
to introduce desired modifi cations) are considered in applying system biology approach to biological 
systems [6]. It is necessary to understand the functionality of interconnected complex biological net-
works in order to effectively devise appropriate cancer preventive measures and avoid any unwanted 
side effects. Numerous dynamic biological processes ranging from milliseconds (conformational 
changes) to minutes (post-translational protein changes) to hours and days (gene expression) and years 
(epigenetic control), maintain biological systems in certain quasi-equilibrium states. Application of 
engineering tools and concepts (e.g. networks, robustness, modularity, stochasticity, etc.) to biological 
studies is gaining increasing popularity and showing promise [6–8]. For example, integrative systems 
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level approach has considerably increased the 
understanding of the EGFR signaling pathway, one 
of the most studied pathways [9] . However, it is 
also important to go beyond the cell and employ a 
more holistic approach in terms of the entire organ-
ism. For example, a role of cell-cell interaction/
communication, locally and distally, has been 
implicated in carcinogenesis [10, 11] and is based 
on earlier made observations [12].

Biological systems in general and cancer in 
particular exhibit inherent resistance against inter-
nal and external perturbations, a characteristic 
termed robustness [9, 13–16]. Robustness differs 
from principles of stability and homeostasis in that 
it deals with maintaining system function as 
opposed to system states. This trait is ubiquitous 
in nature and largely due to extensive built-in 
redundancies (fail-safe mechanisms relying on 
alternative components or functionalities to main-
tain the system function), modularity (isolation of 
perturbation of one component on the whole 
system), decoupling (buffering of noise and fl uc-
tuations) and system controls via feedback loops 
(negative, positive, feed-forward) [6, 13]. How-
ever, it should be kept in mind that there is always 
a trade-off among robustness, fragility, resource 
demands and performance [6]. Kitano had proposed 
that cancer may be viewed as a breakdown of 
normal physiological robustness and change to 
pathological state that develops its own robustness 
in addition to using the host’s robustness [6, 15]. 
He had examined the theory of biological robust-
ness in relation to cancer, inhibition of carcinogen-
esis, and drug design [6, 13] and proposed a need 
for cancer robustness theory motivated approach 
to cancer prevention and therapy [6].

One of the re-emergent theories of  carcinogenesis 
involves cancer stem cells (see, http://dcp.cancer.
gov/newsandevents/eventsarchive/20070514–15 
and [17, 18].) Cancer stem cells represent a small 
subpopulation of cancer cells within a tumor and 
are characterized by their ability for self-renewal 
and pluri-potency. These cells are resistant to com-
mon intervention treatments and are thought to be 
responsible for cancer formation and growth, 
relapse and different stages of carcinogenesis. The 
microenvironment also plays an important bidirec-
tional role [19].

Cancer is a dynamic multi-step, multi-mechanism 
disease involving complex interactive and redun-
dant pathways, e.g. upregulation of survival path-
ways (e.g. bcl2, NFkB, AKT and receptor kinases) 

and genetic and epigenetic changes in relevant 
targets during cancer progression [20]. Conse-
quently, it is important to understand the dynamic 
progression of cancer and apply appropriate pre-
ventive interventions accordingly. Heterogeneity, 
robustness, system dynamics and importance of dif-
ferent molecular targets changes during the carci-
nogenesis process greatly limit usefulness of a 
single “magic bullet” approach to intervention. 
There is a growing movement from a single target 
drug to multi-target drug paradigm [21] due to 
recognition that an alteration of a single target may 
be inadequate to produce desired biological effects. 
Instead, a partial modifi cation of several targets 
may be more effective than a complete inhibition 
of a single target based on network models. 
Recently, an importance of targeting entire path-
ways has been strongly emphasized in [22, 23]. 
These authors conclude their work by the follow-
ing notable statement [22]: “In addition to yielding 
insights into tumor pathogenesis, such studies 
provide the data required for personalized cancer 
medicine. Unlike certain forms of leukemia, in 
which tumorigenesis appears to be driven by a 
single, targetable oncogene, pancreatic cancers 
result from genetic alterations of a large number 
of genes that function through a relatively small 
number of pathways and processes. Our studies 
suggest that the best hope for therapeutic develop-
ment may lie in the discovery of agents that target 
the physiologic effects of the altered pathways and 
processes rather than their individual gene com-
ponents. Thus, rather than seeking agents that 
target specifi c mutated genes, agents that broadly 
target downstream mediators or key nodal points 
may be preferable. Pathways that could be targeted 
include those causing metabolic disturbances, 
neoangiogenesis, misexpression of cell surface 
proteins, alterations of the cell cycle, cytoskeletal 
abnormalities, and an impaired ability to repair 
genomic damage.” Vogelstein had further elabo-
rated (www.bio-itworld.com/pb/2008/09/25/gbm-
vogelstein.html): “By targeting the pathways, it’s 
possible new drugs could be effective against a 
much greater fraction of tumors. This is a very 
different perspective from what’s now operative 
in the drug development community”. In line with 
these ideas, it has been proposed in [21, 24, 25] 
that low affi nity, multi-target drugs, representing 
weak links in cellular networks, may have a greater 
tendency to stabilize complex networks. Lack of 
effectiveness or presence of undesirable side 
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effects have been ascribed to emphasis on drugs 
against a single target [15]. Single target interven-
tions ignore redundancy, cross-talk, heterogeneity 
and pleiotropy. For example, selective inhibition 
of oncogenic AKT could have detrimental effects 
on glycogen metabolism which could be avoided 
by multi-component intervention downstream 
instead [3]. Another example of oncogenic pathway 
redundancy and crosstalk involves TGF-β [3]. 
Inhibition of TGF receptor would inhibit growth 
promoting SMAD2 and SMAD3, but would also 
activate oncogenic MAPK signaling. Inhibition of 
either SMAD2 or SMAD3 would likely lead to 
compensatory upregulation of its redundant coun-
terpart. Many drugs have multiple targets and 
rational design of multi-target drugs will require 
much more temporo-spatial information about 
metabolic pathways, receptor signaling and signal 
transduction. While the reductionist approach has 
provided valuable information on individual 
molecular targets and their function, additional 
knowledge on spatial and temporal dynamic char-
acteristics and complex interconnections in 
biological systems are needed for understanding 
and modulation of biological processes [8]. In fact, 
spatial and temporal dynamics of downstream 
signaling pathways may determine the specifi city 
and nature of biological response [26]. Therefore, 
it is expected that application of systems biology 
to cancer prevention in terms of time dependent 
drug target selection should improve effi cacy and 
decrease toxicity of preventive interventions. Drug 
combinations are common in antibacterial and 
cancer chemotherapy and traditional medicine. In 
fact, many drugs exhibit biological effects via 
multiple simultaneous activities at different targets 
[27]. Cancer prevention, like prevention of other 
complex diseases, would benefi t from combination 
therapy based on dynamic systems biology 
approach as opposed to isolated, static view of the 
disease. There is a need to avoid reductionism and 
consider the entire biological system. It has been 
proposed that control of cellular dynamics may be 
more effective against cancer than that of its com-
ponents. Therefore, a need for systems biology 
approach to improved understanding and control 
of disease progression and multicomponent inter-
vention in network systems in general and cancer 
and cancer prevention in particular is obvious. 
Application of systems biology to complex bio-
logical systems is in its infancy but the need and 
rewards are great.

