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Abstract: Upon transmission, human immunodefi ciency virus type 1 (HIV-1) establishes infection of the lymphatic reservoir, 
leading to profound depletion of the memory CD4+ T cell population despite the induction of the adaptive immune response. 
The rapid evolution and association of viral variants having distinct characteristics during different stages of infection, the 
level of viral burden, and rate of disease progression suggest a role for viral variants in this process. Here, we review the 
literature on HIV-1 variants and disease and discuss the importance of viral fi tness for transmission and disease.
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Transmission and Selection of Variants
Transmission of HIV-1 can occur via sexual, parenteral, or vertical routes of infection (Lamers et al. 
1993; Mulder-Kampinga et al. 1993; Pang et al. 1992; Scarlatti et al. 1993; Wolfs et al. 1992; Wolinsky 
et al. 1992; Zhang et al. 1993; Zhu et al. 1993). Each of these represents a distinct environment and 
therefore a distinct set of factors affecting selection of viral variants. Research focusing on factors 
affecting HIV-1 selection has addressed a multitude of issues ranging from stochastic versus selective 
models of transmission, single versus multiple variant transmissions, cell-free versus cell-associated 
virus transmission, selection criteria for restricting variant transmission and compartmentalization of 
variants within hosts biasing variant selection during transmission.

In the context of sexual transmission, the type of sexual encounter, gender of the transmitter and 
recipient, nature of the mucosal surface and presence of other genital tract infections can all play an 
integral role in selection during transmission. In order to distinguish the presence or absence of viral 
variants, the highly variable sequences of HIV-1 envelope (env) have been used as markers of diversity, 
especially in the V1–V2 and V3 regions of env which are important for immune recognition (Clerici 
et al. 1991; Javaherian et al. 1990; LaRosa et al. 1991), replication effi ciency (Takeuchi et al. 1991) 
and cellular tropism (Chesebro et al. 1991; de Jong et al. 1992; Hwang et al. 1991; O’Brien et al. 1990; 
Shioda et al. 1991; Westervelt et al. 1991; Westervelt et al. 1992) and are under constant selection, 
resulting in a high rate of variation (Delwart et al. 1994; Delwart et al. 1993; Holmes et al. 1992; 
Javaherian et al. 1990; Kuiken et al. 1993; Wang et al. 1995; Zhu et al. 1993). Due to the increased 
variability, these regions have been used extensively to characterize the level of heterogeneity in 
donor/recipient HIV-1 transmission events. Transmission of variants found in low abundance (minor 
variants) would argue against a stochastic transmission model and many reports fi nd that minor variants 
are often the predominant variants in the newly infected host (Zhu et al. 1996; Zhu et al. 1993; Wolfs 
et al. 1992; Wolinsky et al. 1992; Zhang et al. 1993). The majority of reports fi nd that HIV-1 env 
sequences in newly infected individuals are relatively homogenous, despite the fact that the transmitters 
harbor heterogeneous genotypes (Delwart et al. 2002; Derdeyn et al. 2004; Learn et al. 2002; Wolinsky 
et al. 1992; Wolfs et al. 1992; Zhang et al. 1993; Zhu et al. 1993; Zhu et al. 1996). This sequence 
homogenization relative to the sequence heterogeneity of the transmitter could be a result of selection 
based on low inoculum levels (i.e. a founder effect), selective penetration of virus from donor to 
recipient and/or selective amplifi cation of particular viral variants within the newly infected recipient. 
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Factors such as cell-free or cell-associated virion 
transmission are also thought to affect virus 
transmission (Ludlam et al. 1985; Zhu et al. 1996). 
For instance, cell-free virions could be more likely 
to result in one or a few viral variants being trans-
mitted, whereas cell-associated transmission could 
increase the likelihood of a multiple variant trans-
mission event. Recent data support the complexity 
of transmission events in that some infections were 
initiated from a single virus while other infections 
resulted from a multi-virus transmission event 
(Keele et al. 2008). Gender differences also play 
a role in determining variant transmission profi les 
(Grobler et al. 2004; Haase, 2005; Long et al. 2000; 
Long et al. 2002; Ritola et al. 2004; Poss et al. 
1995), potentially due to the type and duration of 
exposure to mucosal surfaces which may favor 
single or multiple viral variant transfers (Pilcher 
et al. 2004a; Pilcher et al. 2004b; Pope and Haase, 
2003; Sagar et al. 2004; Vernazza et al. 1999; 
Wawer et al. 2005). It remains to be determined 
whether these differences are based on mucosal 
tissue morphology or on more complex biological 
factors.

