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Abstract: Determining the genetic architecture of complex traits is a necessary step to understand phenotypic changes in 
natural, experimental and domestic populations. However, this is still a major challenge for modern genetics, since the 
estimation of genetic effects tends to be complicated by genetic interactions, which lead to changes in the effect of allelic 
substitutions depending on the genetic background. Recent progress in statistical tools aiming to describe and quantify 
genetic effects meaningfully improves the effi ciency and the availability of genotype-to-phenotype mapping methods. In 
this contribution, we facilitate the practical use of the recently published ‘NOIA’ quantitative framework by providing an 
implementation of linear and multilinear regressions, change of reference operation and genotype-to-phenotype mapping 
in a package (‘noia’) for the software R, and we discuss theoretical and practical benefi ts evolutionary and quantitative 
geneticists may fi nd in using proper modeling strategies to quantify the effects of genes.

Introduction
Quantitative genetics aim at providing models that describe the genetic architecture of complex phenotypic 
traits. These so-called multifactorial characters are generally underlain by several genes and by 
environmental factors, that can potentially interact in many ways. One of the most insightful applications 
of dissecting the genetic architecture of a quantitative trait, e.g. through QTL mapping experiments, is 
to determine individual genetic effects. However, the proper quantifi cation of allelic effects from 
experimental data, as well as the description of the Genotype-to-Phenotype (GP) map, remains challenging. 
In particular, it is well known that the effect of a particular allele often depends on the genetic background, 
i.e. the genotype at other loci.

Genetic interactions (or epistasis), when measured from a polymorphic population, change with 
allelic frequencies. Fisher (1918) fi rst developed a mathematical framework describing how genetic 
effects of allele substitutions in populations affected the mean phenotype. Kempthorne (1954) and 
Cockerham (1954) extended Fisher’s work to account for epistasis. This ‘statistical epistasis’ (sensu 
Cheverud and Routman, 1995) provides  information about e.g. the evolutionary properties of a particular 
population, but is of little interest for the geneticist who is more focused on the effect of genetic inter-
actions in a given genotypic background —‘physiological’ (Cheverud and Routman, 1995) or ‘functional’ 
(Hansen and Wagner, 2001) epistasis. The mathematical and statistical issues underlying a proper 
quantifi cation of genetic effects are not trivial, and keep on generating a respectable amount of literature 
nowadays (Kao and Zeng, 2002; Yang, 2004; Zeng et al. 2005; Wang and Zeng, 2006).

In a recent contribution, Álvarez-Castro and Carlborg (2007) described a general framework, the 
Natural and Orthogonal InterActions (NOIA) model, which provides mathematical tools to compute 
and manipulate genetic effects and GP maps. In particular, NOIA ensures that the statistical estima-
tion of genetic effects remains orthogonal regardless of the genotypic frequencies at each locus in 
the population under study, i.e. even if the population deviates from expected Hardy-Weinberg 
proportions. This property makes the model useful in a broad range of situations, including the study 
of natural populations, and should be prefered to more constrained models (such as those forcing 
the frequencies to fi t to an F2 population or to Hardy-Weinberg proportions). Furthermore, once the 
estimates of genetic effects have been obtained using the proper statistical formulation of genetic 
effects, researchers might want to express them in a different way, e.g. describing the average effects 
of allele substitutions at a different population than the sample under study, or describing natural 
effects of allele substitutions from an individual genotype—i.e. functional estimates of genetic 
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effects as described above. NOIA provides tools 
to transform the estimates obtained from the data 
into these other estimates with different useful 
meanings (Álvarez-Castro and Carlborg, 2007; 
Álvarez-Castro et al. 2008).

Geneticists may benefi t from such theoretical 
improvement in a broad range of situations, 
including (i) when estimating the genetic 
architecture of a trait after a QTL mapping 
experiment, and (ii) when genotyping loci known 
to underlie a complex trait in a natural population. 
The aim of this communication is to present 
statistical and bioinformatic tools designed to use 
NOIA in practice. First, we propose to extend the 
NOIA framework to handle the decomposition of 
the genetic variance and the computation of 
confi dence intervals of genetic effects. We then 
describe how to simplify the analysis of complex 
GP maps through the multilinear model of genetic 
interactions proposed by Hansen and Wagner 
(2001). Finally, we present an implementation of 
the NOIA model to obtain genetic effects at any 
location in the genome in a user-friendly package 
for the software R ( R Development Core Team, 
2007), and we illustrate the benefi ts provided by 
this framework.