The most concise defi nition of  the term “systems 
biology” is that systems biology is the theory of 
systems applied to biology. Theory of Systems, as 
a separate discipline with its own methodology, 
philosophy, mathematical instrumentation and 
fi elds of applications, has existed for almost a 
century. It is an interdisciplinary fi eld of science 
which studies complex systems in nature and 
society such as an organism, organization, mecha-
nism or informational network. Theory of Systems 
stems from the Bogdanov’s “Tectology” [28] and 
Bertalanffy’s “General System Theory” [29]. The 
General System Theory (GST) is widely regarded 
as an alternative view to that based on fundamen-
tal, often called  fi rst, principles of natural sciences. 
As such, the GST has introduced a number of new 
concepts and categories not reducible to those of 
physics, chemistry or biology. Among them are the 
concepts of complexity, adaptation, evolution, 
robustness, self-organization, catastrophes, chaos, 
criticality and numerous others. The GST stimu-
lated development of a number of mathematical 
disciplines with central role of the concept of 
network and deep connections to graph theory and 
algebraic geometry.

By defi nition, a complex system is composed 
of interconnected parts that as a whole exhibits 
properties not obvious from the properties of the 
individual parts. Examples of complex systems 
include socio-economic structures, language, 
crowd psychology, termite colonies, biochemical 
networks, organizational culture, nervous system, 
social networks, cells and living things, internet, 
terrorist movements, energy infrastructure, traffi c 
patterns, etc.

A number of prominent organizations in the 
U.S.A. and around the world are engaged in 
research and consulting pertaining to GST. Among 
them are the Santa Fe Institute (www.santafe.edu), 
RAND Corporation (www.rand.org), Center for 
the Study of Complex Systems (University of 
Michigan, www.cscs.umich.edu), Northwestern 
Institute on Complex Systems (www.northwestern.
edu/nico), New England Complex Systems Insti-
tute (www.necsi.org), Department of Complexity 
Science and Engineering (University of Tokyo, 
www.k.u-tokyo.ac.jp/complex), Institute for Quan-
titative Social Science (Harvard University, www.
iq.harvard.edu), and other.

The Living Systems theory [30] is an outgrowth 
of GST intended to formalize the concept of life. 
The discipline of Systems Biology is an aspect of 
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the Living Systems theory which intends to 
integrate an ever growing body of knowledge 
about individual processes on all the levels of 
living systems using the conceptual frameworks 
of GST. There are (at least) three salient concepts 
crucial for understanding complex biological 
systems in addition to those existing in the GST. 
These are emergence, robustness and modularity 
[31]. The concept of emergence means that 
complex systems display properties that are not 
demonstrated by their individual parts and cannot 
be predicted even with full understanding of these 
parts alone. Comprehensive understanding of such 
emergent properties requires the system-level 
conceptualization and cannot be derived from the 
reductionist perspective focused on the system’s 
components. Robustness is an inherent property of 
all biological systems and consists in their ability 
to maintain functional stability in the presence of 
adverse infl uences imposed by the environment. 
Robustness is manifested through the feedback 
loops and other forms of self-control. A module is 
a functional unit possessing certain intrinsic prop-
erties regardless of its interactions with the external 
world. In biology, a module consists of the sub-
units that have strong mutual interactions and 
participate in common function. Modularity pro-
vides robustness to the system by confi ning the 
damage to a single part and preventing its spread 
throughout the system.