Vertical transmission or mother-to child trans-
mission (MTCT) has also been extensively studied 
and research has attempted to address similar ques-
tions as with sexual transmission. However, with 
MTCT, an additional layer of factors regarding the 
temporal nature of the transmission event arises. 
Specifi cally, does transmission occur prepartum 
(in utero), intrapartum (at delivery) and/or post-
partum (via breast feeding) and what, if any, effect 
does this have on variant transmission profi les? 
Studies have found that transmission of virus can 
occur during any of these phases of pregnancy, but 
the effect on variant transmission remains elusive 
(Courgnaud et al. 1991; Ehrnst et al. 1991; 
De Rossi et al. 1992; Lepage et al. 1987; Soeiro 
et al. 1992; Ziegler et al. 1985). Similar to sexual 
transmission, major, minor and multiple variant 
transmission events are also seen in MTCT cases 
(Dickover et al. 2001; Kliks et al. 1994; Lamers 
et al. 1994; Narwa et al. 1996; Nowak et al. 2002; 
Briant et al. 1995; Pasquier et al. 1998; Wade et al. 
1998; van’t Wout et al. 1994). However, most stud-
ies have found single variant transmission events 
and greater homogeneity within the newly infected 
child when compared to the mother, suggesting 
selective pressures during transmission (Dickover 
et al. 2001; Becquart et al. 2002; Nowak et al. 
2002; Wike et al. 1992; Wolinsky et al. 1992; 

Mulder-Kampinga et al. 1993; Ahmad et al. 1995; 
Roth et al. 1996; Scarlatti et al. 1993). Whether 
these selective criteria are the same or similar to 
those involved in sexual transmission remains 
unknown.

Quasi-Species Evolution Post 
Transmission
Once a successful transmission event has occurred, 
mutations in the viral genome, host immune pres-
sures and target cell availability drive HIV-1 diver-
sifi cation and evolution, eventually resulting in 
viral variants that differ from the founding parent 
viruses. While there may be a slight loss in replica-
tive capacity initially, these new variants are 
capable of evading host immune defenses, persist-
ing, and eventually driving CD4+ T cell depletion 
and progression to AIDS.

HIV-1 evolution is rapid due to a high viral 
replication rate, an error-prone replication of 
reverse transcriptase (Coffi n, 1995; Mansky and 
Temin, 1995; Preston et al. 1988; Roberts et al. 
1988), transcription by host RNA polymerase II 
(Laakso and Sutton, 2006), recombination 
events between co-infecting HIV-1 viral variants 
(Charpentier et al. 2006; Coffi n, 1995; Jung et al. 
2002; Kemal et al. 2003; Levy et al. 2004; Philpott 
et al. 2005; van Rij et al. 2003; Zhuang et al. 2002) 
and rapid immune system-mediated selection of 
viral variants (Jung et al. 2002; Williamson et al. 
2005). The combination of these events continually 
drives HIV-1 diversity in infected hosts (Fig. 1). 
However constraints are placed on the mutations 
that can be incorporated into the viral genome due 
to structural and functional requirements of the 
encoded proteins involved in viral replication 
(Draenert et al. 2006).