Model

The NOIA model

General framework
Zeng et al. (2005) proposed to link the Geno-
type-to-Phenotype (GP) map (i.e. the vector 
genotypic values G) to the vector of genetic 
effects E by:

 G S E= R R⋅  (1)

SR being the genetic-effect design matrix for the 
reference point R. If the model is orthogonal, 
genetic effects are ‘statistical’, and the reference 
point is μ, the mean of the population. According 
to Álvarez-Castro and Carlborg (2007), in the case 
of a single-locus model with two alleles A and a 
(and three genotypes, noted AA = 1, Aa = 2 and 
aa = 3, which respective frequencies are p1, p2 
and p3), the orthogonal decomposition of genetic 
effects is:
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The genetic effects α and δ correspond to the 
additive and dominance effects. Assuming 
linkage equilibrium, the extension of equation 2 
to any number of loci through simple matrix 
algebra is straightforward (Álvarez-Castro and 
Carlborg, 2007).

When a specifi c genotype is chosen as a refer-
ence, the corresponding effects will be ‘functional’, 
and they no longer depend on genotypic frequen-
cies in the population. Genetic effects from 
a specific genetic background reference (RB), 
ERB

, can be obtained by the ‘change of reference’ 
operation:

 E S S ER R R RB B
= ⋅ ⋅−1  (3)

where SRB
 is the genetic-effec ts desing matrix 

fi tting the new reference point RB (see Álvarez-
Castro and Carlborg, 2007 for more details).

Linear regression
The survey of a natural or an artifi cial population 
will bring both phenotypic and genetic information. 
When the location of the genetic factors involved 
in the trait under study is known, each individual 
i of the population will be identified by its 
phenotype yi and its genotype gi. According to most 
models in quantitative genetics, the phenotype 
results from a combination of genetic and 
environmental factors, such as y G ei g ii

= + , 
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where ei, a factor due to environmental noise, is a 
random, normally-distributed variable. Therefore, 
provided a suffi cient population size, the GP map 
can be evaluated by a linear regression:

 Y Z G= ⋅ + e  (4)

where Z is a matrix that refl ects the genotype of 
each observed individual, whose phenotypes 
are Y (Álvarez-Castro and Carlborg, 2007; 
Álvarez-Castro et al. 2008). From equation 1, the 
statistical genetic effects can be evaluated by a 
linear regression as well:

 Y Z S E= ⋅ ⋅ +S S e  (5)

Variance computation
The variance explained by a specifi c genetic effect 
depends on the frequency of the different geno-
types in which this effect is involved. If V is the 
vector of genetic variances, and F the vector of 
genotypic frequencies, then

 V F S S E E= ⋅ ⋅( ) ( )� � T  (6)

where T denotes the transposition operation, and ○ 
is the Hadamard product (i.e. pairwise product of 
the elements of the two matrices).

The decomposition of variance components, a 
classical procedure in quantitative genetics, can be 
performed in a straightforward way by summing 
up the variances of the effects at the same level: 
the additive variance will be the sum of the vari-
ances of single additive effects, etc. If the model 
is orthogonal, then the sum of all effect variances 
should add up to the total genetic (explained) vari-
ance.

Another useful result is the computation of 
confi dence intervals for the estimates of genetic 
effects and genotypic values. The standard 
deviation of the (linear or non-linear) regression 
coeffi cients, σE, are provided directly by R (R 
Development Core Team, 2007). The equivalent 
standard errors for the GP map can be derived from 
Equation 1:

 σ σG
2 2= ⋅( )S S� E.  (7)

The multilinear model in the NOIA 
framework

The multilinear model of genetic interactions
The multilinear model (Hansen and Wagner, 2001; 
Carter et al. 2005) provides a way to describe 
complex multi-locus GP maps through a reduced 
number of parameters, given some approxima-
tions. The underlying hypothesis is that epistatic 
interactions result from a scaling by a parameter ε. 
Considering two independent allelic substitutions 
at two different loci, and i and j their respective 
effects on the phenotype, the multilinear model 
predicts that both substitutions occuring 
together will result in a genotypic value of: 
i + j + εij ⋅ i ⋅ j.