A wealth of information has been accumulated 
in the twentieth century regarding the individual 
cellular components and their functions. On top of 
the knowledge inherited from the past, an explosive 
infl ux of new data is currently emerging due to 
high-throughput technologies such as microarrays 
and protein mass-spectrometry. With such abun-
dance of information, it becomes increasingly clear 
that complex biological functions cannot be gener-
ally attributed to individual molecules or molecu-
lar complexes such as DNA, mRNA or proteins. 
A key challenge for modern biology is to put for-
ward an integrated approach capable of envisioning 
the system’s functionality from the properties of 
the individual parts of which it consists [8].

The scope of work in systems biology is enor-
mous. Scientific journals with the key words 
“systems biology” in the title are numbered in 
dozens. A substantial fraction of the publications 
is devoted directly or indirectly to the systems 
biology of cancer. The discipline of Mathematical 
Oncology has emerged which attempts to integrate 

the gigantic and ever-growing body of knowledge 
on individual processes of tumor onset and prolif-
eration with large-scale data mining, mathematical 
modeling and high-performance computing. 
Increasingly, cancer is seen as a “systems biology 
disease” [32] as it has become obvious that there 
is literally no hope to defeat cancer by mere isolat-
ing individual “targets” and inventing strategies 
for their modifi cation. Development of a systemic 
view, however diffi cult, is in fact the only way to 
proceed. It is stated in [33]: “While the amount of 
gene expression data has explosively grown in 
recent years, an integrated theory of gene expres-
sion and regulatory network is not yet available. 
This divergence is the major bottleneck for making 
a progress in understanding biological systems.” 
This opinion is echoed by the NCI Strategic Plan, 
Nation’s Investment in Cancer Research (http://
plan.cancer.gov). It states “integration of experi-
mental biology with mathematical modeling will 
provide new insights in the biology and new 
approaches to the management of cancer.”

Against the backdrop of such monumental 
efforts in systems biology in general, and in the 
systems biology of cancer in particular, it seems 
almost surreal, if not regrettable, how small is still 
the role that applications of systems biology play 
in cancer prevention. It is noted in [34]: “Remark-
ably, despite the wealth of information, clinical 
oncologists and tumor biologists possess virtually 
no comprehensive theoretical model to serve as a 
framework for understanding, organizing and 
applying these data. Heeding lessons from the 
physical sciences, one might expect to fi nd oncol-
ogy aggressively, almost desperately, pursuing 
quantitative methods to consolidate its vast body 
of data and integrate the rapidly accumulating new 
information. In fact, quite the contrary situation 
exists.” It is not to say that there is lack of propos-
als in the literature to use various systemic 
approaches for identifying therapeutic and chemo-
preventive targets (mostly based on experimenta-
tion with animal models and in-vitro human cell 
lines) [35]. Rather, that means that no integrated 
approach yet exists that would summarize existing 
consensus knowledge for application and decision 
making in the domain of cancer prevention. There 
are many reasons behind such a situation, not only 
purely scientifi c but also logistical, historical, 
cultural and socio-economic. It is much easier, 
however, to express frustration regarding the status 
quo rather than to propose a workable approach 
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that would be both realistic in terms of available 
resources and capable of producing a noticeable 
impact in the near future. This paper is intended to 
provide a view on how to initiate a major effort 
to activate the role of systems biology in cancer 
prevention.

A Glimpse of Mathematical 
Oncology
The language of the GST, in general, and the sys-
tems biology, in particular, is mathematics; com-
plex systems require complex mathematics for 
their adequate description. A cursory look through 
the systems biology journals reveals an astounding 
array of mathematical disciplines which are in use 
for the description of complex biological systems. 
A long list of such disciplines is pioneered by the 
ordinary differential equations, partial differential 
equations and stochastic differential equations. 
Moving deeper, one can fi nd Markov processes, 
cellular automata, graph theory, Boolean networks, 
chaotic dynamics, neural networks, and even such 
a highly abstract discipline of algebraic geometry. 
Historically, mathematical physics has been a 
cradle for the majority of powerful mathematical 
methods; these are in routine use in classical and 
quantum mechanics, astronomy, statistical physics, 
hydrodynamics, thermodynamics, optics, chemical 
kinetics, astrophysics, electrodynamics, wave 
dynamics, turbulence and many other areas. It 
therefore comes as no surprise that many of the 
approaches developed in physics have percolated 
into the theories of complex systems, systems biol-
ogy including. However, it should be unequivo-
cally stated that the objects being studied in biology 
are often much more complex than those in physics, 
and less amenable to formulation in terms of 
abstract models. It is therefore erroneous to assume 
that the methods of mathematical physics are 
overly diffi cult for use in biology. In fact, quite the 
contrary to this view, the methodologies offered 
by mathematical physics, despite being highly 
sophisticated and rigorous, are often not complex 
enough to refl ect the biological realities. Tradition-
ally, an experimental biologist is accustomed to 
collaborating with a statistician, and it is often the 
case in the biological community that applied 
statistics is thought to be the only mathematical 
discipline which is really necessary for understand-
ing biological data. In reality, statistics is only 
a narrow slice in a vast body of mathematics. 

