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Abstract: Over the recent years there has been a gradual rise in the use of pharmaceuticals during pregnancy. Knowledge 
on placental drug transfer and metabolism has increased during the past decades as well. Investigation of the transplacental 
transfer of any therapeutically useful drug is essential to the understanding of its metabolic processes and is a prerequisite 
for its use during pregnancy. The purpose of this review is to give insight on the various techniques that have been developed 
to evaluate transplacental transfer of drugs and xenobiotics.
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Introduction
During pregnancy, the placenta, which is a highly complex organ, serves several critical physiological 
functions. Among these is an important barrier role to minimize fetal exposure to drugs taken by 
the mother and other chemical in the maternal environment. The protective role of the placenta as 
a barrier and for removal of end products of metabolism is vital as the fetal hepatic and renal sys-
tems have immature and insuffi cient metabolic and excretory capacity (Stevens, 2006). Drug 
transplacental passage can occur by several mechanisms which include passive transfer, facilitated 
diffusion and active transport. There are specifi c transport mechanisms assisting in this function 
that are localized in the maternal-facing apical (brush border) and fetal-facing plasma membrane 
of the syncytiotrophoblast (Syme et al. 2004). Among them are the ATP binding cassettes (ABC) 
family proteins that include P-glycoprotein (Pgp), multidrug resistance proteins 1–3 (MRP1-3), 
and breast cancer resistance proteins (BCRP). They can effl ux drugs and toxic metabolites out of 
the feto-placental compartment into maternal circulation. Additional transporters including the 
organic anion transporters (OATP), serotonin transporters (SERT), norepinephrine transporter 
(NET) and several organic cationic transporters (OCTs) are also expressed in the placental tissue 
(St-Pierre et al. 2002).

Over recent years, there has been a gradual rise in the use of pharmaceuticals during pregnancy 
(Bonati et al. 1990; Sabo et al. 2001). The scientifi c community and public now pay more attention 
to the potential teratogenic and fetotoxic effects with increased focus on fetal exposure. Due to 
obvious ethical reasons, evaluation of fetotoxicity from maternal exposure to chemical and drugs 
is not performed in humans. Investigation of the transplacental transfer of any therapeutically 
useful drug is essential to the understanding of its metabolic processes and is a prerequisite for its 
use during pregnancy. Some mammalian animal models have been used to assess transplacental 
passage of drugs and chemicals, but species differences in placental anatomy and physiology have 
prevented general acceptance of animal studies as they relate to humans (Faber JJ, 1983; Hamshaw-
Thomas and Reynolds, 1985; Kennedy et al. 1986). Thus, although animal studies continue to be 
necessary for the teratogenic and fetotoxic potential compounds, transplacental transfer, metabo-
lism, placental toxicity, and molecular mechanisms functional in the placenta are best studied in 
placental models of human origin (Myllynen et al. 2005). The following review presents various 
in vitro methods that are used today to investigate the transfer across the human placenta, with an 
emphasis on the placental perfusion system, as it is an interesting tool for current studies of drug 
transfer.
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Placental tissue culture
Placental tissue can be cultured as tissue explants 
and used to study many facets of the maternal-fetal 
interface. Transport, enzyme function, nutrient and 
xenobiotic metabolism were evaluated in human 
placental explants derived from early and near term 
gestation (Miller et al. 2005). Explants cultures of 
fi rst trimester anchoring vili have been provided 
an in vitro model to study post implantation events, 
early stages of placentation and cytotrophoblast 
invasion (Genbacev et al. 1992; Miller et al. 2005; 
Vicovac et al. 1995). Placental explants can be used 
in two types of experiments. The fi rst is when the 
tissue obtained from uncomplicated pregnancies 
and can be used to study the effects of experimen-
tal condition on tissue survival and function. For 
instance, placental explants have been used to 
investigate uptake and effl ux of amino acids, vita-
mins and sugars (Dancis et al. 1968; Miller and 
Berndt, 1974; Ng et al. 1981), and to identify 
receptors, binding sits, and factors regulating 
transport processes. In addition, placenta explants 
have been used to study how does the mode of 
labor (cesarean section vs. vaginal delivery) affect 
the sensitivity of placental tissue to cytokines as 
tumor necrosis factor α (TNF α ), prostaglandin 
(PGE2), prostacyclin and non steroidal anti-
infl ammatory drugs(Turner et al. 2002; Turner 
et al. 2004). Another type of experiment is when 
the placental tissue is obtained from patients with 
clinically known pathology as intrauterine growth 
restriction (IUGR) or preeclampsia, and its func-
tion is compared in vitro with normal, gestational 
age matched controls (Miller et al. 2005). For 
instance, Merchant et al. studied matrix metallo-
proteinase in explants from normal and IUGR 
pregnancies (Merchant et al. 2004).