Multilinear regression
The general model provided by NOIA generates 
3L genetic effects for L loci, which becomes 
increasingly diffi cult to handle with high number 
of loci. The multilinear approximation leads to a 
simplification of the models by reducing the 
number of parameters. For instance, for a 2-locus 
(A and B) model,
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(8)

the right-hand side vector contains only 6 param-
eters to estimate, compared to the 9 of the full 
model. Transferring this in equation 5 leads to a 
non-linear regression. Its implementation in the 
software R (R Development Core Team, 2007), 
through the nls procedure, showed that the 
numerical convergence was generally not 
problematic when proper starting values are 
provided (calculated from the result of a linear 
regression).
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Implementation
The NOIA framework has been implemented as a 
fully documented package for the free software R, 
which is available on most common operating 
systems including Linux, Microsoft Windows and 
Macintosh. The linear and non-linear regressions 
rely repectively on the lm and nls (library stats) 
functions of R. The noia package is released under 
the General Public Licence, and can be freely 
downloaded from the CRAN depository http: //cran.
r-project.org/web/packages/noia/index.html.

Results and Discussion

From the data to the Genotype-
Phenotype map

Dataset
In the ideal situation, the exact genotype is known 
at the expected location of the genetic factors that 
are thought to infl uence the trait. This reduces 
uncertainties and increases the power of the 
analysis. However, in many cases, the genetic 
information consist of markers that are close to, 
but not exactly at the quantitative trait locus. In 
this latter situation, it is possible to calculate the 
probability of the genotype at the locus from the 
genotype at fl anking markers, knowing the recom-
bination rate between markers, the most common 
method being the Haley-Knott regression (Haley 
and Knott, 1992). The extension of the NOIA 
framework to such a situation is explained in detail 
in Álvarez-Castroet et al. (2008).

The noia package provides two kinds of possible 
input data sets that correspond to these two 

situations (Fig. 1). The exact genotypes are 
provided as an array of L columns, L being the 
number of loci (Fig. 1a). The genotypes are coded 
such as 1and 3 are homozygotes, while 2 stands 
for the heterozygous genotype. Missing data are 
allowed, each missing genotype being weighted 
according to its frequency in the rest of the popu-
lation. The partial genotypic information are pro-
vided by a 3L columns array, in which each of the 
L loci is represented by a set of 3 columns standing 
for the probabilities of the three genotypes 1, 2 and 
3, the sum of these being 1 (Fig. 1b).

Genetic effects and GP map
The linear and multilinear regression functions 
(linearRegression and multilinearRegression 
respectively) estimate genetic effects in the NOIA 
statistical framework, and display the estimated 
values of genetic effects, the corresponding part of 
genetic variance explained, the standard deviation 
of the estimate and the probability that the corre-
sponding effect is 0 (as provided by the lm and nls 
functions in R). Table 1 presents an example from 
a simulated population, with both statistical and 
functional genetic effects (the full script is provided 
in the Appendix).

The genotype-to-phenotype map is calculated by 
the function GPmap from the result of either linear or 
multilinear regression. The standard errors of geno-
typic values are calculated as described above; these 
errors are also provided in the case of the multilinear 
regression, though they are probably not meaningful 
except if the GP map is expected to be actually mul-
tilinear: they cover both random departure from the 
actual GP map and the non-random departure of the 
GP map from the closest multilinear map. Table 2 

a b
phen Loc1 Loc2
5.32 3 3
2.15 2 1
6.09 3 2
2.18 1 1
3.36 NA 3.36

2.18
6.09
2.15

phen Loc1- 1 Loc1- 2 Loc1- 3 Loc2- 1 Loc2- 2 Loc2- 3
5.32 0 0

0
0

0
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1
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1
1