Statistical predictions are limited to the data at hand 
and are inherently incapable of comprehending 
global structure and dynamical patterns of behav-
ior of big and complex systems. It is clear that all 
the empirical information pertaining to even the 
smallest fragment of a living organism such as, 
say, an individual act of gene expression or protein 
folding—let alone information about the interac-
tion of tens of thousand genes and proteins—would 
probably be never possible to collect, no matter 
how much time, money and labor were poured into 
an experimental investigation. Therefore, the 
unmodeled realities of real organisms will ever be 
unattainable and unavailable for statistical evalu-
ation. Only a conceptual dynamical model allows 
for playing the what-if games with big systems. 
Predictions in such systems cannot be reduced to 
the statistical ones; the hypotheses generated are 
those of global behavior, not of a short list of pre-
selected predictors. Verifi cations of such predic-
tions are not expressed in p-values. Rather, the 
most salient elements of the overall dynamics 
featuring an entire class of systems are the out-
comes in such verifi cation. Predictive force of 
dynamical models is not reduced to extrapolation 
to future of the data at hand. Rather, it allows for 
envisioning possible reaction of the system on the 
perturbations not actually observed in the experi-
ment. It is not out of place to note that dynamical 
and statistical models are not the alternatives in 
data representation and analysis, but compliment 
each other. Having a conceptual dynamical model 
in place, a process called data assimilation 
becomes possible. In contrast to empirical model 
fi tting, which is a fundamental building block in 
statistical analyses, the data assimilation assumes, 
schematically speaking, that the parameters in 
the equations describing the model are subject to 
fi tting. The success of such a process is evaluated 
through similarity of the solutions to these 
equations with the phenomena experimentally 
observed [36, 37].

The fi eld of computational oncology is fl ourish-
ing. It is beyond the goals of this paper to give a 
systematic account of this fi eld. The papers [38, 39] 
provide a good sense of the major accomplish-
ments in this fi eld but are far from being exhaustive 
either (the latter provides an extensive review of 
publications prior to 2003 and contains more than 
300 references.) Very schematically, various 
aspects of mathematical oncology may be viewed 
as a sort of hierarchical structure. On top, one may 



312

Rosenfeld and Kapetanovic

Gene Regulation and Systems Biology 2008:2

fi nd the works exploring the very concept of cancer 
as a genetic disease and general condition under 
which such an anomaly may occur. A notable 
example is [40] in which cancer is seen as a “robust 
intrinsic state of molecular-cellular network shaped 
by evolution.” According to this work, and also to 
[41–43], the genetic regulatory system, being 
multidimensional with strong nonlinear interac-
tions, may posses a set of anomalous metastable 
states manifesting themselves as a genetic disease, 
although such states are not necessarily linked to 
any genetic damage or somatic mutation. The 
importance of this kind of works is that they 
challenge the somatic theory of cancer, the theory 
which dominates the mainstream of cancer 
research [44]. These works may be seen as meta-
theories that attempt to comprehend cancer from 
the GST viewpoint. They basically convey the idea 
that any multidimensional highly nonlinear 
system—and genetic regulatory network is one of 
them—may have a dominant (or “normal” or 
“healthy”) dynamics, but also may be trapped in 
some secondary metastable states, which may be 
considered as “abnormal” and naturally associated 
with a disease. Since no actual damage exists in 
the system, spontaneous tunneling between differ-
ent metastable states may be a purely stochastic 
process representing a natural way of life of the 
system. Hence, a remission would not be such a 
great miracle within this paradigm; it may be seen 
as moving the system back to the dominant, i.e. to 
normal state. There are experimental evidences in 
favor of such a view [45]. Obviously, if such a 
viewpoint proves to be realistic then the entire 
concept of cancer prevention may dramatically 
change.

On the next level down in the hierarchy of 
models in computational oncology, one may fi nd 
numerous models of specifi c processes in specifi c 
organs. These works heavily rely on sheer com-
putational power of modern computers and 
include as much empirical knowledge regarding 
these processes as possible. Schematically, they 
may be classifi ed into two groups: the models for 
capturing known biology and the models for 
capturing unknown biology [46]. The fi rst class 
of models provides the simulation frameworks 
for answering the questions similar to those 
regarding the effects of inhibiting particular 
targets against various cancer formations or other 
types of medical intervention. This kind of models 
is especially important as a practical support in 

decision making: it can help in understanding the 
mechanisms beyond the limits imposed by avail-
able observations, outline the priorities and reveal 
weaknesses in existing paradigms. The second 
type of models is more suitable in research 
settings and fulfi lls the goal of incorporating the 
knowledge inferred from observational data into 
the existing theoretical models.

A large number of works in computational 
oncology are devoted to various aspects of cancer 
cell proliferation and tumor growth. The variety of 
theoretical approaches is astounding: “from 
diffusion models of avascular tumours to multi-
phase models of vascular tumours, from travelling 
wave analysis of tumour invasion to models of cell 
migration by chemotaxis in multicell spheroids, 
from multi-species fl uid models to single phase 
viscoelastic models, from stochastic models of 
metastases formation to multiphase models 
of necrosis formation” [38]. An important aspect 
of these works is modeling angiogenesis as 
a key element in the development of invasive 
cancers [39].

Another large class of mathematical models in 
computational oncology is dealing with the dynam-
ics of gene-to-gene and gene-to-protein interac-
tions within intra-cellular regulatory networks. An 
extensive review is given in [47]. These models 
reveal the roles of genes and proteins in cellular 
processes and formation of the nodes for informa-
tion exchange between signaling pathways. The 
gene expression profi les of cancer cells provided 
by microarrays are often used as empirical basis 
for reconstructing genetic regulatory networks. The 
models describing individual processes in math-
ematical oncology may serve as prototypes of the 
modules for future integration into a comprehen-
sive all-encompassing computational model. Inte-
gration of the modular elements, both theoretical 
and empirical, into a single system may become a 
valuable resource for elucidating human diseases 
[48, 49].