Placental explants offer the advantage of intact 
microarchitecture and maintenance of cell-cell 
interactions and paracrine communications; hence 
contribution of mesenchymal and endothelial cells 
to any metabolic process can be taken into account. 
In addition, placental tissue explants have a 
lifetime of up to 11 days though the syncyitiotro-
phoblast must be closely monitored for damage 
to microvilli, mitochondria, and basement mem-
brane (Miller et al. 2005; Syme et al. 2004).

Placental microsomes
Microsomes are small vesicles that are derived from 
fragmented smooth endoplasmic reticulum (SER) 

produced when tissues are mechanically broken 
(homogenized). Microsomes contain the cell’s 
cytochrome P450 (CYP) enzymes, involved in oxida-
tive metabolism. The placenta is known to possess 
relatively extensive enzymatic activity. It contains 
multiple cytochrome P450 enzymes in the mitochondria 
and endoplasmic reticulum of the trophoblastic cells 
(Syme et al. 2004). The placenta metabolizing 
enzymes are already present in early pregnancy 
(Myllynen et al. 2005). During pregnancy the placenta 
acts as a functional barrier by virtue of its metabolic 
enzymes and effl ux transporters, thus protecting the 
fetus from drugs and environmental toxins. However, 
there is also a possibility of production of active 
metabolites close to the fetus when the precursor is 
present in signifi cant amounts. Microsomal prepara-
tions of human placenta have given valuable informa-
tion of the various enzyme activities metabolizing 
drugs in the placenta. Van Patten et al. (1968) applied 
this procedure on various therapeutic agents. In these 
experiments, it was shown that the placenta could 
oxidize penobarbital while pethidine and amino-
phenazone are only slightly demethylated by placen-
tal proteins (Van Petten et al. 1968). Others studied 
the effect of chronic maternal drug addiction on the 
metabolic pathways in the placenta by preparing 
microsomes from term placentas of drug-dependent 
vs. normal (control) mothers. Using this model it was 
revealed that chronic maternal addiction does not 
induce metabolic pathways in the placenta for the 
biotransformation of drugs of abuse (Ostrea et al. 
1989). Environmental and occupational factors can 
affect the activity of xenobiotic-metabolizing enzyme 
in the placenta. The induction of CYP1A1 by mater-
nal cigarette smoking or drug abuse and the effect of 
steroids has been amply demonstrated (Paakki et al. 
2000a; Paakki et al. 2000b). Recently, metabolism of 
the progesterone, 17 hydroxyprogeteron caproate, 
(17-HPC) was studied on placental microsomes 
revealing that the extent of 17-HPC metabolism was 
much lower than that by the liver (Yan et al. 2008).

Techniques for the preparation of placental 
microsomes are similar to those used for the 
preparation of microsomes from other organs. 
Briefl y, the placenta is collected immediately after 
delivery; a small fragment is taken, washed, dried 
and crushed, using a suitable apparatus. Following 
grinding the tissue undergo differential centrifuga-
tion to discard deposit, following another 
centrifugation of the supernatant, at very high 
speed to collect the deposit which contain the 
mitochondria. The deposit is rapidly frozen in 
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liquid nitrogen while waiting to subsequent 
procedures (Bourget et al. 1995). The protein 
content in the microsomes, CYT P450 and aroma-
tase activities are determined using various assays 
(Lowry et al. 1951; Omura and Sato, 1964a; Omura 
and Sato, 1964b). The placental microsome model 
is an experimental model derived from tissue frac-
tions that provide us mostly with information 
concerning metabolism of drugs by the placenta.