1
1

1

1
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0

0

0

0
0

0
0

0
0
0
00.25 0.54 0.21

Figure 1. Illustration of data formatting. Part a provides an example of a data set in which the genotypes of individals are fully known (or, 
alternatively, totally unknown and considered as missing data); 1 and 3 stand for the homozygotes (e.g. ‘AA’ and ‘aa’) and 2 for the herero-
zygote. Part b illustrates a second kind of data set in which the genotypes are defi ned by their probabilites. In this example, part b is the 
exact equivalent of part a (and then, the frequency of the ‘known’ genotypes is always 1), but in practice, especially when the data result 
from a Haley-Knott regression, the probabilities, computed from the genotypes at fl anking markers, may be intermediate. Missing values 
(‘NA’) are allowed in type a data sets, and are replaced by genotypic probabilities equal to genotypic frequencies in the rest of the population 
(here, close to 0.25, 0.5, and 0.25 since the population is an F2). The Z matrix used for the regression (equation 5) is computed from a ‘type 
b’ data set, meaning that if ‘type a’ data is provided, it is turned into ‘type b’ before the genetic regression.



229

Estimation of genetic effects and genotype-phenotype maps

Evolutionary Bioinformatics 2008:4

Table 1. The decomposition of genetic effects in a 2-locus case. The GP map is chosen such as the nine 
genetic effects are equal to 1 in a perfect F2 population. Linear and multilinear regressions are performed on a 
simulated F2 (N = 500, Var(e) = 0.04). The code for genetic effects is indicated as used in the noia package. 
Genetic effects are indicated by ‘E’, and the reference point follows between brackets (‘pop’ for the statistical 
effects in the population, ‘P1’ for the functional effects in one of the parental populations (genotype ‘1’)). The 
genetic effects in the P1 background are the results of a ‘change-of-reference’ operation (function geneticEffects). 
‘Var’ is the variance explained by each genetic effect, and the standard errors (Std. err) of genetic effects, as 
provided by the linear and non-linear regression functions, are indicated. The multilinear regression does not 
provide any of the classical epistasis components (additive by additive, etc), but a ‘directionality’ parameter. 
Discrepencies with the expected values of the genetic effects are due to (i) random sampling of phenotypes in 
the simulated population, and (ii) random linkage disequilibrium in the population that precludes the orthogonal-
ity of the model. The decomposition of variance according to the linear model is as follows: additive variance 
Var(A) = 0.99, dominance variance Var(D) =  0.51, interaction variance Var(I) = 0.53; the sum of genetic variances 
is thus 2.04, while the expected explained variance from the regression is 1.97. The (small) difference results 
from covariances due to sampling effects (random linkage disequilibrium). The corresponding script is provided 
in the Appendix.

Effect code E (pop) Var Std. err.
(pop)

E (P1) E (mult) Std. err. 
(mult)

Reference point .. 1.05 1.10 0.0089 0.31 1.03 0.018
Additive, loc 1 a. 1.06 0.57 0.0124 −0.52 1.10 0.025
Dominance, loc 1 d. 1.07 0.29 0.0178 −0.53 1.08 0.036
Additive, loc 2 .a 0.92 0.41 0.0128 −0.51 0.94 0.026
A × A aa 0.95 0.22 0.0183 0.99 − −
D × A da 0.97 0.11 0.0257 1.02 − −
Dominance, loc 2 .d 0.96 0.23 0.0179 −0.58 0.97 0.035
A × D ad 1.04 0.14 0.0250 1.04 − −
D × D dd 1.05 0.07 0.0375 1.05 − −
Directionality (ε) ee − − − − 0.55 0.025

Table 2. GP map estimates. The table displays the GP map estimated from the linear (L) and multilinear (M) 
regressions described in Table 1. The standard errors are those calculated from the linear model. The precision 
of the estimates may vary according to the genotype; frequent genotypes (such as the double heterozygote 22) 
is estimated more accurately than the rare ones (double homozygotes). The GP map from the general model is 
very close to the actual map, while the multilinear model is constrained and the fi t with the expected values may 
be loose if the real map is not multilinear.

