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Abstract: The utility of the matrix representation with flipping (MRF) supertree method has been limited by the speed of 
its heuristic algorithms. We describe a new heuristic al gorithm for MRF supertree construction that improves upon the speed 
of the previous heuristic by a factor of n (the number of taxa in the supertree). This new heuristic makes MRF tractable for 
large-scale supertree analyses and allows the first comparisons of MRF with other supertree methods using large empirical 
data sets. Analyses of three published supertree data sets with between 267 to 571 taxa indicate that MRF supertrees are 
equally or more similar to the input trees on average than matrix representation with parsimony (MRP) and modified min-
cut supertrees. The results also show that large dif ferences may exist between MRF and MRP supertrees and demonstrate 
that the MRF supertree method is a practical and potentially more accurate alternative to the nearly ubiquitous MRP super-
tree method.

Keywords: Supertree, phylogenetic trees, matrix representation with flipping, matrix representation with parsimony, tree 
search heuristics.

Introduction
There is increasing interest in supertree methods for phylogenetics (see Bininda-Emonds et al. 2002; 
Bininda-Emonds, 2004). Supertree meth ods combine phylogenetic trees with incomplete taxonomic 
overlap into a comprehensive phylogeny that incorporates all taxa from the input trees. Since the ulti-
mate aim of many supertree analyses is to build large phylogenies, an effective supertree method must 
be fast as well as accurate. Therefore, the development and implementation of fast algorithms is a 
critically important part of establishing useful supertree methods.

The most popular supertree method by far is matrix representation with parsimony (MRP; see Bininda-
Emonds, 2004). MRP performs a maximum parsimony analysis on a binary matrix representation of 
the set of input trees (Baum, 1992; Ragan, 1992; Baum and Ragan, 2004). Therefore, MRP analyses 
can use fast maximum parsimony heuristics (e.g. Nixon, 1999; Goloboff, 2000) and popular phyloge-
netics programs that implement maximum parsi mony like PAUP* (Swofford, 2002) or TNT (Goloboff, 
2000). Still, MRP has been criticised for its performance and properties (e.g. Purvis, 1995; Pisani and 
Wilkinson, 2002; Gatesy and Springer, 2004; Goloboff, 2005; Wilkinson et al. 2005). For example, 
MRP may have a size bias, in which the size of the input trees affects how MRP resolves conflicts 
(Purvis, 1995). There is also evidence that MRP may have a shape bias, in which input tree shape affects 
the resulting supertree (Wilkinson et al. 2005). Furthermore, the validity of using parsimony on a matrix 
representation of input trees has been questioned (Slowinski and Page, 1999; Eulenstein et al. 2004; 
Gatesy and Springer, 2004). Thus, there is a need to investigate alternate supertree methods.

The matrix representation with flipping (MRF, or minimum flip) supertree method, like MRP, uses 
a matrix representation of the input trees (Chen et al. 2003; Chen et al. 2004; Burleigh et al. 2004; 
Eulenstein et al. 2004). While MRP seeks trees that minimize the parsimony score of the matrix repre-
sentation of input trees, MRF seeks the minimum number of flips, character changes from 0 to 1 or 1 
to 0, that will make the matrix representation of input trees consistent with a phylogenetic tree (see 
Chen et al. 2003; Burleigh et al. 2004; Eulenstein et al. 2004). The resulting phylogenetic trees are MRF 
supertrees. Like the parsimony problem, the minimum flip problem is NP-hard (Chen et al. 2006), and 
therefore, estimating an MRF supertree requires heuristic algorithms when the input trees contain more 
than approximately 20 taxa. Simulation experiments (Eulenstein et al. 2004; Piaggio-Talice et al. 2004) 
indicate that MRF supertrees retain more of the relationships from the input trees than MinCut (Semple 
and Steel, 2000), Modified MinCut (MMC; Page, 2002), and quartet supertree methods (Piaggio-Talice 
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et al. 2004). Also, MRF supertrees retain relation-
ships from the input trees at least as well as MRP 
supertrees, with MRF appearing to slightly outper-
form MRP as the taxon overlap among input trees 
decreases (Chen et al. 2003; Burleigh et al. 2004; 
Eulenstein et al. 2004). Though these results 
suggest that MRF is a promising supertree method, 
the characteristics of the simulated data sets likely 
differ greatly from those of empirical data sets. 
Furthermore, the first MRF heuristics were slow 
(Eulenstein et al. 2004; Goloboff, 2005), and 
consequently the performance of the MRF super-
tree method on large empirical data sets has been 
largely unexamined.