Plasma membrane vesicles
Plasma membrane vesicles preparation is another 
effi cient in vitro model to study placenta transport. 
This preparation is useful for studying the effects 
of drugs or chemicals on transport mechanisms 
across the plasma membrane. The membrane 
vesicles are prepared from the surface microvilli 
of the human term placenta that are exfoliated from 
the syncytiotrophoblast cells and are further 
purifi ed by differential centrifugation and washing 
(Smith et al. 1974). Plasma membrane vesicle 
preparation can be isolated from the brush border 
and the basal surface of the trophoblast enabling 
us to separately investigate their function; thus, 
making it possible to individually investigate the 
function of each distinct transporter. For instance, 
Ushigome et al. studied the function of the physi-
ologically expressed Pgp, demonstrating inhibition 
of digoxin and vinblastin uptake into the placental 
membrane vesicle using the Pgp inhibitors, vera-
pamil, cyclosporine A , progesterone or C129 anti-
p-glycoprotein monoclonal antibody (Ushigome 
et al. 2003). The main disadvantage of this method 
is that exploration of membrane transporters activ-
ity is done in the absence of regulatory factors; 
thus, it does not exactly represent the in vivo 
conditions.

Cell culture models

Primary placental cells
A wide variety of primary cell lines can be produced 
from human placenta. The cells derived from the 
dispersed placental tissue have been characterized 
according to their morphology, cytoskeletal protein, 
enzyme histochemistry, hormone production and 
other antigens (Kliman et al. 1986). A primary 
trophoblast culture cell is a useful method to study 
uptake and release of drugs. Human cytotrophoblasts 
can undergo differentiation in culture and fuse to form 

functional syncytiotrophoblasts (Kliman et al. 1986). 
To prove that cells isolated from a placenta are really 
trophoblast cells is very important, since contamination 
with different cell types may infl uence results and 
conclusions (Frank et al. 2001). Moreover, villous 
and extravillous cytotrophoblast differ in their func-
tion and characteristics (Ockleford et al. 2004). The 
selection of viable cells has been examined in a 
number of studies and are summarized in Workshop 
Reports (Frank et al. 2001; Guilbert et al. 2002; 
Morrish et al. 2002). The culture of mononucleated 
trophoblasts preparations, have been successfully 
used to measure uptake kinetics of the anionic steroid 
precursor, dehydroepiandrosterone sulphate (Ugele 
and Simon, 1999) and also were used to study the 
basal Ca (2+) uptake, and thereby, defi ning the mem-
brane gates responsible for the syncytiotrophoblast 
Ca(2+) entry (Moreau et al. 2002).

Moreover, the endogenous expression of 
multiple transporters in isolated trophoblasts is an 
advantage to this technique, leading to a more 
representative view of potential interaction between 
drugs and natural substrates. For exam-
ple, the functional expression of the efflux 
transporter, P-glycoprotein (P-gp), in primary 
cultures of human cytotrophoblasts was studied by 
Utoguchi et al. (Utoguchi et al. 2000); further 
supporting the use of this in vitro model to inves-
tigate mechanisms regulating drug distribution 
across the placenta. Recently, a method for preparing 
and maintaining tight-junctioned syncytium on a 
semi permeable membrane has been described, but 
not yet widely used (Hemmings et al. 2001).

Cell lines from human placenta
There are three main types of cell lines derived 
from human placenta (Sullivan, 2004):
1. Spontaneous cell lines: A series of primary cell 

lines have been described, which spontaneously 
arise from cultured cytotrophoblast in vitro. All 
these cell line are from placental origin and may 
refl ect villous trophoblast function. Some of 
these cell lines have been used to study different 
aspects of trophoblast function as invasion, 
migration and immunology.

2. Transfected cells: These are cell lines that have 
been generated by specifi c transfection with 
viral genes (Graham et al.1993).

