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Abstract
Motivation: Our goal was to understand why the PLIER algorithm performs so well given its derivation is based on a bio-
logically implausible assumption.

Results: In spite of a non-intuitive assumption regarding the PM and MM errors made as part of the derivation for PLIER, 
the resulting probe level error function does capture the key characteristics of the ideal error function, assuming MM probes 
only measure non-specifi c binding and no signal. 

Introduction
The PLIER (Probe Logarithmic Intensity ERror) algorithm was developed by Affymetrix and released 
in 2004. It is part of several commercially available software packages that analyze Genechip® data 
such as Strand Genomic’s Avadis and Stratagene’s ArrayAssist®. The PLIER algorithm produces an 
improved gene expression value (a summary value for a probe set) for the GeneChip® microarray plat-
form as compared to the Affymetrix MAS5 algorithm. It accomplishes this by incorporating experimental 
observations of feature behavior. Specifi cally, it uses a probe affi nity parameter, which represents the 
strength of a signal produced at a specifi c concentration for a given probe. The probe affi nities are 
calculated using data across arrays. The error model employed by PLIER assumes error is proportional 
to observed intensity, rather than to background-subtracted intensity. How ever, the derivation of the 
method also assumes that the error of the mismatch probe is the reciprocal of the error of the perfect 
match probe. We fi nd this assumption counter-intuitive.

On the other hand, PLIER defi nitely performs well. It outperforms MAS5 in terms of the benchmark 
data and measures [3, 8] for assessing the quality of the summary statistic for a probe set. It also does 
fairly well compared to other methods that are commonly used to compute gene expression values for 
GeneChip probeset data. The Affycomp website (affycomp.biostat.jhsph.edu) currently shows results 
for 14 of the measures of accuracy [9] for 50+ normalization and analysis combinations; Figure 1 shows 
the ranks, on all 14 measures, for the default Affymetrix software MAS5, two early methods, robust 
multichip average (RMA) and dChip, and two more recent additions, chip calibration [11] and GC RMA 
version 1.1.3, along with those for PLIER. No one method dominates the competition in the sense of 
being the best or near best on all rankings, but for comparison GC RMA has the smallest average rank 
in the U133 data. In the U95 data, PLIER+16 does quite well, with an overall rank of sixteenth out of 
54 entries. In particular, improvements over MAS5 include a higher reproducibility (lower coeffi cient 
of variation) without loss of accuracy and higher differential sensitivity for genes with lower expression 
values.

This inconsistency, good performance of an algorithm derived from a counter-intuitive error model 
assumption, prompted us to look more closely at the PLIER algorithm. Specifi  cally, we looked at the 
error function for the algorithm and compared it to that for a more biologically based one. By examining 
the behavior of individual probes over a sequence of spiked-in RNA concentrations of a target gene, 
characterizations of the PLIER error function became clearer. The major fi nding is that the PLIER error 
model possesses many of the key characteristics of the ideal error function for fi tting individual probe 
calibration curves.
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PLIER Description
This description of the PLIER algorithm is based 
upon a Technical Report [1] on the Affymetrix 
website. Consider a single probeset on an array 
and a set of j =1, 2, ..., n arrays in the experiment. 
We assume the probeset contains i =1, 2, ... , m 
probe pairs; a probe pair i consists of a perfect 
match (PMij) and mismatch probe (MMij). Let pmij 
and mmij represent the observed binding intensity 
for the perfect match and mismatch probe i on array 
j, respectively. The expected value for the observed 
binding for the perfect match and mismatch probes 
is assumed to be 
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ij ij
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where
• Bij is background binding for probe pair i on 

array j (background is assumed to be the same 
for the PM and MM probes within a pair),

• μij is the binding level of probe i on array j,
• ai is the binding affi nity of probe i, 
• cj is the concentration of RNA in sample j, which 

is hybridized to array j.
The quantities Bij, μij, ai,and cj represent the 
(unknown) true values of the background binding, 

probe binding, affi nity, and concentration, respec-
tively, whereas pmij and mmij are the observed 
intensity values. 