During the initial stages of infection, selected 
mutations appear to favor immune escape rather 
than enhanced viral replication (Martinez-Picado 
et al. 2006; Leslie et al. 2004; Goepfert et al. 
2008). However, late during the asymptomatic 
chronic stage of infection, when immune pressures 
have been ablated by destruction of immune cells 
or exhaustion of immune responses, mutations 
increasing viral replication begin appearing or 
reappearing within the virus population (Mild 
et al. 2007). These data suggest that early during 
infection mutations are selected based on immune 
evasion rather than enhanced viral replication, 
whereas during later stages of infection more 
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pathogenic, but less immune-evasive viruses 
appear to drive disease progression. This hypoth-
esis is supported by studies of SIV in macaques, 
where there is a fi tness cost to escape from CTL 
responses early after infection (Friedrich et al. 
2004). However, with time, variants having 
increased replicative capacity emerge and eventu-
ally drive disease progression (Kimata et al. 1999; 
Rudensey et al. 1995).

While most basic and clinical studies seem to 
agree that variants isolated early during infection 
appear to be less pathogenic and have lower rep-
licative capacity compared to late stage isolates, 
mathematical modeling of within-host virus evolu-
tion suggests that over the course of host infection 
viral variants move toward reduced replicative 
fi tness (Wodarz and Levy, 2007; Ball et al. 2007). 
This apparent discrepancy could result from the 

fact that mathematical modeling has not accounted 
for the plethora of complex factors that play roles 
in viral fi tness in vivo. However, one would be 
remiss to disregard key aspects of these mathemat-
ical models. Indeed, the overall conclusion from 
mathematical modeling is that the most replica-
tively fi t HIV-1 viral variant would not be able to 
sustain infection, especially as is seen in chronic 
HIV-1 infections, due to the rapid destruction and 
depletion of the essential target CD4+ T cell popu-
lation. Thus, an evolutionary ceiling is placed 
above viral replicative fi tness. By contrast, studies 
examining replicative fi tness do indicate that as 
infection progresses more pathogenic viral variants 
with higher replicative capacities appear at late 
stages of infection (Kimata et al. 1999; Kimata, 
2006). Interestingly, both the mathematical models 
and clinical studies demonstrate that, even in the 
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Figure 1. Schematic diagram representing changes in viral diversity and viral load throughout the course of infection. The hypothetical 
amounts of viral diversity at or shortly following transmission are indicated by the different shadings during primary infection. Factors that 
may infl uence viral diversity, selection, and persistence are shown.
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presence of these pathogenic and replicatively fi t 
viral variants, less pathogenic and replicatively 
robust viral variants are still found in circulation 
(Ball et al. 2007; Wodarz and Levy, 2007; Mild 
et al. 2007; Mansky and Temin, 1995; Gali et al. 
2007).

Additional correlates of AIDS disease progres-
sion include slower rate of synonymous substitution 
rates, indicative of general, non-selective mutation 
rates, (Lemey et al. 2007; Stilianakis and Schenzle, 
2006), increased viral replication (Kimata et al. 
1999; Birch et al. 2001; Dyer et al. 1999; Kirchhoff 
et al.1995; Learmont et al.1999), persistent immune 
activation (Bofi ll et al.1996; Grossman et al. 2006; 
Giorgi et al. 1999; Sousa et al. 2002), broad-range 
CTL responses (Karlsson et al.2007; Fernandez 
et al. 2007) and specifi c host human leukocyte 
antigen (HLA) class I alleles (Carrington et al. 
1999; Trachtenberg et al. 2003).