Genetic alterations such as point mutations, 
chromosomal aberrations and DNA modifi cations 
accumulate during the lifetime of an organism. 
Each of these modifi cations of the molecular struc-
ture, either spontaneous or environmental, contrib-
ute to the DNA damage. Generally, the DNA 
replication in normal human cells is an extremely 
accurate process with probability of error less than 
10−9 per nucleotide. Propagation of DNA damage 
through the subsequent generations of cells is an 
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essentially stochastic process. Its modeling helps 
to envision loss of fi delity of replication due to the 
initial DNA damage. A number of sophisticated 
mathematical models have been developed to 
elucidate this issue (see [50] and an extensive 
bibliography therein.).

A focal point in cancer-related functional 
genomics is to understand how genetic or epigen-
etic perturbations to intra-cellular dynamics may 
lead to a disease. It should be noted, however, that 
there is no such thing as a time-invariable portrait 
of the cell, whether normal or cancerous; random 
temporal and spatial variations are ubiquitous pat-
terns in gene expression. Therefore, the very notion 
of genetic perturbation requires for careful sub-
stantiation. Randomness and stochasticity are 
persistent topics in the dynamics of genetic regula-
tory systems. In particular, the phenomenon of 
“burstiness”, i.e., large sporadic variations in pro-
tein and mRNA concentrations, has received much 
attention in the literature [51–53]. Practical impor-
tance of this all-pervading phenomenon is two-
fold. First, such sporadic variation can be easily 
mistaken for erratic behavior of the cell and mis-
interpreted as a genetic disease. Second, intrinsic 
stochasticity and temporal variability impose cer-
tain limitations in interpretation of microarray 
experiments and their usage for prediction of 
cancer outcomes, especially in clinical settings 
(see the works [54–57] by one of the authors and 
references therein.) A comprehensive review of 
stochasticity in transcriptional regulation is also 
given in [58].

Big Model: What is Involved?
As seen from the brief review presented in the 
previous section, the number of important pro-
cesses associated with cancer onset and prolifera-
tion may be counted in hundreds, and the number 
of mathematical and computational methodologies 
to model these processes may be counted in thou-
sands. Such an abundance of the models in circu-
lation, however, does not make the life of a 
practitioner and a decision-maker in the fi eld of 
cancer prevention any easier. To date no attempts 
have been made to design, or even envision, a 
comprehensive meta-model with the specifi c goal 
to be used in cancer prevention.

When attempting to outline a general structure 
and possible directions of development of such a 
model, several considerations come to mind. 

First, it should be mentioned that any single work 
in computational oncology is intended to elucidate 
certain processes of cancer onset and proliferation, 
and therefore potentially may help, directly or 
indirectly, to the fi eld of cancer prevention. The 
problem is that these individual contributions, 
however important, do not translate directly into 
any therapeutic intervention or decision making in 
the domain of practical cancer prevention. One 
researcher, or a small group of researchers, working 
in the fi eld of cancer systems biology have every 
right to claim that their efforts constitute, at least 
implicitly, a contribution to the cancer prevention. 
But a medical practitioner, policy maker, or pro-
gram manager cannot be automatically assumed 
to be an expert in all the mathematical methods 
and biological interpretations available in the 
literature, and as a result it is often the case that 
they have no easy ways to evaluate their applicabil-
ity to practical problems. Only when and if the 
individual models are integrated into a compre-
hensive system equipped with a user-friendly 
interface, can they become valuable assets in the 
science of cancer prevention.

Second, a realistic systems biology approach in 
cancer prevention is not supposed to serve by itself 
the purposes of scientific experimentation or 
hypotheses generation. Whenever possible, it 
should be based on the data which are considered 
established with some degree of consensus in the 
scientifi c community. In this sense, the goals of 
application of systems biology to cancer prevention 
are distinctly different from other, purely scientifi c, 
areas. The hot topics with much arguments and 
controversies around them would be a poor basis 
for practical solutions until they cool down to the 
point of crystallization into a solid and compara-
tively coherent scientifi c view. Although an ulti-
mate truth could probably never be achieved, the 
criterion of being relatively well substantiated 
seems to be a reasonable fi lter for inclusion into 
the integrated meta-model in cancer prevention.

Third, cancer is a highly heterogeneous disease 
with many different spatial and temporal scales. 
On each of these scales, different conceptual, 
mathematical and computational tools are required 
to depict the corresponding processes, and it would 
be nearly impossible to create a “theory of every-
thing” in cancer and implement it in a single model. 
Such a situation is quite typical in the world of 
big multi-scale models, and the only solution 
invented so far consists of constructing a modular 
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(or compartmentalized) hierarchical system of 
sub-models working concurrently and providing 
all the necessary information to the higher hierar-
chical level. Numerous examples of this kind exist 
in many domains other than systems biology. In a 
very general sense, the systems biology for cancer 
prevention has a lot to borrow from the expertise 
accumulated in other sciences.

Less is More in the Systems 
Biology for Cancer Prevention: 
Dynamics by Rules
Complexity of the biological processes associated 
with cancer onset and proliferation does not leave 
any hope for the success of any simple-minded 
reductionist approach in cancer prevention; inva-
sion of the system-wide computerized methods 
seems inevitable. Developing a comprehensive 
mathematical model serving the purposes of cancer 
prevention may seem to be a pure fantasy today. 
Nevertheless, given the historical precedents, 
exponential growth of knowledge, fast penetration 
of mathematical culture into biology, and wide-
spread availability of powerful computers, it is 
quite possible that within a decade or so any cancer 
prevention practitioner or clinical oncologist will 
have a comprehensive computational assistant 
running on his or her laptop. At this point, the 
question is not how to create such a big model from 
the scratch but how to begin the process of its 
creation with this ultimate goal in mind.