It is fairly well established from empirical data 
that the logarithm (log) of the observed binding 
intensities is approximately equivariant; in other 
words, the error is multiplicative. This implies the 
following model 
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where εP and εM are random terms for the PM 
and MM probes, respectively, from an appro-
priate distribution, a log-normal for instance. 
Subtracting the observed MM probe binding 
intensity from its corresponding PM partner 
yields,

 pm mm a c B Bij ij i j ij ij
P

ij ij
M− = + −( ) .ε ε  

The assumption that the perfect match and 
mismatch error  for  probe pair i are equal, i.e. 
ε ε εij

P
ij
M

ij= = ,produces

 pmij – mmij = (aicj)εij, 
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Figure 1. Rankings of selected methods on 14 outcomes, from the Affycomp website.
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which is the original MAS5 equation. The issues 
and limitations associated with this error model, 
especially for low intensities (low binding), are 
well known [6, 7]. PLIER does not assume that the 
perfect match and mismatch errors within a probe 
pair are equal, but rather assumes that ε εij

P
ij
M= 1/ .

This seems counter-intuitive biologically; espe-
cially since the PM and MM probes within a given 
probe pair are physically adjacent to each other on 
the array. Any local artifact would be expected to 
affect both probes in the same direction rather than 
causing the error of one to increase when the error 
of the other decreases. Under the PLIER error 
assumption, Equations (1) can be rearranged as,

 
εij

i j i j ij ij

ij

ij ij

a c a c pm mm

pm

pm

=
+ +

=
+

( )

ˆ / (

2 4

2

μ ˆ̂ / ) ( / )μij ij ij ijpm mm pm2 4

2

+
 

(2)

The PLIER algorithm selects a and c such that the 
average “residual” r = log(ε) equals zero. Specifi -
cally, this is accomplished by minimizing a robust 
average of the r2 values. The particular robust M-
estimator used (Geman-McClure) is not of particular 
interest here. If the mismatch binding MM is zero, 
then log ( ˆ ) log ( )2 2μij ij ijpm r= − , which shows that 
the estimate μ̂  is closely related to the geometric 

mean or log average of the PM probes. The presence 
of MM binding increases the estimate for μ.

To more concretely understand how this algo-
rithm works, consider a case of a single probeset 
on a single array. The goal is to obtain an estimate 
of the gene expression value for the probeset. For 
simplicity, assume there are only 3 probe pairs in 
the probeset. In this example, we use the fi rst three 
probes of the U95A probeset 37777 at where the 
corresponding transcript of the target gene, protein 
tyrosine phosphatase receptor B (PTPRB), was 
spiked into a background of human pancreas RNA 
at a concentration of 32 PM. The observed 
(pm, mm) intensity pairs were: (1801,627), (542, 
132), and (229, 111). Figure 2 displays the r2curves 
for these probes as a function of the estimate for 
the true intensity (μij= aicj), as well as the average 
r2 across all three probesets. Average probeset error 
is minimized by an estimate of 220 as the the true 
expression level of this gene. The argument is 
similar for the complete probeset of 16 probe pairs; 
the plot would just be more crowded.

The Direct Argument 

Spike-in data 
To better understand why PLIER does well, we 
begin by examining characteristics of the Affyme-
trix data. A spike-in experiment dataset was 
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created by Affymetrix and is publicly available 
at their web site www.affymetrix.com; search on 
the phrase “Latin square data” to fi nd the link to 
the page containing a description of the experi-
ment and the downloadable fi les of data. In this 
experiment, mixtures of a common RNA back-
ground, in which 16 probesets were spiked in 
according to 14 different concentrations (0, 0.25, 
0.5, 1, 2, 4, . . . , 512, 1024 PM), were hybridized 
to a set of Affymetrix U95Av2 arrays. In most 
cases, each pattern of the 16 probeset concentra-
tions was replicated three times. A cyclic latin 
square design was used for the spike-in pattern 
of the target RNAs. Irizarry et al. [7] provide a 
more detailed description of this experiment. 
Figure 3 contains the plots of the probes within 
the fi rst spiked-in probeset 37777 at. Each plot 
contains the observations of the perfect match and 
mismatch probes. The probeset 37777 at was 
spiked in at 14 different concentrations (0, 0.5, 1, 
… , 1024 PM) across a total of 59 arrays. The 
observed expression values were plottedonthe 
y-axis and the spike-in concentrations were 
plotted on the x-axis; both on a log2 scale. (The 
data has not been normalized; however, this 
particular plot is almost unchanged by normaliza-
tion.) A panel is shown for each probe in the 
probeset; the perfect match (PM) and mismatch 
(MM) values were plotted using different symbols. 
Fitted S shaped curves were superimposed on the 
data, where the PM function differed from the MM 
function only in the location of its infection point; 
a paper by Ballman and Therneau [2] contains the 
complete set of plots for this and other spike-in 
experiments. As can be seen in Figure 3, the S-
shaped curves appear to fi t the data well.