We describe improvements to existing MRF 
heuristics that increase the speed of the heuristics 
by a factor of n, where n is the total number of taxa 
represented in the input trees. These improvements 
make it feasible to estimate MRF supertrees for 
large data sets. Furthermore, they allow the first 
comparisons of the performance of MRF with other 
supertree methods using empirical data sets 
containing many more taxa than were in the simu-
lated data sets. The results of these analyses 
demonstrate that MRF may perform better than 
MRP or MMC supertree methods. The analyses 
also demonstrate notable differences between 
results of MRF and MRP supertrees that were not 
observed in small simulation studies.

Definitions
Let S ={s1, ..., sn} denote a set of n taxa and L(T) 
denote the leaf set of a rooted tree T.

A directed phylogenetic tree, or phylogeny for 
short, over set S is a rooted binary tree T such that 
every internal node of T has two children and 
L(T) = S. (The assumption that the phylogenies are 
binary is made only for simplicity and can easily 
be dropped.) Let v be a node of a phylogeny T. 
Then, Tv denotes the subtree rooted at v, and T – Tv 
denotes the tree T with the subtree Tv removed. The 
set L(Tv) is the cluster of T at v.

A profile is a multiset τ of phylogenies. The 
elements of τ are called input trees. A supertree 
for a profile τ is a phylogeny T such that 
L(T) = U t∈τL (t).

A character matrix for S is an n × m matrix 
M =[aij] over {0, 1,?}, whose i-th row corresponds 
to taxon si. The j-th column of M is called character 
j. The set of all si such that aij = 1 is the 1-set of 
character j and is denoted by Oj; the set of all si 

such that aij = 0 is the 0-set of character j and is 
denoted by Zj.

Let τ be a profile such that U t∈τL (t) = S. For 
our study, we define a matrix representation of τ 
as a character matrix M for S obtained as follows. 
For each tree t ∈ τ and each cluster X in t, create 
a column of M whose i- th entry is 1 if si ∈ X, 0 if 
si ∈ L(t) − X, and ? if si ∉ L(t).

The matrix representation of trees is the basis 
for MRP (Baum, 1992; Ragan, 1992; Purvis, 
1995) and MRF (Chen et al. 2003; Burleigh et al. 
2004; Eulenstein et al. 2004) supertree meth ods. 
We note that there are numerous different matrix 
representations of trees (e.g. Farris et al. 1970; 
Purvis, 1995; Wilkinson et al. 2004). In this paper, 
we use a standard binary matrix rep resentation 
(Farris et al. 1970; Baum, 1992; Ragan, 1992) 
which is the most commonly used one in supertree 
studies and was also used in the formal definitions 
of the MRF method (Chen et al. 2003; Burleigh 
et al. 2004; Eulenstein et al. 2004). MRF is based 
on the notion of flip distance from a character 
matrix M to a tree T (Chen et al. 2003; Eulenstein 
et al. 2004). This quantity equals the smallest 
number of 1 → 0 and 0 → 1changes (flips) that 
must be made to M so that the 1-set of each char-
acter of M corresponds to some cluster in T. An 
MRF supertree for M is a tree T that has minimum 
flip distance to T. We now define the above 
notions precisely.