Although “thinking big” is useful, the first 
practical steps cannot be anything but small 
compared to the distance to cover. It is noted in the 
paper [59] with a telling title “Less is more in 
modeling large genetic networks” that “a central 
question is what the right level of description is 
when constructing quantitative models of large or 
even system-wide model of genetic networks.” 
A similar question may be posed with respect to 
any big model in the systems biology: how much 
detail is to be included into the model? Obviously, 
too much detail may be prohibitively costly in 
terms of time and labor for collecting the observa-
tional data and developing the mathematical model. 
On the other hand, an excessively crude model may 
deprive a system of its essential individual traits, 
thus reducing the model to an abstract formalized 
exercise. Sometimes, when a system has a certain 
degree of internal homogeneity, it is possible to 
apply a coarse-grained approach in which the 

functionality of individual elements is replaced by 
comparatively crude surrogate representation. 
Many such approaches are known in the dynamics 
of genetic regulatory networks; a useful review 
and extensive bibliography may be found in [60]. 
The coarse-grained approach is not, however, 
universally applicable, especially when the func-
tionality of individual subsystems require drasti-
cally different mathematical tools for their 
description. Also, a general rule of thumb in devel-
oping big computational systems is that mathemat-
ical concepts appropriate at a certain level in the 
hierarchy of models are not generally applicable 
at the levels up or down in this hierarchy.

A viable approach to modeling big systems in 
biology has been recently proposed in [61]. This 
approach is a variant of the so-called expert systems 
(ES) and is well known in many sciences and 
applications [62]. An ES is an artifi cial intelligence 
framework which attempts to reproduce and auto-
mate the performance of a human expert or a group 
of them. The theory of expert systems has many 
links to the GST, applied mathematics, operations 
research and management science. In an ES, an 
expert formulates his/her knowledge in the form 
of verbal rules, generally avoiding mathemati-
cal notation. In formal terms, these rules consist 
of a series of defi nitions and atomic statements 
(i.e. those not reducible to a collection of simpler 
ones) and may be manipulated in accordance with 
the laws of formal logic. As such, they constitute 
the basis for computer algorithms which may 
be programmed, debugged, checked for self-
consistency, augmented, coupled with other algo-
rithms and included in a bigger system. An outcome 
of a rule-based algorithm is also a certain rule; 
therefore, the entire rule-based expert system may 
be replaced, in principle, by the module which 
generates the rules much more complex then the 
atomic expert rules. Thus, the set of such modular 
algorithms may be then assembled into a bigger 
system, producing a problem-solving tool of 
unlimited complexity.

There are multiple benefi ts of using the rule-
based ES. The fi rst advantage is that it provides a 
well-tested framework for formulating imprecise 
knowledge. It is not out of place to note that being 
quantitative is not a synonym to being precise. 
Quantitative models require numerical parameter-
ization and explicit formulation of the functional 
form of equations. In reality, quantitative parameters 
are frequently known only within large margins of 
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errors, if known at all. As to the selection of the 
equations’ functional forms, a mathematician/
modeler is usually bound by the requirements of 
simplicity, solvability and computability. Subjec-
tive intuitive judgments are implicit participants 
in the development of any such system. Therefore, 
the quantitative representations often may not be 
more precise than the rule-based ones.

Second, a remarkable aspect of using the rule-
based ES is that in principle they are capable of 
representing precise knowledge with any pre-
specifi ed accuracy, provided such knowledge is 
available. The way it may be done is through using 
the so-called fuzzy logic (FL). As known from the 
theory, FL models are capable of representing 
complex systems to high degrees of accuracy 
through a series of successive FL refi nements and 
augmentations. The standard additive model 
(SAM), a common formulation of a FL system, is 
known to be a universal approximator, that is, to 
be in principle capable of approximating any non-
linear function as precisely as desired. In addition, 
FL logic models are naturally robust with respect 
to noise and variation in the system’s parameters, 
thus allowing for computation of the system’s 
dynamics with imprecise variables [61].

The third advantage is that formulation in the 
form of rules generally does not require an expert 
in the subject matter fi eld to be also an expert in 
mathematics and/or computer science. Neverthe-
less, the formulations he or she provides constitute 
a valid basis for the algorithm development, pro-
gramming and simulation experiments. Moreover, 
the ES statements are capable of depicting certain 
elements of knowledge when precise representa-
tion is unavailable. As an example, let us consider 
the following statement: “p53 protein is a transcrip-
tion factor that functions as a tumor suppressor.” 
True or not, this statement spans over several scales 
of biological events, from the molecular level of 
events like gene expression, to the cellular level of 
events like cell cycle and apoptosis, to the tissue 
level of events like tumor growth and proliferation. 
Creation of a quantitative mathematical model for 
such a multi-scale process would be a daunting 
task by itself; nevertheless, the above-mentioned 
qualitative statement regarding the p53-protein 
may serve as a valid piece of information in a rule-
based ES/FL. It is also worth mentioning that the 
commonly used graphical representations of 
metabolic pathways is nothing else than a set of 
fuzzy statements loosely connected into a bigger 

integrated scheme, thus being a variant of an ES/
FL. Finally, big models based on precise equations 
usually produce a wealth of redundant information 
which is difficult to comprehend unless it is 
summarized into a set of concise, and inevitably 
fuzzy, rules.