Correlates of Pathogenicity: 
Phenotypic Changes During 
Viral Infection
Phenotypic characteristics of  HIV-1 that have been 
extensively studied for correlation to disease progres-
sion include replicative capacity (also commonly 
referred to as replicative fi tness), which is generally 
classifi ed as rapid/high or slow/low in relation to 
replication and production of virus (De Rossi et al. 
2005; De Rossi et al. 1993; Connor et al. 1993), 
syncytium induction, classifi ed as non-syncytium 
inducing (NSI) or syncytium inducing (SI) virus 
(Koot et al. 1992; Jurriaans et al. 1994), co-receptor 
usage with the vast majority of viral variants being 
classifi ed as CCR5-using (R5), CXCR4-using (X4) 
or dual-tropic (R5X4) viruses (Littman, 1998; Doms 
and Peiper, 1997) and macrophage-tropic (M-tropic) 
or T cell-tropic (T-tropic) variants. Previously, it was 
believed that these phenotypic characteristics were 
intimately linked such that rapid/high viral variants 
were also SI, X4, T-tropic variants and slow/low 
viruses were NSI, R5, M-tropic variants (Alkhatib 
et al. 1996a; Tersmette et al. 1988; Tersmette et al. 
1989). However, while there is a correlation with 
co-receptor usage, SI ability and tropism, these are 
separable phenotypic features and therefore should 
be individually tested for when characterizing viral 
isolates (Aquino-de Jesus et al. 2000; Peters et al. 
2006).

Following transmission, R5-tropic viruses 
typically predominate early stages of infections 

(Connor et al. 1997). However, it remains unclear as 
to whether R5 viruses are the only viruses transmitted 
or whether both R5 and X4 viruses can be transmitted 
but that X4 viruses are less fi t, resulting in only 
R5 variants being detected during the early stages of 
infection. These virus isolation studies also show that 
X4 and dual-tropic viruses generally are not detected 
until very late in infections at the juncture of transition 
from asymptomatic infection to AIDS. Morever, 
X4 variants are only found in 50% of cases (Berger 
et al. 1999), demonstrating that X4 variants are not 
required to drive progression to AIDS (Campbell 
et al. 2003; Kimata et al. 1999; Kwa et al. 2003; Koot 
et al. 1993; Tersmette et al. 1989).

There is experimental evidence that X4 variants 
may be more susceptible to control by CD8+ cyto-
toxic T cells than R5 viruses (Harouse et al. 2003). 
Indeed, X4 variants may be rapidly selected against 
during primary infection, allowing R5 variants to 
emerge and predominate in the infection. Thus, X4 
viruses appearing late in infection may not neces-
sarily drive disease progression, but rather serve 
as indicators of an exhausted and dysfunctional 
immune system, which allows an unchecked rep-
lication of viruses and destruction of the remaining 
CD4+ T cell population.

Cell tropism has also been extensively studied 
in vivo and in vitro. A current model is that M-tropic 
viruses predominate during early stages of trans-
mission, since it is believed that tissue-resident 
macrophages, monocytes and dendritic cells are 
initial cell targets during the actual transmission 
event. While infection of these cell types remain 
important throughout the course of disease progres-
sion in regard to latently infected cell populations 
(Aquino-de Jesus et al. 2000), a shift in cell tropism 
occurs early and rapidly as virus is traffi cked from 
the site of infection to lymphatic tissues where 
robust replication can take place in CD4+ T cells.

Lastly, there appears to be selection of  NSI vari-
ants during transmission (van’t Wout et al. 1994; 
Zhu et al. 1993; Tersmette et al. 1988; Keet et al. 
1993), but whether the phenotypic change from the 
transmitted NSI virus to a SI variant is important 
for progression to AIDS requires further explora-
tion. Virological studies indicate that the switch 
from NSI to SI phenotype is not required for AIDS 
progression (Fitzgibbon et al. 1998; Spencer et al. 
1994), but may increase the rate of AIDS progres-
sion (Fauci, 1996; Glushakova et al. 1998).

A simple explanation of the appearance of each 
of these phenotypic characteristics during infection 
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is that as viral diversity increases the rate of AIDS 
progression increases, thus the diversity, as indi-
cated by the appearance of these phenotypes, rather 
than the functions of the respective phenotypes 
drives AIDS progression (Sagar et al. 2003). There-
fore it may not be the presence per se of X4 and 
SI viral variants, but rather the weakening of selec-
tive pressures from the host immune response on 
generalized viral replication, allowing an out-
growth of previously immune response-targeted 
phenotypes which serve simply as indicators of the 
weakened and dysfunctional immune response 
(Troyer et al. 2005).