Let T be a phylogeny over some subset of S, v 
be a node of T , and M be a character matrix for 
S. Let zj(v) denote the number of taxa that are in 
the 0 -set of character j and also in the cluster at 
v; that is, zj(v) = |Zj∩L(Tv)|. Similarly, let oj(v) 
denote the number of taxa that are in the 1-set of 
character j as well as in the cluster at v; that is, 
oj(v) = |Oj∩ L(Tv)|. The flip distance of character 
j to v is defined as 

 fj (v) = zj(v) + (|Oj| − oj (v)).  (1)

Note that fj (v) is the number of changes needed 
to make character j correspond to the cluster at node 
v. The first term in the right hand side of the above 
equation is the number of 0 → 1 changes and the 
second term equals the number of 1→ 0 changes.

The flip distance of character j to T is

 fj (T) = min ( )
v T

jf v
∈

 (2)
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The flip distance of character matrix M to T is

 f T f TM j
j

m

( ) ( )=
=

∑
1

 (3) 

The flip distance of a profile τ to T is 

 fτ(T ) = fM (T ), (4) 

where M is some matrix representation of τ. Note 
that fτ(T) is well-defined, since all matrix represen-
tations of τ are column permutations of each 
other.

The minimum-flip problem is: Given a character 
matrix M over S, find a phylogeny T over S such 
that fM (T ) is minimum. The fixed-tree minimum 
flip problem is: Given a character matrix M for S 
and a phylogeny T for S, compute fM (T ).

Heuristics for MRF
The MRF supertree problem is defined only for 
rooted trees (Chen et al. 2003; Burleigh et al. 2004; 
Eulenstein et al. 2004), and the rooting of a tree 
can affect its flip distance from a char acter matrix. 
Thus, unlike MRP, MRF supertree heuristics 
cannot use existing unrooted tree search algo-
rithms. The details of the original MRF heuristic 
algorithm were not described by Eulenstein et al. 
(2004), which has led to some apparent confusion 
in critiques of MRF (e.g. Goloboff, 2005). There-
fore, we fully describe the accelerated MRF 
heuristic.

Like its predecessor, the new MRF heuristic 
uses a hill climbing strategy that is similar to the 
one used for unrooted tree searches in PAUP* 
(Swofford, 2002). The initial tree is obtained 
through greedy taxon addition using a randomly-
chosen order (in practice, several initial trees are 
usually generated). After the initial tree is obtained, 
the search proceeds iteratively. At each step it 
locates the best tree (the tree with the lowest flip 
distance) that can be obtained from the current tree 
by a branch swap. Each tree that can be generated 
by a single branch swap is called a neighbor of the 
current tree. If no neighbor has a lower flip 
distance, the search stops and the current tree is 
returned as the estimate of a MRF supertree. Other-
wise, the current tree is replaced by its best 
neighbor. The improved run times reported here, 
compared to the run times in the previous MRF 

heuristic, are due to changes in the implementation 
of the branch swapping operations.

We consider three rooted branch swapping 
operations.

Rooted Nearest Neighbor Interchange (rNNI) 
Choose an internal node v of T and swap one of 
v’s children with v’s sibling. Note that T has 
2n −4 rNNI neighbors.
Rooted Subtree Pruning and Regrafting (rSPR) 
(See also Hein, 1990; Bordewich and Semple, 
2004.) Choose a non-root node v of T, called a 
prune node. Prune the subtree Tv by removing 
the edge between v and its parent, suppressing 
the remaining degree -two node. Next, regraft 
Tv into T − Tv as follows: Pick a node u, called 
the regrafting node, in T − Tv. If u is the root, 
create a new root p and make p the parent of u 
and v. Otherwise, create a new vertex p that 
subdivides the edge between u and its parent, 
and make p the parent of v. Note that T has Θ(n2) 
rSPR neighbors.
Rooted Tree Bisection and Reconnection 
(rTBR) This operation extends rSPR by allow-
ing the pruned subtree T′ = Tv to be re -rooted 
before regrafting. Re- rooting is done as follows: 
(i) Suppress the root node of T′. (ii) Create a 
new root node r by subdividing an edge {x, y} 
in T′ into the edges {x, r} and {y, r}. We refer 
to this operation as bending edge {x, y}. Note 
that T has Θ(n3) rTBR neighbors.

