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Abstract: A phylogenetic profi le captures the pattern of gene gain and loss throughout evolutionary time. Proteins that 
interact directly or indirectly within the cell to perform a biological function will often co-evolve, and this co-evolution 
should be well refl ected within their phylogenetic profi les. Thus similar phylogenetic profi les are commonly used for grouping 
proteins into functional groups. However, it remains unclear how the size and content of the phylogenetic profi le impacts 
the ability to predict function, particularly in Eukaryotes. Here we developed a straightforward approach to address this 
question by constructing a complete set of phylogenetic profi les for 31 fully sequenced Eukaryotes. Using Gene Ontology 
as our gold standard, we compared the accuracy of functional predictions made by a comprehensive array of permutations 
on the complete set of genomes. Our permutations showed that phylogenetic profi les containing between 25 and 31 Eukaryotic 
genomes performed equally well and signifi cantly better than all other permuted genome sets, with one exception: we 
uncovered a core of group of 18 genomes that achieved statistically identical accuracy. This core group contained genomes 
from each branch of the eukaryotic phylogeny, but also contained several groups of closely related organisms, suggesting 
that a balance between phylogenetic breadth and depth may improve our ability to use Eukaryotic specifi c phylogenetic 
profi les for functional annotations.
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Introduction
A phylogenetic profi le is a binary representation of a gene’s evolution through time. When the 
evolutionary pattern of a gene’s gains and losses closely matches that of another, it is plausible to assume 
that these two genes have coevolved and coordinate to perform a biological function. Phylogenetic 
profi les have become critical for various pursuits in comparative genomics and systems biology including 
functional prediction (Pellegrini et al. 1999; Wu et al. 2003; Gaasterland and Ragan, 1998), cellular 
localization of proteins (Marcotte et al. 2000), and the construction of regulatory networks within the 
cell (Bowers et al. 2004; Wu et al. 2006; Date and Marcotte, 2003). By and large, the successes have 
come from the use of phylogenetic profi les composed entirely of bacterial genomes, and thus 
the extensibility of the approaches and conclusions to Eukaryotes remains unclear. Many of these 
research studies did not address the question of how genome composition and number impact the utility 
of phylogenetic profi les. However, with the dramatic rise of fully sequenced genomes, in particular 
Eukaryotic genomes, these questions have taken center stage, chiefl y because of the importance of 
bioinformatics approaches like phylogenetic profi ling for rapid and accurate genome annotation and 
network construction.

As a consequence, new research has emerged that addresses how genome content and number alter 
the predictive power of phylogenetic profi les both with and without a sizeable collection of Eukaryotes 
(Jothi et al. 2007; Snitkin et al. 2006; Sun et al. 2007; Sun et al. 2005). Two of these important studies 
(Jothi et al. 2007; Snitkin et al. 2006) assembled large groups of both bacterial and Eukaryotic genomes to 
assess performance in general, and the effect of Eukaryotes on performance in particular. Both concluded 
that Eukaryotic genomes signifi cantly degrade performance and call into question the application of 
phylogenetic profi les for functional annotation of Eukaryotic genomes.

In the present study, we expand upon this previous research by focusing exclusively on Eukaryotes, 
in particular by testing numerous combinations of Eukaryotic genomes to fi nd reference sets that exhib-
ited optimal accuracy of functional prediction. To this end, we conducted a comprehensive set of per-
mutations on a set of 31 Eukaryotic genomes by knocking out, one-by-one, conspicuous outlier genomes. 
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This strategy generated 30 different genome sets 
of decreasing size and variable genome composition 
and provided a global view of accuracy and 
coverage of functional predictions. Our results 
show that Eukaryotic phylogenetic profi les can be 
used for the study of function in Eukaryotic 
genomes, but that accuracy and coverage are both 
highly dependent on the specifi c genomes used.

Methods

Assembling phylogenetic profi les
We started with a complete set of phylogenetic 
profi les built from ortholog analysis among the 31 
Eukaryotic genomes currently available in the 
web-enabled tool RoundUp (DeLuca et al. 2006; 
Wall et al. 2003). Using gene ontology (GO) 
(Harris et al. 2004), we assigned biological 
processes to every profi le and grouped profi les 
annotated with the same process. We allowed 
single profiles to be represented in multiple 
processes. In an attempt to account for the variability 
of gene annotation and to minimize redundancy of 
GO terms among the processes, we grouped GO 
identifi ers together if they were found along the 
same direct path to the root of the biological pro-
cess ontology. Terms close to the root, specifi cally 
at levels 1 and 2, were removed. At the time of 
writing, this procedure amounted in 886 distinct 
GO process subgraphs, hereafter referred to as 
functional modules.