Models of the data
From the literature, there are at least two data 
models appropriate for the Affymetrix data. If we 
assume that binding to the chip surface (probeset) 
does not change the concentration of the target 
(cDNA) in solution, then the standard mass action 
laws lead directly to the Langmuir isotherm equa-
tion. Its appropriateness for modeling Affymetrix 
data is described nicely by Hekstra et al. [5]. Let 
x be the specifi c RNA concentration, then the frac-
tion of occupied probe sites θ is given by

 θ =
+
2

2

x

x K
 

where K is the concentration at which half the 
surface sites are occupied; K is a function only of 
the binding affi nity of the probe. Assuming the 
measured fl uorescence intensity to be linearly 
dependent on the amount bound to the probe, we 
get the following model for the intensity y 

 y b d b d
K

x

x= + = +
+

θ
2

2
 (3)

where b and d have units of intensity. The model 
predicts chemical saturation at b + d for high concen-
trations of RNA. It can also be shown that competitive 
cross-hybridization by non-specifi c RNAs in the target 
solution does not change the functional form of 
Equation 3 but only affects the parameter values.

The second model was described by Finney 
[4] for behavior of calibration curves of radioli-
gand assays where x is the log of the (known) 
dose and y the log of the observed intensity from 
the assay. Finney suggested that for this, and most 
binding equations, a logistic or probit function 
adequately describes the relationship between x 
and y. As seen in Figure 3, an S-shaped curve such 
as a logistic appears appropriate because it 
captures the effect of background binding and/or 
lower limits of detection (i.e. the fl at lower portion 
of the lefthand part of the curve) and the effect of 
biochemical saturation and/or the instrumentation 
(i.e. the upper portion of the righthand part of the 
curve).

Is one of these models more appropriate than 
the other? Figure 4 shows a logistic curve and 
a Langmuir isotherm curve, both scaled to the 
range of data values in Figure 3. Clearly, the 
two curves are virtually indistinguishable. In 
light of this, we fit logistic curves to the PM and 
MM data in Figure 3. The logistic curves were 
fit simultaneously where the PM curve only 
differed from the MM curves in the location of 
the infection point, i.e. assuming the same upper 
and lower thresholds a and b but a different 
binding affinity K.The PM and MM curves have 
identical shapes but the MM curve is shifted to 
the right of the PM curve (lower affinity). As 
can be seen in Figure 3, the theoretical curves 
fit the data well.

Graphical comparison of error models
The ideal estimate of gene expression for an 
experiment would use the probe curves from 
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Figure 3. The probe pair intensity values versus the spiked concentration of a spiked transcript, probeset 37777 at, from the Affymetrix U95A 
spike-in experiment. There are 16 probe pairs. The open circles are the values of the PM probes and the fi lled squares are the values of the 
MM probes. The solid and dashed lines correspond to the fi tted logistic calibration curves for the PM probes and MM probes, respectively.

Figure 3 directly; which is unfortunately not 
possible since the curves are unknown. But let us 
assume for a moment that they were, with fi(x) 
being the calibration curve for the ith probe. Since 
the data y are approximately equivariant on the log 
scale, a rational approach for estimating the binding 
is to minimize the overall error
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Over a set of probes, one wishes to choose the 
estimated binding x so as to make errors close to 
zero. (This is essentially how assays for which a 
binding curve is created as a part of the procedures, 
such as ELISA, proceed.) 

To combine PM and MM values, our ideal 
error  function wil l  be the simple sum, 
( ( ˆ) log ( )) ( ( ˆ) log ( )).f x pm f x mmpm mm− + −2 2  The 
error function used by PLIER is shown in Equation 
2. In MAS5, the binding estimate is an average of 
the log2(pm - mm) differences, which is equivalent 
to the linear error function ˆ log ( )x pm mm− −2 .