Therefore, we come to the conclusion that ES/
FL system is not a poor man’s systems biology; 
quite the contrary, it is a natural intermediate step 
towards an all-encompassing mathematical model. 
Several real-life examples of ES/FL models for 
complex biological processes are given in [61]. 
Java-based software framework of the ES/FL sys-
tem specifi cally oriented towards biological appli-
cations is given in [63]. Fuzzy logic is a well 
developed mathematical discipline with numerous 
applications in science, engineering, medicine, 
systems control and other areas requiring use of 
artifi cial intelligence. Theoretical foundations of 
qualitative reasoning and simulation are described 
in-depth in [64] and implemented in the software 
package QSIM freely available from the University 
of Texas [65]. Application of ES/FL in the systems 
biology for cancer preventions would not be like 
testing the unknown rough waters; rather it would 
be an adaptation of a well tested tool to a new area 
of applications.

World Dynamics Approach
Another popular methodology in constructing big 
compartmentalized multi-scale models is known 
as the world dynamics approach (WD). The term 
stems from the famous work The Limits to Growth 
[66] sponsored by the Club of Rome in early 
seventies. In this work, an attempt has been made 
to create a large-scale model of global industrial 
development in its competition with growth of the 
world population, exhaustion of natural resources 
and deterioration of environment. From the techni-
cal standpoint, the WD approach to modeling 
consists in combination of differential equations 
for the well established dynamical processes with 
empirical relations for the processes with unknown 
dynamics. Regardless of the success or failure of 
the WD in the domain it was originally designed 
for, it has become a valuable tool in large scale 
computational modeling. At the time of its intro-
duction, the WD model was considered as very big 
and was able to be run only on the most powerful 
computers of that time. Nowadays, however, such a 
model would easily run on a modest quality laptop. 
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Much more powerful WD models are currently 
available, and many of those are also suitable for 
working on personal computers. In particular, the 
ModelMaker software developed by ModelKinetix 
(see www.ModelKinetix.com) provides a compu-
tational environment for in-depth modeling in 
chemistry, environmental science, physiology, 
sociology, epidemiology, pharmacokinetics, eco-
nomics, business management, ecology and math-
ematics. The WD approach is an appropriate basis 
for quantitative solutions of systems biology prob-
lems as well.

Big Questions Regarding Big Models

Computational stability
As mentioned above, behavior of a complex system 
consisting of interconnecting simple parts cannot 
be readily envisioned from the individual proper-
ties of these parts. The same may be said about big 
modular multi-scale computational models. There 
are a number of fundamental questions pertaining 
to general patterns of behavior of complex hierar-
chical systems, and perhaps the most important 
among them is the question of stability. There are 
several different aspects of stability and all of them 
are important in practical applications. First, one 
needs to consider the stability with respect to 
variations of parameters determining the analytical 
and/or logical structure of the model. An overall 
pattern of the model’s behavior may be largely 
independent of some of these parameters, whereas 
others may be critically important in the sense that 
their slight modifi cation may cause a complete 
change in the model’s dynamics. Such a phenom-
enon is usually called bifurcation (or “branching”). 
Obviously, the parameters which found to be 
critical require more attention in terms of their 
accuracy and efforts to understand the origin of 
such criticality. This kind of sensitivity analysis 
may be seen as an important practical application 
of a computational model.

In the time-course dynamics, an important issue 
is the sensitivity with respect to variations of initial 
conditions. A viable computational system for 
simulating real life processes (such as pharmaco-
kinetics in drug discovery, for instance) should not 
be too much dependent on initial conditions. 
Otherwise, all the predictions resulting from the 
simulation will be strongly dependent on the indi-
vidual history of the simulated processes thus 

loosing their generality and practical value. There 
are a number of powerful mathematical tools for 
studying stability with respect to initial conditions 
with the Lyapunov exponents being in the center 
of all the relevant theories [67].

The question of sensitivity to variations of ini-
tial conditions is closely related to a more general 
question of overall dynamical stability. This ques-
tion leads to the very depth of the dynamical 
systems’ behavior. Generally a big nonlinear 
system of equations may have a set of equilibrium 
(a.k.a. fi xed) points and these may be stable or 
unstable. The importance of these concepts for 
multidimensional multi-scale modeling follows 
from the fact that only a stable system may have 
an asymptotic solution, and this solution is largely 
independent of the initial conditions (within certain 
basins of attraction.) In modeling, if the system is 
unstable then an apparent convergence of the solu-
tion to a certain limit may be a pure computational 
artifact having nothing to do with reality of the 
system-to-be-modeled. The question of dynamical 
stability in constructing the large computational 
models is just another aspect of the famous ques-
tion posed by R. May: “Will a big and complex 
system be stable?” [68]. A general answer is that 
the probability of a system being stable is miniscule 
unless special efforts are undertaken to design it 
to be stable. Therefore, the question of stability 
should be of primary importance in developing a 
big computational model in the systems biology 
for cancer prevention. It is worth noting that many 
of existing software packages, although claiming 
to be universally applicable to modeling the bio-
logical networks, leave the question of stability 
largely unaddressed. An in-depth discussion of 
dynamical stability with application to biochemical 
networks has been recently published by one of 
the authors [69].