Comparing and permuting 
phylogenetic profi les
To assess the ability of a particular permutation 
(number and type of genomes within a phylogenetic 
profi le) to predict function, we fi rst computed a 
hamming distance for all pairs of phylogenetic 
profi les in every functional module to form kin. We 
then computed the pairwise hamming distance 
matrix for all members of a specifi c functional 
module against all members of another functional 
module to form kout for all functional modules. 
A student’s t-test was used to determine whether 
kin and kout differed signifi cantly. Since each func-
tional module’s kin must be compared to the 885 
other functional modules, the p values from the 
t-test were adjusted by the false discovery rate to 
generate q values (Storey 2002). The q value is a 
measurement of signifi cance framed in terms of 

the false discovery rate, rather than the rate of false 
positives. It has the benefi t of being less conservative 
than alternative approaches to multiple test 
correction while still minimizing the number of 
false positive fi ndings. Values below 0.05 were 
taken as suffi cient evidence that the two functional 
modules being compared could be distinguished 
by their phylogenetic profi les.

Beginning with all 31 Eukaryotic genomes, we 
successively removed one at a time—the outlier 
genome causing the largest increase in kin—until 
only 2 genomes remained, amounting in 30 
different phylogenetic profi le permutations. After 
each deletion we computed and compared kin and 
kout to generate a complete set of q values for all 
phylogenetic profi le permutations.

To test whether changes in the predictive power 
of a permutation were due to alterations in size or 
genome composition we used the Kolmogorov-
Smirnov (KS) test. The KS test is a nonparametric 
test that assesses the difference between two 
distributions, assuming as the null hypothesis that 
the two samples are distributed identically. In our 
case, the samples compared were the numbers of 
signifi cant q values obtained by comparing kin and 
kout for all 886 functional modules. A KS test was 
performed for all-against-all phylogenetic profi le 
permutations; a p value �0.05 was considered 
evidence that the accuracy of the two genome sets 
was signifi cantly different.

Results
We constructed 21,706 Eukaryotic phylogenetic 
profi les using orthologs calculated by RoundUp 
(DeLuca et al. 2006) and employed an algorithm 
to remove outlier genomes one at a time until two 
genomes remained, amounting in 30 different 
permutations. In all permutations, the outlier was 
obvious and no ties were encountered. For each 
permutation the difference between kin and kout for 
all 886 functional modules was tested. The number 
of signifi cant FDR-adjusted q values (q � 0.05) 
per phylogenetic profi le permutation was consid-
ered a direct measurement of the accuracy of each 
genome set for predicting membership in a gene 
ontology-defi ned functional module. The results 
of this analysis for the 30 different permutations 
are displayed in Figure 1 (raw data available online 
as Supplementary Table 1), and Table 1 lists the 
order and identity of genome deletions per 
permutation. The greatest accuracy was near 99%, 
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but this was true for only a single functional 
module (GO:0000751, “cell cycle arrest in response 
to pheromone”).

In general, bigger genome sets were better at 
predicting membership in a functional module than 
smaller ones (Fig. 1). However, most of the per-
mutations predicted at least a fraction of the func-
tional modules. In all but three (permutations Ecu, 
Cfa, Smi corresponding to genome set sizes of 2, 
5, and 6, respectively), 50 or more specifi c func-
tional modules could be predicted with 80% or 
higher accuracy. Several of these well predicted 
functional modules were identifi ed by more than 
one permuted genome set, indicating that the pre-
dictive power of genome sets overlapped in certain 
cases. Specifi cally, a total of 14 functional modules 
were accurately distinguished by all permuted 
genome sets (Table 2) and 27 functional modules 
were found in the top 50 in 20 or more of the 30 
permutations. Each permutated genome set was 
also able to uniquely identify certain functional 
modules. By manual inspection, these appeared to 
be derived pathways that have evolved in a subset 

of the eukaryotic organisms. The union of all 
functional modules predicted at 80% or higher 
accuracy contained 203 distinct members (available 
online as Supplementary Table 2). Several of the 
functional modules predicted with 80% or better 
accuracy contained over 200 phylogenetic profi les, 
signifi cantly larger than the mean size of 12.8 
profi les per module. This indicates that accuracy 
levels were not artifi cially infl ated by modules with 
few genes and/or genomes.