Finally, changes in N-linked glycosylation and 
length of Env variable regions V1 and V2 have 
been reported to occur with infection. Initially, it 
was observed in SIV-infected macaques that vari-
ants with limited N-linked glycans in the V1/V2 
region of Env dominated the early stages of infec-
tion (Overbaugh and Rudensey, 1992). As the 
animals progressed to disease, additional N-linked 
glycosylation sites appeared and the V1/V2 region 
lengthened. Some of these changes correlated with 
protection from neutralizing antibodies and loss 
of macrophage tropism (Rudensey et al. 1995; 
Rudensey et al. 1998). More recently several 
groups have reported similar glycosylation 
changes to occur with HIV-1 (Chohan et al. 2005; 
Derdeyn et al. 2004; Sagar et al. 2006; Wu et al. 
2006) following sexual transmission in discordant 
couples and vertically from mother to child. How-
ever, while less glycosylated Env proteins from 
early stages of infection were associated with 
sensitivity to neutralizing antibodies after sexual 
transmission, this was not observed with vertically 
transmitted mother to child variants. These data 
raise questions about the functional changes in 
Env conferred by additional glycans. Recent stud-
ies demonstrate that GAG-specifi c CTL responses 
have a more profound impact on pathogenicity 
and viral load than do the ENV-specifi c CTL 
response (Kiepiela et al. 2007; Peut and Kent, 
2007), lending support to the hypothesis that env-
mediated phenotypic changes serve as indicators 
of dampened immune selection rather than func-
tional mediators of pathogenicity.

Viral Determinants Altering 
Phenotype
Phenotypic differences among viral variants have 
been studied and mapped to specifi c regions of the 

viral genome, including env, pol and nef. The env 
gene is a major determinant in viral replicative 
fi tness as its protein products, gp120 and gp41, 
mediate cell binding via the receptor and co-
receptors and fusion of the cellular plasma mem-
brane and the viral membranous envelope 
(Baribaud and Doms, 2001; Berger et al. 1999; 
Poignard et al. 2001). Numerous studies have 
documented that env sequences infl uence viral 
transmission (Hsu et al. 2003; Tersmette et al. 
1988), cell tropism (Berger, 1997; Hoffman and 
Doms, 1999; Alkhatib et al. 1996b; Choe et al. 
1996; Deng et al. 1996) and are major targets of 
the host immune response (Levy, 1993; Richman 
et al. 2003; Wei et al. 2003b), including both CTL 
and neutralizing antibody responses (Jones et al. 
2004; Borrow et al. 1997; Geels et al. 2003). 
Furthermore, env sequences appear to have the 
greatest impact on competitive viral replicative 
fi tness in vitro in comparison to other regions of 
the viral genome (Ball et al. 2003).

The phenotypic change in co-receptor usage by 
viral variants has been mapped to env, specifi cally 
the V1/V2 and V3 regions. Mutations in V3 have 
been extensively studied and found to directly 
control tropism usage (Cocchi et al. 1996; Har-
rowe and Cheng-Mayer, 1995). However, muta-
tions responsible for the switch from CCR5- to 
CXCR4-usage appear to confer a replication fi t-
ness disadvantage to the resulting virus (Wagner 
et al. 1999; Kelleher et al. 2001), either due to 
decreases in evasion of host CTL responses, 
enhanced sensitivity to antiviral drugs or decreased 
avidity for receptor/co-receptor molecules 
(Marozsan et al. 2005; Lobritz et al. 2007; 
Derdeyn et al. 2000; Labrosse et al. 2003; Strizki 
et al. 2001; Torre et al. 2000; Trkola et al. 1998). 
Mutations in the V1/V2 region also play a role in 
co-receptor usage (Groenink et al. 1993; Koito 
et al. 1994; Koito et al. 1995; Ogert et al. 2001; 
Ross and Cullen, 1998; Sullivan et al. 1993; 
Toohey et al. 1995; Wyatt et al. 1995; Yoshimura 
et al. 1996) with an apparent ability to compensate 
for the loss-of-fi tness mutations in the V3 region, 
thus allowing the co-receptor switch to occur 
(Pastore et al. 2006). It is interesting to note that 
relatively few mutations are required for the R5/
X4 co-receptor switch, but that this phenotypic 
change does not occur for several years after initial 
infection (Schuitemaker et al. 1992; Shankarappa 
et al. 1999). It is hypothesized that this delay in 
emergence of X4 variants is in part due to a very 
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limited number of viable mutational pathways of 
transitional viral variants that maintain a mini-
mally competitive replication fi tness and evasion 
from host CTL responses (Pastore et al. 2006; 
Fernandez et al. 2005; Peyerl et al. 2004). Env 
mutations are also responsible for the NSI/SI 
phenotypic changes. Mutations responsible for 
this phenotypic switch have not been studied as 
extensively; however, due to the high degree of 
correlation between NSI/SI and R5/X4 phenotypic 
switching it is likely that mutations reside in the 
same sequences of env (e.g. V1/V2 and V3).