Genotype Actual map Estimate (L) Std. err. (L) estimate (M)
11 0.25 0.31 0.037 −0.76
21 −0.75 −0.74 0.027 −0.40
31 −0.75 −0.73 0.038 −0.40
12 −0.75 −0.77 0.024 −0.52
22 2.25 2.26 0.018 2.14
32 2.25 2.24 0.025 2.17
13 −0.75 −0.70 0.034 −0.51
23 2.25 2.27 0.025 2.16
33 2.25 2.23 0.035 2.19
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compares the GP map that has been used to simulate 
the dataset, and the GP map inferred from both linear 
and multilinear regressions. Figure 2 displays the 
estimates of genotypic values, as well as their 
confi dence intervals, for two different GPmaps (with 
and without epistasis).

The precision of the genetic effects and the GP 
map estimates obviously depends on the quality 
of the data set. Figure 3a illustrates the effect of 
increasing the population size on the precision of 
the genotypic effects, and shows that the 
improvement is not linear: the gain in precision is 
weak beyond a population size threshold (in this 
example, where only 2 loci are involved, N –~ 400). 
Missing of genotypes (Fig. 3b) affects the results 
moderately, even at a high frequency (�50%). It 
is worth noting that sensitivity to missing 
genotypes depends on the GP map (it is higher 
when a lot of epistasis is involved). Moreover, the 
distribution of missing data should not be biased 
such that the genotypic frequencies are modifi ed 
signifi cantly.

Reducing the complexity
By defi nition, the fully general model provides as 
many parameters as necessary to describe any GP 
map (i.e. as many genetic effects as possible geno-
types). Increasing the number of loci in the model 
may therefore lead to an increasing complexity 
(such as a three or four-way interactions) associated 
to huge confidence intervals, and possibly 
overparameterization (more parameters than what 

can be possibly etimated from the dataset). More-
over, large datasets may lead to computational 
problems (Fig. 4). The analysis of large and com-
plex GP maps thus requires tools aiming at reduc-
ing the number of genetic effects, while keeping as 
much meaningful information as possible.

Our framework provides two ways of achieving 
this. The fi rst possibility is to restrict the analysis to 
a subset of the possible genetic effects, by removing 
some of them from the analysis. The expected 
orthogonality of the linear model guarantees that 
removing any parameter does not impact the other 
ones, and the hierarchy of genetic effects suggests 
to get rid of high order effects fi rst, since they are 
calculated from the residuals of lower-order effects. 
Dominance, which may not be of interest in all 
situations, can be removed as well.

The other possibility is to reduce the number of 
genetic effects without losing all information about 
high-order epistasis. This can be achieved through 
the multilinear regression, which supposes that 
genetic interactions are proportional to the product 
of marginal effects. The resulting estimate is the 
directionality of epistasis, and can be used as a 
proxy for complex GP maps (Fig. 5).

Perspectives and conclusion
Model orthogonalization is a general issue in 
statistics, and is thus not restricted to the decomposition 
of genetic effects. In any case, getting genetic 
estimates as independent as possible remains 
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Figure 2. Accuracy of GP map predictions. The estimate of genotypic values, as well as their 95% confi dence intervals, are shown for 
two different tow-locus Genotype-Phenotype maps (a: no epistasis, b: multilinear epistasis). Results are derived from simulated F2 popula-
tions of size N = 200 (the script is provided in the Appendix). Predictions are satisfactory, except if the model cannot handle the complexity 
of the map (marginal effect model on an epistatic map). Confi dence intervals are smaller when the genotypic value is estimated from a 
frequent genotype in the population (the most frequent genotype in an F2 being 22), and when the model has less degrees of freedom (such 
as in one-locus models). 95% confi dence intervals are estimated from the standard error (SE) by CI = 1.96 × SE.
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desirable for at least three reasons: (i) it enables 
straightforward model selection strategies, (ii) it 
describes the genetic system as average effects of 
allele substitutions in the sample under study, and 
(iii) it leads to a proper decomposition of genetic 
variances. The aim of a research project could 
however be to focus on a population with properties 
different from those of the sample under study. Using 
the change-of-reference tools of  NOIA it is possible 
to transform the obtained estimates from the data 