The predictive power did not decline linearly 
with the successive deletion of genomes. Instead, 
signifi cant decreases in accuracy were seen only 
after deleting certain genomes, the most obvious 
changes occurring with the 7th (Ath), the 13th 
(Sba), and the 22nd (Xtr). These single genome 
alterations to the genome sets formed visible zones 
of accuracy when graphed (Fig. 1). By KS tests we 
determined that the different genome sets within a 
zone had statistically indistinguishable accuracy 
for predicting membership in a functional module, 
but that each zone was signifi cantly different from 
the others (Fig. 2; raw data available online in 
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Figure 1. The functional prediction accuracy of phylogenetic profi les from 30 different eukaryotic genome sets. Accuracy was determined 
by t-test comparison of average hamming distance for phylogenetic profi les within a functional module versus phylogenetic profi les in all 
885 other functional modules. P values were adjusted to account for multiple testing by the method described in (Storey, 2002). The plot 
depicts the number of corrected p values per functional module and demonstrates that there are 4 zones of decreasing accuracy within 
which the level of performance of each phylogenetic profi le for predicting function is statistically indistinguishable, but between which the 
performance declines signifi cantly.
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Supplementary Table 3). This demonstrated that 
within zones neither the genome content nor the 
size of the genome set altered the utility of the 
phylogenetic profi le for predicting function.

We then questioned whether the differences in 
accuracy across the zones were due to a specifi c 
genome being added or deleted. For example, a 
reasonable hypothesis was that the addition or 
deletion of Arabidopsis thaliana (Ath) caused the 
sharp change in accuracy between profiles 
containing 25 versus those containing 24 genomes. 
To address this question, we ran permutations to 
delete any and all combinations of the fi rst seven 
largest outlier genomes including Ath, and com-
pared the accuracy of each permuted genome set 
against the accuracy conferred by the complete set 
of 31 genomes using KS tests. This analysis dem-
onstrated that as many as six could be deleted 
randomly without altering the accuracy, but that at 
least one of the seven must be included in the 
genome set to retain the accuracy equal to the 
complete genome set.

To test whether our strategy for altering the 
genome set by fi rst deleting the largest outlier 
genomes introduced bias into our estimates of pre-
dictive power, we successively deleted the smallest 
genomes one-by-one and compared their predictive 
power against that found using the complete set of 
genomes. Similar to the scenario observed when 
deleting the largest outliers, only after the 8th 
smallest outlier genome was deleted did a signifi -
cant decline in performance occur. This suggested 
the possibility that the genome in particular, in this 
case Smi, contributed more to the accuracy of the 
phylogenetic profi le than the other 7. However this 
turned out to be false. By running additional 
permutations to test any and all combinations of 
the 8 smallest outlier genomes plus the remainder, 
we discovered that as many as 7, chosen at random, 
could be deleted without altering the accuracy of 
the genome set for functional prediction.

The fi ndings that all but one of the 7 largest 
outlier genomes and all but one of the 8 smallest 
outlier genomes could be deleted without nega-
tively impacting the predictive power of the phy-
logenetic profi les provoked us to test if removal of 
all 13 genomes to generate a set of 18 would yield 
equal predictive power to the genome set contain-
ing all 31. Indeed, deleting all 13 achieved results 
statistically indistinguishable from those found by 
the genome set with no deletions, regardless of 
which one of the largest and smallest outliers were 

Table 1. Order and identity of genomes deletions for 
the 30 permutations depicted in Figure 1. Genomes are 
in decreasing order from largest to smallest outlier. 
Phylogenetic profi les for a given genome set were 
grouped into biological processes defi ned by gene 
ontology; a pairwise distance matrix was then generated 
to identify the outlier genome (no ties were discovered). 
To evaluate the affect of size and composition on the 
power of a phylogenetic profi le to predict function, 
outlier genomes were removed one-by-one until the 
size of the genome set equaled 2, i.e. composed of just 
Hsa and Mus.