3. Choriocarcinoma cells: Cell lines derived from 
human choriocarcinoma display many of the 
biochemical and morphological characteristics 
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reported for in utero invasive trophoblast cells. 
Several of these lines as BeWo, JEG, and JAR 
are commonly used (Sullivan, 2004).
Since cells from human choriocarcinoma 

display many of the biochemical and morphological 
characteristics reported for in utero invasive 
trophoblast cells (Wadsack et al. 2003), these cell 
lines are more commonly used as a model that 
mimics the placental barrier. Utoguchi et al. (2000) 
have been able to show that, in BeWo monolayers, 
the basolateral to apical transport of known 
p-glycoprotein substrates, vinblastin, vincristine 
and digoxin, is signifi cantly greater than transport 
to opposite direction. Also, pharmacological inhi-
bition of p-glycoprotein using cyclosporine A, 
leads to decreased basolateral-to-apical transport 
(Utoguchi et al. 2000). Monoamine transport has 
been studied in JAR and BeWo cell lines, and the 
transport and metabolism of opioid peptides was 
studied also across the BeWo cell line (Ganapathy 
and Leibach, 1995). The advantage of these 
transformed cell lines is their ability to replicate 
rapidly in culture and thus can be easily cloned. 
However, the main disadvantage of these cell lines 
is the ongoing debate of whether these cells express 
the same makers as their origin. In addition, the 
cellular heterogeneity of the placental trophoblast 
is essential to the normal physiology of this organ 
and cell lines refl ect only part of this.

The in vitro placental perfusion model
The perfusion of isolated human placental cotyle-
don was fi rst described in 1967 by Panigel et al. 
and later has been modifi ed by Schnieder, Miller, 
Brandes and others (Panigel et al. 1967; Schneider 
et al. 1972; Brandes et al. 1983; Miller et al. 1985). 
This is the only method that simulates important 
in vivo features such as maintenance of the 
placental barrier and the separation perfusion of 
the maternal and fetal circuits. This model can 
provide information concerning three major 
aspects: a. placental transfer of substances; b. 
effects of endogenous and exogenous substances 
on fetal perfusion pressure and transport; and c. 
release of endogenous substances into maternal 
and fetal perfusions (Sastry, 1999).

Placental transfer of substance
The in vitro perfusion model provided valuable 
information on transplacental transport of nutrients 

such as amino acids (Schneider et al. 1979; 
Schneider et al. 1987), fatty acids (Dancis et al. 
1974; Dancis et al. 1973), hormones (insulin 
(Boskovic et al. 2003; Menon et al. 1990), vitamins 
(biotin, thiamin) (Schenker et al. 1990; Schenker 
et al. 1992) and various drugs, such as anesthetics 
drugs (Ala-Kokko et al. 1995; Giroux et al. 1997), 
antidiabetic related drugs (Elliott et al. 1991; Elliott 
et al. 1994; Holmes et al. 2006; Nanovskaya et al. 
2006; Kovo et al. 2008a; Kovo et al. 2008b), HIV 
protease inhibitors (Olivero et al. 1999; Forestier 
et al. 2001), antiepileptic drugs (Pienimaki et al. 
1997; Myllynen et al. 2003), abused drugs (Malek 
et al. 1995; Nanovskaya et al. 2008) and antibiot-
ics (Polachek et al. 2005). Bourget et al. and Myren 
et al. presented lists of drugs, having therapeutic 
interest, that were tested in the perfused cotyledon 
model from 1972 to 1994 and from 1995 to 2006, 
respectively (Bourget et al. 1995; Myren et al. 
2007). In addition, we can learn from such perfu-
sion experiments about the effect of exogenous 
compounds on the placental transfer of endogenous 
compounds. For example, it has been demonstrated 
that ethanol signifi cantly reduces the placental 
transfer of linoleic acid (Haggarty et al. 2002).

The information offered from these perfusion 
experiments should be evaluated within the bound-
aries imposed by this model. The model involves 
metabolically static system in contrast to the meta-
bolically active and dynamic state of pregnancy. 
Some placental transporters are expressed differ-
entially during the different stages of pregnancy. 
For instance, early studies suggest that the expres-
sion of the multidrug resistance gene increases 
dramatically during pregnancy (MacFarland et al. 
1994), thus, the results from perfused term placenta 
can not be extrapolated to earlier stages in preg-
nancy. In addition, the trauma which the placenta 
undergoes at the time of separation may affect the 
validity of the results (Sastry, 1999).