The earlier MRF heuristic found the best 
neighbor by computing the flip distance of each 
such neighbor from scratch (Eulenstein et al. 2004). 
This failed to exploit the similarities between the 
current tree and its neighbors, and, consequently, 
was quite slow. The running times to find an 
optimal neighbor tree of a given n-taxon tree for 
rNNI, rSPR, and rTBR were O(n2m), O(n3m), and 
O(n4m), respectively. The new algorithms reduce 
these times by a factor of n, giving execution times 
of O(nm), O(n2m), and O(n3m), respectively. In all 
three cases, the key is to preprocess the tree to 
allow evaluation of the flip distance of each 
neighbor in O(1) time per character. Our proce-
dures share some ideas with recently described 
parsimony heuristics (Ganapathy et al. 2003).

In the remainder of this section, we first describe 
a bottom-up assignment algorithm that is used in 
all our branch swapping procedures. We then 
describe the new rSPR and rTBR algorithms. 
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Finally, we explain the implementation of greedy 
taxon addition, which relies on rSPR. We have 
experimentally determined that rNNI tends to 
produce trees with higher flip distances than rSPR 
and rTBR; nevertheless, for completeness, we 
describe the rNNI algorithm in the Appendix. Since 
the flip distance fM (T ) can be obtained by 
computing fj(T ) independently for each character 
j and adding up the results (see Equation (3)), the 
descriptions of all the algorithms to follow focus 
on the computation of fj(T ) for a single character j.

Bottom-up assignment
The algorithm traverses the input tree T in post-
order, computing four quantities for each node v: 
zj(v), oj(v), fj(v), and fj(Tv). Before the traversal 
starts, it computes the values of |Oj| for every 
character j; this takes O(nm) time.

Consider a node v of T. If v is a leaf, we can 
easily compute zj(v), oj(v), fj(v), and fj(Tv) in O(1) 
time. Now, suppose v is an internal node with 
children u and w, such that zj(x), oj(x), fj(x), and fj 
(Tx) are known for x = u, w. Obviously,

 zj(v) = zj(u) + zj(w) 
and  (5)
   oj(v) = oj(u) + oj(w).  

Given zj(v), oj(v), and |Oj|, the value of fj(v) 
follows from Equation (1); fj (Tv) is given by

 fj(Tv) = min{ fj(Tu), fj(Tw), fj(v)}. (6)

Thus, zj(v), oj(v), fj(v), and fj(Tv ) can be obtained 
in O(1) time. Since there are 2n − 1 nodes in T, 
computing the four required values for every node 
of T takes time O(n) per character, for a total of 
O(nm) time.

When the bottom-up assignment is finished, 
fj(T) = fj(Tv), where v is the root node of T,
and fM(T) can be computed in O(m) time via
Equation (3).

Finding the best rSPR neighbor
The algorithm considers all possible prune nodes; 
for each such node, it computes the optimum 
regrafting node. A prune node v is processed in two 
steps. First, apply the bottom-up assignment algo-
rithm to Tv and T − Tv . Thus, for each node w of 
each tree and each character j we have zj(w), oj(w), 
fj(w), and fj(Tw). Second, traverse the nodes of T − 
Tv in preorder. Let the k-th node in the preorder 

sequence be uk ; thus, u1 is the root of T − Tv . At 
step k, we compute the flip distance of the tree 
T (k) obtained by regrafting Tv at uk . We now explain 
how to obtain fj(T (1)) in O(1) time and how to 
compute fj(T (k)), k > 1, in O(1) time using the 
information computed for T(k − 1).