All other functions can be compared to this ideal 
error function. We compare the error functions for 
two different true concentrations for a probe, μ = 512 
and μ = 256 (9 and 8 on the log2 scale, respectively), 
with a known binding background level of 64 (6 on 
the log2 scale). Specifi cally, we compare the error as 
a function of the estimated μ, i.e. μ̂ , values under 
the MAS5 model and PLIER model to the ideal error 
curve (from S-shaped calibration curve). The error 
functions for MAS5 and PLIER are a function of the 
observed pm and mm values. The PLIER (and 
MAS5) functions presented were applied to non-
background adjusted data. However, PLIER (and 
MAS5) is applied to global background adjusted data 
in practice and so we show the error curve for PLIER 
applied to background-adjusted data. The global 
background adjustment we used was 64, which 

roughly corresponds to the 0.02 quantile of all the 
probe values (this is the default global background 
correction of MAS5). Figure 5 shows the form of 
the error functions on the same plot for different 
observed values of the pm and mm values. Note that 
these error functions are idealized in that they have 
been shifted so that they all have the smallest error 
(zero error if possible) at the true binding intensity 
value. The amount of shift necessary differs for the 
different functions and would be unknown in prac-
tice. Hence, this is a comparison of errors under 
perfect conditions for each function. 

As can be seen from the panel of plots, the 
implied error function for MAS5 differs dramati-
cally from the ideal error function in the lower tail. 
This explains the poor behavior of MAS5 for 
estimating expression values for low RNA concen-
tration levels, which has been cited extensively in 
the literature. Also note that there is no curve for 
the MAS5 model when pm = 256 and mm = 512. 
The reason is that when the mm value is larger than 
the pm value, the expression value is undefi ned. 
This is not technically true for MAS5 because in 
instances where pm < mm, the algorithm employs 
an ideal mismatch value; the ideal mismatch value 
is selected such that it is less than the pm value. 
However, when pm > mm, which occurs for the 
majority of the probe pairs, the error functions in 
Figure 5 are correct. 

Concentration

lo
g(

in
te

ns
ity

)

6
8

10
12

1/16 1/4 1 4 16 64 256 1024

Langmuir isotherm
Logistic

Figure 4. A logistic curve and Langmuir isotherm curve.
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On the other hand, the implied error curve for 
the PLIER model has the correct shape for the left 
portion of the function. This explains the observa-
tion that PLIER yields improved estimations of 
expression values for low RNA concentration 
levels compared to MAS5. Neither PLIER nor 
MAS5 error functions have the correct shape for 
the right-hand portions of the plots. In practice, the 
effect of differences from the ideal error for the far 
right portion of the function is not as serious as 
differences in the left portion. This is because for 
actual experiments employing collected biospeci-
mens of interest (cell lines, animal tissue, or human 
tissue), saturation of the probes is rarely reached. 
However, when the MM value is far above back-
ground, as it is for the spike in experiment when 
the observed MM values are greater than 256, the 
overly high lower threshold of the PLIER error 
function can cause overestimation. Finally, PLIER 
applied to global background adjusted data does 
not perform as well as PLIER applied to unadjusted 
data. There are several variations of PLIER, e.g. 
PLIER+16 and PLIER+32, which add the constants 
16 and 32, respectively, back to global background 
adjusted data. These constants are on the order of 
magnitude of the values that were subtracted for 
global background adjustment and largely “undo” 
the global background adjustment; from above, we 

see that PLIER performs better on data that has not 
been globally background adjusted.

Properties of the Error Function
From the graphical display of the error functions 
for MAS5 and PLIER, it appears as though a 
possible explanation for why PLIER performs so 
well is that in the crucial part of the error function, 
it has characteristics similar to the ideal error curve. 
What are the general characteristics of the ideal 
error function? 

Assume that the true assay binding calibration func-
tion is a logistic curve, or something quite like it, so

 log( ) ( )pm fij ij ij= +μ ε  

with ε from a symmetric distribution, which is 
equivariant across the range of the data. The 
true concentration μij will be estimated with a 
model of interest such as array + probe effects. A 
rational approach for estimating the parameters is 
to minimize the overall sum errors of Equation 4. 
Figure 5 shows some specifi c examples; can we 
describe the behavior more generally? 