into the ones that correspond to the desired reference 
population, and to obtain the orthogonal decomposition 
of variance in that population. Furthermore, it is 
possible to use not only reference populations but 
also reference individual genotypes. The genetic 
effects obtained using individual genotypes as 
reference points make it possible to describe the 
genetic system as sets of allele substitutions from 
those individuals. This so-called ‘functional 
modeling of genetic effects’ enables researchers to 
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Figure 3. Impact of the quality of the data set on the results. The effect of the population size and the proportion of missing data on the 
quality of the results is illustrated by the standard deviation of the 2-locus GP map estimates. The amplitude of uncertainties changes with the 
genotype considered, since the more frequent in the F2 population, the better the estimate of the genotypic value. The results for the ‘best’ 
genotype (i.e. the fully heterozygous (‘htz’) genotype 22) and one of the the ‘worse’ ones (fully homozygous (‘hmz’) 11) are displayed. a: 
improvement in the precision of the GP map when the size of the population under study is increased. b: effects of substituting (randomly) 
genotypic information (2 loci, N = 500) by missing data. In this example (Var(e) = 1, additive GP map), fairly good estimates of the genotypic 
values in a 2-locus GP map requires N  �  400, and these estimates appear to be quite robust to missing data information. The corresponding 
script is available in the Appendix.
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necessary for the linear regression, with full and marginal-effect models. The test has been performed on a single AMD Athlon 4000 + 
processor, with the standard R software for Linux (32 bits) and its profi ling module (Rprof). Multilinear regression (not shown) is always 
slower than the corresponding linear regression since this linear regression is fi rst performed to estimate the starting values. b) Increase of 
the S matrix size with the number of loci. S matrix is the largest element in the model, and its size is proportional to the memory necessary 
to run the program. With a modern desktop PC, it is possible to run regressions up to 10 loci, which is probably beyond the number of genes 
that can be located in a regular experimental procedure.
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use real data to study interesting aspects of evolution 
such as hybrid incompatibilities and domestication 
processes (e.g. Le Rouzic et al. 2008).

The NOIA model is perfectly orthogonal at the 
level of a single locus, whatever the genotypic 
frequencies. However, it assumes linkage 
equilibrium (as many previous models for variance 
decomposition, e.g. Cockerham, 1954; Kempthorne, 
1954; Zeng et al. 2005), and is therefore not exactly 
orthogonal if some genotypes are preferentially 
associated, even because of random departure from 
the total equilibrium situation. In practice, a 
perfectly orthogonal model would lead to results 
in which the statistical reference point is exactly 
the mean of the population, and the sum of variance 
components is exactly the part of variance 
explained by the model (i.e. the total phenotypic 
variance minus the residual variance). In any case, 
simulation results (e.g. Table 1, Fig. 2) show that 
the small amount of linkage disequilibrium due 
to unbiased sampling does not affect dramatically 
the orthogonality of the model.

Further improvement of the NOIA framework 
include the implementation of a multi-allele model, 

the current model providing the matrix algebra for 
only two alleles. This two-allele case is satisfactory 
in many situations, in which the population under 
study is the result of a cross between two divergent 
parental populations. This pattern maximizes the 
power of gene location, and is thus frequently used, 
both for domestic populations and natural species 
surveys. However, many natural populations show 
a high degree of polymorphism, and would ben-
efi t from a more general model. In any case, study-
ing multiple alleles will generate many new genetic 
parameters to estimate, and would rapidly reach a 
limit due to the quality and the size of the data set. 
Practical use of such more general model would 
thus be doubtful without the development of tools 
and concepts aiming at simplifying the description 
of genetic architectures.