Effects of endogenous and exogenous 
substances on fetal perfusion pressure 
and transport
The effect of drugs or chemical on the fetal pla-
centa vasculature can be measured during perfu-
sion experiments. The influence of several 
biogenic amines and endogenous substances such 
as acetylcholine, epinephrine, histamine sero-
tonin adenosine vasopressin and prostaglandins, 
has been studies (Ciuchta and Gautieri, 1964; 
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Sastry, 1991; Sastry et al. 1997). The vascular 
endothelium is believed to modulate the activity 
of many vasoactive agents, and it has been shown 
that these agents act directly on the fetal placen-
tal vascular smooth muscle to produce vasocon-
striction. In addition, these agents may also 
stimulate the release of either or both NO and 
PGI2, thus the overall effect of such agents may 
be the net result of opposing vasoconstrictor and 
vasodilator activities (Read et al. 1995; Clifton 
et al. 1996). Holcberg et al. demonstrated the 
vasoconstrictive effect of meconium on the pla-
cental-fetal vascular, and as well the opposing 
effect of indomethacine causing significant 
reduction in the basal pressure of the vasculature 
of isolated meconium exposed cotyledone (Hol-
cberg et al. 2001). Using the same model other 
drugs, that are used during pregnancy, as hydral-
azine (Magee and Bawdon, 2000), and dexa-
methasone (Clifton et al. 2002), and magnesium 
sulphate demonstrated reduced placental perfu-
sion pressure while labetalol did not signifi cantly 
affect the hemodynamics of fetoplacental vessels 
(Skoczynski and Semczuk, 2001). Decreased 
fetal-placental vasculature perfusion pressure 
under acidemic conditions, was demonstrated by 
Pierce et al. (Pierce et al. 2002) suggesting a local 
physiologic adaptive response, though others 
showed no difference in fetal-placental vascular 
tone when fetal circuit perfusate was made 
acidotic (Hoeldtke et al. 1997).

Release of endogenous substances 
into maternal and fetal perfusions
The dually perfusion system can address also the 
question of relative release of placental product 
into the maternal and fetal circulation. This model 
has successfully been used to investigate the pla-
cental release of human chorionic gonadotropin 
(hCG), human placental lactose (hPL) and leptin 
which are released mostly to the maternal circula-
tion (Linnemann et al. 2000). Further more, this 
model enable us to study also the release of cyto-
kines by the placenta. Increase production of 
inflammatory cytokines IL-6 and TNF-α, in 
response to decreased fetal placental perfusion rate 
was demonstrated implicating an association 
between perfusion abnormalities and pathogenesis 
of neonatal complications including cerebral palsy 
(Pierce et al. 2000). Recently the release of IL-1β 
by term and preterm placenta was studied in 

response to LPS during such perfusion experiments, 
suggesting that the IL-1 system is differently 
affected by LPS in term and preterm placentas 
(Holcberg et al. 2008).

A scheme with detailed prescription of the 
perfusion experiment system is presented in 
Figure 1. Experiments can be performed by using 
either closed (re-circulating) or open (non-cir-
culating) method. In the closed model both 
maternal and fetal perfusate are recirculated, 
imitating the physiological conditions and can 
be used to study transplacental transfer and 
metabolism of the compound. In the open perfu-
sions, maternal-fetal and fetal-maternal clearance 
can be studied (Sastry, 1999). The maternal to 
fetal transport rate (percentage) of the com-
pounds can be calculated according to accepted 
formulas (Challier, 1985) while the term that 
enables comparing results of different perfusion 
experiments, and is used by various authors, is 
the clearance index (the ratio between maternal 
to fetal transport rate of the studied drug to that 
of  the reference substance,  ant ipyrine) 
(Elliott et al. 1994; Kopecky et al. 1999). Most 
of the perfusion experiments continue for three 
hours, but even are performed for more extended 
periods (10–12 hr) (Boal et al. 1997; Heikkila et 
al. 2002). Recently, ultrastructural studies dem-
onstrated that the completeness of the placental 
tissue is maintained and only moderate changes 
occur after six hours of normoxic dual in vitro 
perfusion (Bachmaier et al. 2007). The integrity 
and viability of the placental tissue during the 
perfusion experiments are monitored by the lack 
of volume leakage from maternal to fetal perfus-
ate or vice versa, as determined by comparison 
of fi nal reservoir volumes; the ability to achieve 
adequate circuit perfusion rates within fetal 
infl ow pressure ranged between 40–70 mmHg, 
and satisfactory antipyrine transfer, to a prede-
termined extent of at least 20%, by the end of 
perfusion experiment (Schneider et al. 1972). In 
addition, hCG production, lactate production and 
glucose consumption are also monitored to 
validate the reliability of the experiments 
(Derewlany et al. 1991). The perfusion model is 
technically rather complex, and there is a con-
siderable rate of failure; most of which is due to 
leakage from fetal to the maternal side. However, 
this model allows examination of the secretory 
capacity, metabolism, transport and barrier 
function under controlled condition. In addition 
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it allows studying the pharmaceutical infl uence 
on placental metabolism and modifi cation of 
placental fetal blood fl ow. With the advent of 
more precise knowledge concerning the identity, 
localization and regulation of drug transporting 
carriers in the placenta, the dually perfused pla-
centa technique may see even wider and more 
resourceful use.