Ciona intestinalis Cint

Apis mellifera Ame

Caenorhabditis elegans Cel

Anopheles gambiae Aga

Strongylocentrotus purpuratus Spu

Saccharomyces cerevisiae Sce

Arabidopsis thaliana Ath

Drosophila melanogaster Dme

Saccharomyces paradoxus Spa

Candida glabrata Cgl

Candida albicans Cal

Schizosaccharomyces pombe Spo

Saccharomyces bayanus Sba

Saccharomyces castellii Sca

Gallus gallus Gga

Danio rerio Dre

Tetraodon nigroviridis Tni

Fugu rubripes Fru

Saccharomyces kudriavzevii Sku

Macaca mulatta Mmu

Xenopus tropicalis Xtr

Saccharomyces kluyveri Skl

Pan troglodytes Ptr

Monodelphis domestica Mdo

Saccharomyces mikatae Smi

Canis familiaris Cfa

Rattus norvegicus Rno

Bos taurus Bta

Encephalitozoon cuniculi Ecu

Homo sapiens Hsa*

Mus Musculus Mus*
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retained in the genome set (average p value for 
these tests was 0.8). Thus, the following genome 
set equaled the predictive performance of the 
largest, and most accurate, genome sets tested:

X, Dme, Spa, Cgl, Cal, Spo, Sba, 
Sca, Gga, Dre, Tni, Fru, Sku, Mmu, 
Xtr, Skl, Ptr, Y
Where X and Y are any of the seven largest (Cint, 
Ame, Cel, Aga, Spu, Sce, Ath) and eight smallest 
(Mdo, Smi, Cfa, Rno, Bta, Ecu, Hsa, Mus) outlier 
genomes, respectively. Any additional genome 
deletions from this core set of 18 caused a 
signifi cant decline in the accuracy.

Discussion
Previous research has shown that size and 
composition of phylogenetic profi les dramatically 

alter their ability to predict function and that the 
Eukaryotic genomes have a signifi cant negative 
impact on performance, most likely because of 
the bacterial contributions that occurred during 
the evolution of Eukaryotes as well as the over-
representation of both parasitic unicellular 
Eukaryotes and vertebrates among the set of fully 
sequenced genomes (Jothi et al. 2007). In the 
present study, we probed this issue more deeply 
by building phylogenetic profi les composed only 
of Eukaryotes. We tested a large variety of 
genome sets using gene ontology as our gold 
standard to determine how well profi les could 
predict function in general and, in particular, how 
the size and composition altered the predictive 
power.

We found that the profi les composed of larger 
numbers of genomes, between 25 and 31, had the 
greatest power, predicting on average 30% of the 

Table 2. Functional modules predicted with 80% or higher accuracy by the 30 genome sets tested in the present 
study. A functional module includes all Gene Ontology (GO) terms along the path to the root of the GO process 
ontology excluding those closest to the root, specifi cally terms at levels 1 and 2.

Parent GO ID Biological Process Description Size of Module # Profi les in Subgraph

GO:0048691 positive regulation of axon extension 
involved in regeneration

24 309

GO:0048478 replication fork protection 32 267
GO:0048128 oocyte axis determination, oocyte 

nuclear migration
43 274

GO:0046638 positive regulation of alpha-beta T 
cell differentiation

69 687

GO:0045500 sevenless signaling pathway 30 378
GO:0045082 positive regulation of interleukin-10 

biosynthetic process
73 677

GO:0043306 positive regulation of mast cell 
degranulation

15 223

GO:0042776 mitochondrial ATP synthesis coupled 
proton transport

29 291

GO:0035067 negative regulation of histone 
acetylation

44 660

GO:0035056 negative regulation of nuclear mRNA 
splicing via U2-type spliceosome

22 216

GO:0030702 chromatin silencing at centromere 33 371
GO:0008377 light-induced release of internally 

sequestered calcium ion
47 482

GO:0007253 cytoplasmic sequestering of 
NF-kappaB

78 569

GO:0000752 agglutination during conjugation with 
cellular fusion

10 203
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functional modules with 70% accuracy. A signifi cant 
decline in accuracy was found when the seven 
largest outliers were deleted from the complete set 
of 31 genomes. The cause of this degradation in 
performance appeared to be mainly due to the 
reduction of the genome set from 25 to 24 genomes, 
than to any specifi c genome being deleted, as the 
addition of any one of the seven restored the accu-
racy to the level exhibited by the largest profi les. 
This further suggested that the seven largest outli-
ers (Cint, Ame, Cel, Aga, Spu, Sce, Ath) contain 
redundant information for functional prediction, a 
fi nding that was diffi cult to explain as they are 
widely dispersed across the phylogeny of Eukary-
otes.