Statistical tools such as those described in this 
contribution aim at providing meaningful and 
unbiased estimates for many genetic parameters. 
However, the number of parameters underlying a 
GP map increases exponentially with the number 
of genetic factors involved: more loci means more 
pairwise interactions between loci, and much more 

Figure 5. Illustration of the consequences of reducing the complexity of GP maps. An F2 population (size N = 500, Var (e) = 1) has 
been simulated from an arbitrary 2-locus, 2-allele (a and A at the fi rst locus, b and B at the other one) GP map (panel a). The inferrence of 
the GP map from this population with different regression options is displayed in panels b to f (see the Appendix for the corresponding R 
script). b: Full model (9 parameters), explains 77.7% of the total phenotypic variance; c) multilinear model (6 parameters, 74.3%); d) no 
dominance (i.e. only additive and additive-by-additive interactions) (4 parameters, 55.9%); e) no epistasis (5 parameters, 70.8%); f ) additive 
effects only (3 parameters, 54.9%). The full model always performs better (results identical to the actual GP map except sampling effect). 
The relative performance of the other models obviously depends on the shape of the actual GP map. If the decomposition is orthogonal, a 
model selection procedure can be performed to make a rational choice among all possible models.
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high-order interactions. It is likely that most quan-
titative traits are underlined by large and complex 
networks of interacting genes, and the development 
of new technologies in genetics and molecular 
biology may bring an enormous amount of data on 
the structure and effects of genetic polymorphisms 
in such networks. Our ability to extract and sum-
marize information that is relevant for geneticists 
and evolutionary biologists thus requires the 
development of tools aiming at manipulating huge 
datasets not only mathematically, but also 
conceptually.
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Appendix
library (noia)

### If the package is not installed: 
### source ("noia.R")
### To ensure that the results are fully 
reproducible

set.seed (12346789)

###################### Table 1 and Table 2 
#########################

### Build a GP map for 2 loci:
### Order of the genotypes: 11 21 31 12 22 32 13 
23 33

map1 �- c (0.25, −0.75, −0.75, −0.75, 2.25, 
2.25, −0.75, 2.25, 2.25) 
### In this particular GP map, all genetic effects 
are 1
### in a perfect F2 population

names (map1) �- c ("11", "21", "31", "12", "22", 
"32", "13", "23", "33") pop1 �- simulatePop 
(map1, N = 500, sigmaE = 0.2, type = "F2")

### Regressions

linear �- linearRegression (phen = pop1$phen, 
gen = cbind (pop1$Loc1, pop1$Loc2))

mu l t i l i nea r  � -  mu l t i l i nea rReg re s s ion 
(phen = pop1$phen, gen = cbind (pop1$Loc1, 
pop1$Loc2))

### Linear effects, associated variances and stderr 
print (linear)

### Multilinear effects 
print (multilinear)

### Change of reference: genetic effects in the "11" 
genotype (parental 1) 
print (geneticEffects (linear, ref.genotype = "P1"))

### Variance decomposition 
print (varianceDecomposition (linear))

### GP maps 

table2 �- cbind (map1, GPmap (linear), GPmap 
(multilinear) [,1]) 
colnames (table2) <- c ("Actual", "Lin. effect", 
"Lin. stderr", "Mult. effects")

print (table2)

# # # # # # # # # # # # # # # # # # # # # # #  F i g u r e  2 
#####################

map3 �- c (1, 2, 3,  2, 3, 4,  3, 4, 5) 
names (map3) �- c ("11", "21", "31", "12", "22", 
"32", "13", "23", "33")

map4 �- c (1, 2, 3,  2, 4, 6,  3, 6, 9) 
names (map4) �- c ("11", "21", "31", "12", "22", 
"32", "13", "23", "33")

pop3 �- simulatePop (map3, N = 200, sigmaE = 1, 
type = "F2")
pop4 �- simulatePop (map4, N = 200, sigmaE = 1, 
type = "F2")

gpmap3.linear.l1 �- GPmap (linearRegression 
(phen = pop3$phen, 
gen = cbind (pop3$Loc1, pop3$Loc2), max.
level = 1)) 
gpmap3.linear.l2 �- GPmap (linearRegression 
(phen = pop3$phen, 
gen = cbind (pop3$Loc1, pop3$Loc2), max.
level = 2)) 
gpmap4.linear.l1 �- GPmap (linearRegression 
(phen = pop4$phen, 
gen = cbind (pop4$Loc1, pop4$Loc2), max.
level = 1)) 
gpmap4.linear.l2 �- GPmap (linearRegression 
(phen = pop4$phen, 
gen = cbind (pop4$Loc1, pop4$Loc2), max.
level = 2)) 
gpmap4.mlinear.l2 �- GPmap (multilinearRegres-
sion (phen = pop4$phen, 
gen = cbind (pop4$Loc1, pop4$Loc2)))