Conclusions
Understanding the degree of fetal exposure to 
drug/s is an important aspect of the pharmaco-
logical treatment to the pregnant women. Yet, 
many questions regarding the transfer of drugs, 
the involvement of transporters and the possibil-
ity of interactions between them remain to be 
answered. This review presents the different 
techniques that are in use today for studying the 
placental transport of xenobiotics (Table 1). 
These experiments contribute to the development 
of a safer and effective approach to the pregnant 
women. The placenta is anatomically complex, 

thus, experimental models retaining the tissue 
structure are most valuable. We consider the 
human placental perfusion model as the only 
model that fully retains the structure of the pla-
centa, and has good viability compared to 
explants cultures. Therefore, it is one of the most 
valuable models for the investigation of trans-
placental transfer. Using the perfusion experi-
ments trans-placental transfer with possible role 
of different transporters, xenobiotics metabolism 
and tissue binding of genotoxic compounds can 
be studied. Furthermore, by perfusion of placen-
tas from mothers using illegal drugs or those 
suffering from various diseases, the impact of 
these factors on the fetal exposure to different 
xenobiotics can be studied. Drug metabolism 
and drug transport across the placenta should 
continue to be researched and guidelines need 
to be developed to ensure that any medications 
used during pregnancy are safe to both the 
mother and the fetus so that, in addition, suc-
cessful treatment of the medical condition is 
carried out.

O2 95%

CO2 5%

Fetal Circuit 
6–8 ml/min

Fetal reservoirMaternal reservoir

MV

FA

FV

N2 95%
CO2 5% 

placenta

Drug

Maternal circuit 
12–14 ml/min

MA

Drug
Antipyrine

Heating
bath

Pressure unit

Perfusion
chamber

P

MA

Figure 1. The perfusion experiment begins by obtaining placentas immediately after vaginal deliveries or cesarean sections. A suitable fetal 
artery (FA) and vein (FV) pair supplying a single placental cotyledon are cannulated and perfused with heparinized Krebs-Ringer solution. 
Following successful establishment of fetal circulation, the placenta (P) is mounted in the perfusion chamber, and the maternal circulation 
is created through blunt cannulation of the intervillous space of the lobe corresponding to the perfused isolated cotyledon, by four needles 
(MA). The cotyledon is perfused via two peristaltic pumps each connected to a reservoir. Maternal perfusate that return from the intervillous 
space is continuously drained by a venous catheter (MV) placed at the lowest level of the maternal decidual surface to avoid signifi cant 
pooling of perfusate.
After an initial control period of 30 min, the perfusion medium is replaced to tissue culture medium M199, maintained at 37 °C, and enriched 
with by 3 g/l bovine serum albumin, 1 g/l glucose, 10 IU/ml heparin and 4 μg/ml of gentamycin. The fetal perfusate is equilibrated with 95% 
N2/5% CO2 and the maternal perfusate is equilibrated with 95% O2/5% CO2. During the whole perfusion period lateral pressure is measured 
by a pressure transducer in the fetal infl ow line next to the point of cannulation (pressure unit). After 30 min, when stable perfusion param-
eters are achieved, the maternal perfusate is replaced with medium containing the studied drug and with a nonionizable, lipophilic marker 
compound antipyrine. Samples of perfusate are obtained from maternal and fetal circuits at regular interval (5–30 min) for the measurements 
of the studied drug and antipyrine.
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