We also discovered that the 8 smallest outliers 
are redundant with respect to their ability to con-
tribute to the prediction of membership in a func-
tional module. While the deletion of all 8 
signifi cantly degraded the accuracy of functional 
predictions, insertion of any one to the genome set 
containing the remaining 23 genomes restored the 
accuracy to the highest levels found. Unlike the 
situation with the 7 largest outliers, the phyloge-
netic distribution of the 8 of the smallest outliers 
(Mdo, Smi, Cfa, Rno, Bta, Ecu, Hsa, Mus) may 

explain the reason for the large degree of overlap 
in predictive power, given that a majority of them 
are mammals.

Together these two results suggested that all but 
one of the largest and one of the smallest outliers 
could be removed from the complete set of 31 to 
generate a small core that has equal ability to 
predict function as the best performing genomes 
sets. This hypothesis was supported by our 
results—a total of 13 genomes could be deleted 
without altering the predictive power. Furthermore, 
any additional deletions from this “Eukaryotic 
core” signifi cantly degraded performance. This 
core group contained genomes from each branch 
of the Eukaryotic phylogeny, but also contained 
several groups of closely related organisms, sug-
gesting that a balance between phylogenetic 
breadth and depth may improve our ability to use 
Eukaryotic specifi c phylogenetic profi les for func-
tional annotations.

The results from all of our permutations indicate 
that the size of the phylogenetic profi le is important 
for high precision and recall of functional predic-
tion, an expected outcome given that larger profi les 
have more possible patterns. However, the size of 
the profi le only matters to a point, beyond which 

Z1
Z2

Z3
Z4

Figure 2. Heatmap showing signifi cant differences in the accuracy of the functional predictions made by 30 different genome sets tested in 
the present study. Signifi cance was measured by Kolmogorov-Smirnov (KS) tests. Red indicates an insignifi cant p value = 1, Blue represents 
a signifi cant p value = 0. The 4 large zones of accuracy also evident in Figure 1 are shown here to differ signifi cantly with all KS-test p values 
� 0.01 (Z1–Z4).
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the addition of new genomes yields no additional 
resolution (e.g. adding more of the largest or small-
est outliers did not signifi cantly increase accuracy 
or coverage). In the present study, we determined 
that it was not only important to have 18 genomes 
in the reference set, but that the choice of genomes 
was critical for achieving maximum performance. 
Similarly, Jothi et al. (2007) concluded that not 
only is the number of genomes important, but that 
careful selection of informative genomes in the 
reference set impacts the accuracy of phylogenetic 
profi les.

Although the Eukaryotic core may represent a 
best-case solution to achieve both optimal accuracy 
and coverage using a single reference set, nearly all 
of the permuted genome sets could predict 50 or 
more functional modules with 80% or higher accu-
racy (clustering evident in the upper left of Fig. 1). 
Furthermore, many of these well predicted func-
tional modules were uniquely identifi ed by only one 
or a few of the genome sets, suggesting that even 
higher coverage without loss of accuracy could be 
achieved by combining predictions from numerous 
reference sets, however a more precise understand-
ing of the classes of functions that are best predicted 
by different reference sets would be required before 
such groupings could be done effectively.

In the present analysis, we elected to use the 
reciprocal smallest distance algorithm (Wall et al. 
2003) to detect orthologs, because it uses global 
sequence alignment and maximum likelihood 
estimation of evolutionary distances to detect 
orthologs and is thus less likely to be misled by the 
presence of close paralogs than approaches that 
rely on reciprocal best blast hits (e.g. (Sun et al. 
2005)). However, there is no question that the 
genomic complexity of Eukaryotes, including 
extensive amounts of domain shuffl ing and gene 
family evolution, can complicate the search for 
truly functionally equivalent genes and therefore 
negatively impact the utility of phylogenetic 
profi les for predicting protein function (Ranea et al. 
2007). Future work to assess prediction performance 
of profi les that have been constructed by alternative 
methods should greatly improve our understanding 
of how the shape and size of phylogenetic profi les 
impact our ability to predict protein function in 
Eukaryotes. For example, domain based approaches 
(Ranea et al. 2007) should increase the ability to 
predict membership in functional modules that 
would otherwise be missed by approaches like to 
one presented here.
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