Functional reverse transcriptase (RT) is a het-
erodimer composed of subunits, p66 and p51, with 
p66 containing active RT and RNase H activity 
(Veronese et al. 1986). The majority of RT muta-
tions and variants that affect functionality have 
been identifi ed during studies with antiviral drugs 
designed to target RT-specifi c catalytic steps in the 
viral lifecycle. These drugs include nucleoside 
reverse transcriptase inhibitors (NRTIs) and non-
nucleoside reverse transcriptase inhibitors 
(NNRTIs) that inhibit RT activity by acting as DNA 
chain terminators or steric inhibitors of nucleoside 
binding, respectively. While it is clear that during 
highly active antiretroviral therapy (HAART) 
specifi c mutations are selected within RT that 
decrease sensitivity to prescribed drug regimens 
(Gu et al. 1992; Gao et al. 1993; Tisdale et al. 1997; 
Walter et al. 2002), some of these mutations can 
have positive effects on virus replication and fi tness 
(Hu et al. 2007) while others have deleterious 
effects on replication (Wakefi eld et al. 1992; Larder 
et al. 1995; Olivares et al. 2004; White et al. 2002). 
The majority of these mutations appear to affect 
RT affi nity for dNTPs which in turn alter RT DNA 
polymerase fi delity and/or processivity (White 
et al. 2002; Jonckheere et al. 1998; Bebenek et al. 
1995; Back et al. 1996; Wainberg et al. 1996; 
Hsu et al. 1997; Feng and Anderson, 1999). Since 
deleterious mutations are more frequent than 
advantageous mutations within any genome, 
extreme RT infidelity would quickly result in 
non-functional HIV-1 genomes (Furió et al. 2005; 
Kimura, 1967). Conversely, increased RT fi delity 
would impact the intrinsic ability of HIV-1 to evade 
the host immune response and escape from 
HAART, thus RT fi delity is an intricate balance of 
genomic diversity and stability (Furió et al. 2007). 
Several studies have identifi ed available dNTP 
levels as a factor that can affect RT fi delity (Back 
and Berkhout, 1997; Vartanian et al. 1997), 

yet very little research has been performed with 
HIV-1 RT fi delity mutations that occur naturally 
within infected hosts in the absence of HAART, 
despite the fact that cell types known to be targets 
for HIV-1 infection (e.g. macrophages, resting 
T cells, activated T cells) have variable dNTP pools 
(Traut, 1994; Diamond et al. 2004; Hauschka, 
1973; Fuller et al. 1982; Skoog and Bjursell, 1974; 
Yao et al. 2003). A recent study with SIV RT vari-
ants isolated from infected macaques demonstrated 
rapid selection against an RT variant with higher 
replication fi delity (Biesinger et al. 2008). These 
data suggest that RT’s ability to misincorporate 
dNTPs in settings with limited resource availabil-
ity or the indirect effect misincorporation has on 
processivity allows for more rapid genomic reverse 
transcription and integration and is an important 
aspect of replication fi tness. Regardless, it is clear 
that intrinsic RT properties (e.g. fi delity and proces-
sivity) are important factors in determining viral 
replicative fi tness in the context of host cell usage 
and overall viral production.