### Figure 2a 
print (cbind (map3, gpmap3.linear.l1, gpmap3.
linear.l2))

### Figure 2b 
print (cbind (map4, gpmap4.linear.l1, gpmap4.
linear.l2, gpmap4.mlinear.l2))
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# # # # # # # # # # # # # # # # # # # # # # #  F i g u r e  3 
#######################

### The GP map does not really matter here 
map2 �- c (1, 2, 3, 4, 5, 6, 7, 8, 9) 
names (map2) �- c ("11", "21", "31", "12", "22", 
"32", "13", "23", "33")

### Impact of population size 
range �- (100* (1:20)) 
sd1 �- NULL # Robust genotype estimate (double 
heterozygote) 
sd2 <- NULL # Non-robust genotype estimate 
(double homozygote) 
for (N in range) 
{ 
pop �- simulatePop (map2, N = N, sigmaE = 1, 
type = "F2") 
reg �- linearRegression (phen = pop$phen, gen = 
cbind (pop$Loc1, pop$Loc2)) 
gp �- GPmap (reg) 
sd1 �- c (sd1, gp["22", 2]) 
sd2 �- c (sd2, gp["11", 2]) 
} 
cbind (range, sd1, sd2)

### Impact of missing data 
range �- 30* (0:25) 
sd1 �- NULL # Robust genotype estimate (double 
heterozygote) 
sd2 �- NULL # Non-robust genotype estimate 
(double homozygote)

for (miss in range) 
{ 
pop �- simulatePop (map2, N = 500, sigmaE = 1, 
type = "F2") 
gen �- cbind (pop$Loc1, pop$Loc2) 
gen[sample (1:1000,miss)] <- NA

reg �- linearRegression (phen = pop$phen, gen = 
gen) 
gp �- GPmap (reg) 
sd1 �- c (sd1, gp ["22", 2]) 
sd2 �- c (sd2, gp ["11", 2]) } 
cbind (range/1000, sd1, sd2)

####################### Figure 5 #########
##########################

### Build a custom GP map for 2 loci:
### Order of the genotypes: 11 21 31 12 22 32 13 
23 33

map2 �- c (2, 2, 2,  3, 6, 6,  4, 6, 6) 
names (map2) �- c ("11", "21", "31", "12", "22", 
"32", "13", "23", "33") 
pop2 �- simulatePop (map2, N = 500, sigmaE = 
1, type = "F2")

### Full model 
full �- linearRegression (phen = pop2$phen, gen = 
cbind (pop2$Loc1, pop2$Loc2))

### Multilinear regression 
mult �- multilinearRegression (phen = pop2$phen, 
gen = cbind (pop2$Loc1, pop2$Loc2))

### Without dominance 
wo.dom �- linearRegression (phen = pop2$phen, 
gen = cbind (pop2$Loc1, pop2$Loc2), max.
dom = 0)

### Without epistasis 
wo.epi �- linearRegression (phen = pop2$phen,
gen = cbind (pop2$Loc1, pop2$Loc2), max.
level = 1)

### Only additive effects 
add �- linearRegression (phen = pop2$phen,
gen = cbind (pop2$Loc1, pop2$Loc2), 
max.level = 1, max.dom = 0)

### Comparing the maps 
comp �- cbind (map2, GPmap (full) [,1], 
GPmap (mult) [,1], GPmap (wo.dom) [,1], GPmap 
(wo.epi) [,1], GPmap (add) [,1]) 
colnames (comp) �- c ("true", "full", "mult", "wo.
dom", "wo.epi", "add")

print (comp)
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