Let us assume that f has a lower threshold or 
background, log2(b), which corresponds to the 
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scanner effect and non-specifi c binding when the 
target gene is not expressed. To the right of this 
threshold, assume f is linear or nearly linear on the 
log2 scale, and is smooth. Under these conditions, 
the error function would have the following 
properties.
1. For μ̂ij small, e → log(pmij) – log(b) = log 

(pmij/b).
2. For μ̂ij

 large enough so that f(uij) is in the linear 
part of the curve (i.e. suffi ciently larger than 
log(b)), the derivative of e with respect to uij 
will be a constant.

3. The behavior described in 2 is independent of 
the value of pmij. 

For PLIER, we can verify 1 and 2 above, algebraically; 
this confi rms the behavior observed in Figure 5 for 
the general case. 

For property 1, the error in Equation (2) is placed 
on the log2 scale and multiplied by –2 to get ε∗,
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As μij → 0 (so μ̂ij
→0), we get
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Under the Affymetrix assumption, the PM probe 
measures the target gene concentration and the MM 
probe measures the background level. Since pm 
estimates the signal level and mm estimates MM, 
or background, respectively, this satisfi es the fi rst 
property. Note, it has been established that MM 
does not measure background alone but also 
measures signal. However, as the true concentra-
tion level, μ, becomes small, MM becomes a better 
estimate of background, i.e. it is less likely to also 
measure signal. Hence, the PLIER error function 
is reasonably consistent with property 1.

For property 2, we again place the error on the 
log2scale, drop the subscripts, and we get
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Now we take the derivative with respect to 
log2 ( μ̂ )
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If we assume that background is small compared 
to signal (i.e. as we move away from background 
levels) and that mm is a good estimate of back-
ground, then (mm/pm) → 0 as pm increases. Under 
these assumptions, as pm increases, we get
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So again, under somewhat reasonable assumptions, 
the PLIER error is consistent with the second 
property of the ideal error function. In addition, it 
is also consistent with property 3.

PLIER is of course making the assumption that 
log(MM) = background + error; in particular, it 
assumes that mm does not measure any gene signal. 
If this assumption is true, we see from above that 
the PLIER error model has the characteristics of the 
ideal error model, especially in the region of the plot 
that is the hardest, the low end. This explains why 
it does perform better than MAS5. However, the 
more these assumptions are violated—i.e. the more 
signal the observed mm measures in addition to 
non-specifi c binding, the more the PLIER error 
function will deviate from the ideal error function. 
As mentioned previously, it is fairly well established 
in the literature that mm does measure signal in 
addition to non-specifi c binding, which may explain 
why PLIER is not the best performing algorithm of 
those entered in Affycomp.
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Conclusions
In light of the fact that the MM probes are not good 
estimates for probe background level, the PLIER 
algorithm could likely be improved with a better 
estimate of background binding, perhaps along the 
lines of that proposed by Naef et al. [10]. Another 
question, one which we did not address here, is 
whether a robust average, such as that employed 
by PLIER, is really necessary. This is based on the 
fact that on a log scale, the spike-in data appear 
relatively equivariant, with few outliers. However, 
these considerations are of secondary importance. 
Of major concern is the fact that the error model 
is based upon an implausible assumption regarding 
the relationship between the error of the PM values 
and MM values. 

Overall, we found that in spite of the non-
intuitive assumption regarding the PM and MM 
errors made as part of the derivation for PLIER, 
the resulting model does capture the key charac-
teristics of the ideal error curve, assuming MM 
probes only measure non-specifi c binding and no 
signal. Our only explanation for why this should 
be is good fortune. 

This note has only considered the shape of the 
PLIER error function for a single probe. When 
averaging over multiple probes not only the shape 
but the relative shifts of the per probe error curves 
from one another will affect the effectiveness of 
the fi nal estimate; our paper does not predict how 
PLIER will fair in comparison to other methods. 
In particular, we believe the deviations of the indi-
vidual error functions from the ideal error functions 
likely will be compounded when performing the 
averaging across the probes in a probeset. Our belief 

is based on the observation that although PLIER 
performs better than MAS5, it does not perform as 
well as other algorithms entered in Affycomp, most 
of which are based on more biologically plausible 
assumptions. 
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