Nef is a multifunctional viral protein with key 
roles in the viral life cycle which include down-
regulation of CD4, CD28 and class I major histo-
compatibility complex (MHC-I), alteration of 
CD4+ T cell activation, enhancement of  viral infec-
tivity and replication and sensitization to apoptotic 
pathways (Laforge et al. 2007; Anderson and Hope, 
2004; Collins and Baltimore, 1999; Johnson and 
Desrosiers, 2002; Renkema and Saksela, 2000; 
Roeth and Collins, 2006; Wei et al. 2003a). The 
essential nature of Nef activity for viral replication 
in vivo has been well-documented. However, the 
details of how Nef is able to exert its pleiotropic 
effects remain poorly described. Nef functionality 
in vivo exerts a dramatic effect on viral fi tness and 
progression to AIDS. However, which function of 
Nef provides this enhancement is still unclear. 
Several possibilities, although not mutually exclu-
sive, have been presented in the literature, includ-
ing CTL escape via MHC-I downregulation 
(Ali et al. 2003), modulation of T cell activation 
via interactions with cellular factors such as PAK2 
(Lu et al. 1996) and increased host cell apoptosis 
through unknown cellular interactions (Laforge 
et al. 2007). Finally, SIV-macaque studies suggest 
that the major function of Nef may be to enhance 
virion infectivity, as nef mutants that fail to 
enhance viral infectivity replicated poorly in vivo 
(Iafrate et al. 2000; Patel et al. 2002). Despite the 
fact that nef is essential for robust HIV-1 replication 
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in vivo and evasion from the host immune response, 
it has recently been reported that highly attenuated 
nef-deleted viral infections still resulted in HIV-
associated diseases and loss of CD4+ T cell levels 
(Gorry et al. 2007), suggesting that Nef functions 
are dispensable in context of AIDS progression 
over extended periods of time.

Model Systems to Measure Viral 
Phenotype and Fitness
Correlations of viral phenotype and replicative fi t-
ness are found throughout the literature. However, 
most studies to determine phenotype and pheno-
typic changes (e.g. tropism, infectivity and ability 
to induce syncytia) are generally performed in 
in vitro single virus replication assays. The classical 
defi nition of fi tness has necessarily required some 
aspect of direct competition for limited resources; 
therefore single-virus infections and assays are 
unable to be applied to directly answer whether one 
viral variant is more fi t in a given environment 
versus another variant in the same environment. 
Relatively few studies have combined studies of 
viral phenotype with dual-virus replication assays 
to determine viral variant fi tness.

In vivo studies to determine fi tness of HIV-1 in 
the presence of immune responses have been ham-
pered by the lack of an animal model to validate 
observations, and collection of samples from co-
infections or super-infections within human cohorts 
are limited (Piantadosi et al. 2007; Kozaczynska 
et al. 2007; Gottlieb et al. 2007). In vitro competi-
tion assays have been used to characterize general 
viral fi tness in regards to infectivity, replication 
and cytopathicity. These types of experiments sug-
gest increasing fi tness trends in the overall HIV-1 
population over time despite the ‘reset’ of viral 
phenotype that occurs during each transmission 
event (Gali et al. 2007). Additionally, competition 
assays demonstrated that R5 and X4 phenotype do 
not necessarily correlate with lower or higher rep-
licative fi tness, respectively. One study found that 
R5 and X4 clones were equally fi t in terms of viral 
replication in mitogen-activated T cells, but that 
X4 viruses did appear to have a selective advantage 
in DC-T cell co-cultures (Arien et al. 2006), while 
another study found that some R5 clones were 
more fi t than X4 clones (Quinones-Mateu et al. 
2000). These observations could help explain why 
the shift from R5 to X4 is not essential for progres-
sion to AIDS, since mass activation of the host 