Fast and slow variables, stochasticity
A big multidimensional computational model is 
necessary multi-spectral, i.e. includes the modules 
for the processes with drastically different charac-
teristic time scales. A review pertaining to this issue 
in the context of modeling cancer is given in [70]. 
For example, mRNA production is the process with 
characteristic times in minutes, cell cycle takes 
from hours to days, and tumor growth is a pro-
cess with time scales from months to years. In 
computational models, it is neither practical nor 
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technically possible to maintain the same time scale 
for the entire system; some kind of reduction in 
the state variables is unavoidable. A number of 
techniques have been developed in computational 
mathematics to solve this problem with two of 
them having gained a wide popularity: the fi rst one 
is known as the principle of enslaving [71], and 
the second as the elimination of fast variables [72]. 
In the former approach (playing a prominent role 
in the mathematical models of self-organization), 
the slow processes are considered to be frozen at 
any moment of fast time, thus providing a constant 
background for the fast processes. After resolving 
all the equations for fast processes, their summaries 
(e.g. averages) are being fed into the model for 
slow variables. Thus, fast processes become param-
eterized by slow evolving background. In the latter 
approach (playing a fundamental role in the sto-
chastic dynamics of nonlinear systems) the fast 
variables are considered to be chaotic in the slow 
time and replaced by an appropriately constructed 
stochastic process. Slow time differential equations 
are replaced by the stochastic differential equations 
with the diffusion tensor obtained from the fast 
scale. There are innumerable variants of these two 
key ideas in computational science and they are 
entirely relevant in the models for systems biology 
in cancer prevention as well.

Where to Start?
A starting point for any further development is a 
mere recognition of the fact that the systems biol-
ogy models specifi cally designed to be used in 
cancer prevention are currently nonexistent. Even 
such a simple action as start moving somewhere 
requires strategic vision, organizational efforts, 
resources, motivated people and time. Although 
ultimately the model may be very big, the fi rst steps 
are necessarily small. These small steps, however, 
should be in the direction of integration rather than 
towards further elaboration of individual processes 
and their in-depth mathematical modeling. In fact, 
the mass of the knowledge currently available is 
so monstrously huge that it may have already 
passed the point of being manageable. There is a 
serious risk of completely losing this knowledge 
for any practical purpose unless decisive steps 
towards integration are undertaken.

Whatever the direction for further steps is 
selected, certain initial actions seem unavoidable 
and at the same time economical. They consist in 

accumulation of the verbal expert summaries in 
any well established domain of preventive 
oncology. Whenever possible these summaries 
should follow common rules and common termi-
nology. Scientifi c organizations with a modular 
structure, where each research group is focused on 
certain types of organs/cancers, are especially well 
suited for these purposes. In a sense, their modular-
ity may mirror the modularity of a future compart-
mentalized mathematical model. Importantly, at 
this stage of development no serious involvement 
of mathematicians and/or computer scientists is 
required; although coordination and unifi cation 
would be highly desirable. All the summaries may 
be stored in databases containing the sequences of 
subject matter statements. There are special algo-
rithmic languages capable of processing these 
sequences in an automatic manner, with PROLOG 
being the best known example. From this point on, 
there are many ways to proceed towards quantita-
tive representation of the processes of interest. 
In particular, an elegant way of creating a semi-
quantitative model from purely qualitative rule-
based information is the technique known as 
Qualitative Differential Equations (QDE) [73]. In 
this approach, fuzzy statements from ES/FL are 
replaced by their quantitative analogs taken from 
the pool of pre-defined functional relations. 
For example, the statement “Y grows with X” may 
be replaced by the linear function, statement 
“F periodic with time” may be replaced by the 
sinusoidal function, and so on. This process is well 
formalized, may be performed in a more or less 
automatic fashion, and may result in a fairly com-
plex quantitative model. On the other hand, already 
existing genuinely quantitative models analyzing 
the details of corresponding fuzzy statements may 
be included into the system as is or after appropri-
ate fuzzifi cation. The latter means, for example, 
that a very complex behavior obtained from the 
solution of differential equations may be summa-
rized as a combination of fuzzy statements like 
“proportional”, “growing fast”, “periodic”, etc, 
thus bringing complex mathematical language 
closer down the earth of informal subject matter 
thinking. After all the modules comprising the 
system are described and tested in a rule-based or 
semi-quantitative manner, the full power of math-
ematical and computational methods may be 
applied selectively to those modules which are 
found to be really critical and do require to be 
analyzed in fi ne details.
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Conclusion
It is becoming increasingly recognized in scientifi c 
community that a systems biology approach should 
prove invaluable and even necessary to understand, 
simulate, predict and control complex biological 
processes such as carcinogenesis and to develop 
effective strategies in cancer prevention. We have 
outlined the status quo and possible ways of 
development of a computerized model specifi cally 
oriented towards application in cancer prevention. 
In particular, it has been proposed that three 
approaches, namely the rule-based fuzzy logic 
expert systems, the world dynamics type of models, 
and the qualitative differential equations, taken 
separately or in combination, would constitute an 
appropriate basis for initial steps in development 
of a large computational and informational frame-
work with focus on cancer prevention. It is not our 
intention in this paper to claim that these ideas are 
the only ways to proceed. Rather, our goal is to 
initiate a discussion in the cancer prevention com-
munity of the pros and cons of various approaches 
and to start a major movement in this direction. At 
this point, all options are on the table, and time is 
of the essence.
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