CD4+ T cell population is characteristic of late 
stages of HIV-1 infection allowing outgrowth of 
either R5 or X4 viruses, but that moderate increases 
in viral spread which is correlated with X4 clones, 
would shorten the time to AIDS onset. Specifi c 
mutations in env have now been correlated with 
changes in fi tness and entry inhibitor resistance 
(Lobritz et al. 2007; Rangel et al. 2003). Competi-
tion assays have also been used to explore the 
effects of environmental factors on viral fi tness, 
such as the availability of permissive cell popula-
tions (Goodenow et al. 2003). Finally, the analysis 
of HIV-1 superinfection in infected individuals 
provides a rare glimpse into viral fi tness in vivo 
(Gottlieb et al. 2007; Blish et al. 2007; Kozaczyn-
ska et al. 2007). However, research is limited by 
the rarity of these occurrences and knowledge of 
the properties of the viruses.

Because of the limitations for studying HIV-1 
fi tness in vivo, infection of macaques with SIV has 
remained a critical model for exploring questions 
about HIV-1 fi tness and pathogenesis. The model 
system allows incorporation of viral fi tness scores 
in the presence of shifting target cell populations, 
immune response and host variability and in con-
text of infection with a related lentivirus. It also 
enables fi tness to be examined with variants of 
known in vitro phenotype and in vivo pathogenic-
ity. Indeed, a recent study showed that a SIV 
variant with increased replicative capacity and 
pathogenicity demonstrated higher competitive 
viral replication fi tness in vitro compared to the 
slower-replicating and minimally pathogenic 
parental clone (Voronin et al. 2005). These types 
of studies provide important experimental evidence 
in support of the hypothesis that viral fitness 
impacts HIV-1 pathogenesis.

The macaque model system has also been used 
to study effects of dual virus infections in the host. 
These studies have mainly used R5- and X4-tropic 
SHIV chimeric constructs (Burke et al. 2006; 
Wolinsky et al. 2004; Otten et al. 1999). These dual 
virus infection studies are vital to understanding 
viral fi tness in the full context of an infection where 
both viral and host factors are present and infl uence 
fi tness outcomes of variants. However, few studies 
have been performed using dual-virus infections to 
specifi cally study the relative fi tness of variants and 
which determinants are able to confer fi tness advan-
tages at various stages of infection and disease 
states (Harouse et al. 2003). Furthermore, these 
studies have been limited to competitions with 
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R5-tropic and X4-tropic viruses. Additional studies 
with different variants, including R5-tropic viruses 
with distinct phenotypes, would further enhance 
our understanding of viral determinants infl uencing 
transmission, persistence and disease.

Conclusion
Route of HIV-1 transmission appears to dictate to 
some extent the type and number of viral variants 
that comprise the founder population of viruses in 
a newly infected host. Particularly interesting, as 
discussed above, are the aspects controlling selec-
tion during transmission where different factors, 
ranging from time of contact between viruses 
trapped within the vaginal cavity versus rectal 
tissues to cell-free virions versus cell-associated 
viruses to the glycosylation patterns found on 
gp120, appear to affect the number and type of 
transmitted viruses. Additionally, host immune 
responses and the corresponding counter-defenses 
of the infecting variants that enable evasion of the 
immune response represent an environment of 
attrition. While the strength of the immune response 
may initially determine viral set-points and rates 
of CD4+ T cell loss, latency and high mutability 
enable HIV-1 to subvert some host immune 
responses and evade other immune responses, 
leading to profound depletion of CD4+ T cell 
populations and onset of AIDS.

Correlating viral phenotypes with pathogenicity 
has resulted in identifi cation of regions of interest 
within the viral genome that impact replication and 
persistence. Added studies of competitive replica-
tion fi tness will be necessary to shed more light on 
the signifi cance of these changes for viral fi tness 
at early and late stages of infection. In this regard, 
the infection of macaques with SIV variants will 
be needed to provide invaluable results for deci-
phering fi tness determinants for transmission and 
pathogenesis.
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