Let pk denote the parent of v and uk in the k-th 
rSPR neighbor tree. Let rj

(k) denote fj(T(k) – Tpk

( )k ). 
Defi ne rj

(1) = +∞.
Note that p1 is the root of the first rSPR neighbor 

tree (Figure 1(a–b)) and that 

 
f T f T

f p f T f T

j j p

j j v j u

( )

min , ,

( ) ( )

( ) ( )

1 1

1
1 1

1

1

= ( )
= ( ) ( ) ( ){ }

 
(7)

The value of fj (p1) can be computed in O(1) time 
using Equations (1) and (5) and the infor mation 
stored at the roots of Tv and T − Tv. Note that 
f T f Tj v j v( ) ( )( )1 equals ,  which is known, and 
f T f T Tj u j v u( ) (( ) ),( )

1 1

1 equals −  which is also known. 
Thus, fj (T (1)) can be obtained in O(1) time.

Assume that T (k−1), k > 1, has been processed. 
We now describe how to process T(k) (Figure 1 
(c–d)). Let wA and wB denote the left and right 
children of uk−1 in T(k−1) and let TA = TwA

( )k−1  and TB 
= TwB

( )k−1 . Without loss of generality, we assume that 
uk = wA.

Assume that we know rj
( ) .k −1  For T (k) we have 

 r r f u f Tj
k

j
k

j k j B
( ) ( )min{ , ( ), ( )}.= −

−
1

1
 (8)

Since, the cluster at uk
 
−1 in T (k) is the same as 

the cluster at pk
 
−1 in T (k –1), the above expression 

can be evaluated in O(1) time. Now,

 f T r f T
j j j
( ) min , .( ) ( ) ( )k k

p
k

k
= ( ){ }  (9)

Note that fj ( )( )Tp
k

k
 = min {fi(pk), fj(Tv), fj(TA)},so 

fj  ( )( )Tp
k

k
can be computed in O(1) time given the 

information available at Tv and TA from the prepro-
cessing step. Hence, fj(T (k)) can be obtained from 
T (k−1) in O(1) time using Equation (9). Thus, the 
best regrafting node for Tv can be found in O(n) 
time per character. Since there are O(n) choices for 
v, this leads to a time of O(n2) per character, and 
O(n2m) total, to fi nd the best rSPR neighbor of T.

Finding the best rTBR neighbor 
rTBR differs from rSPR in that it may re-root Tv 
before attaching it to T − Tv . To handle rerooting 
efficiently, we use a three-way assignment 

350



Evolutionary Bioinformatics 2006: 2

Minimum -Flip Supertrees

u3 ui uj
u3 ui uj

r
j (k-1)

pk-1

wAv
Tv

wB

uk-1

TA TB

T (k-1)

(c )

r
i (k)

r
j (k)uk-1

wB
TB

pk

r
j (k-1)

uk=wAv
Tv TA

T (k)

(d)

v
Tv
Tv

u2

u1

T-Tv

(a) p1

v
Tv

u2

u1

T (1)

(b)

Figure 1. (a) The trees Tv and T − Tv obtained after a cut at node v. (b) The first rSPR neighbor tree T (1) obtained by regrafting at the root. 
(c–d) The transformation from T (k −1) to T (k).

approach, similar to the one used for parsimony 
by Ganapathy et al. (2003). We now outline the 
main ideas of this method.

Consider an internal node u as shown in 
Figure 2. The subtrees of u change, depending on 
whether the new root is in the direction of edges 
1, 2, or 3; the subtrees of u are {Tx ,Ty}, {Ty,Tz}, 
or {Tx,Tz}, respectively. A three -way assignment 
is a labeling of each vertex u with three lists of 
values 〈zj(u),oj(u), fj(u), fj(Tu)〉, one for each 
possible rooting. Such an assignment can be 
obtained in O(n) time per character by doing a 
bottom up assignment to find the assignments for 
the first rooting, and then doing a top down 
preorder traversal to update the assignments for 
the other two rootings.

After computing a three-way assignment for 
the pruned subtree Tv , we have, for every possible 
re -rooting t of Tv , the information needed to find 
the best possible regrafting of t into T − Tv , using 
the method earlier described for rSPR. This takes 
O(n) time per character for each fixed re-rooting 
t. Since there are O(n) possible re-rootings of Tv 

and O(n) choices for v, the time required to find 
the best rTBR neighbor is O(n3) per character and 
O(n3m) total.

Greedy taxon addition 
The greedy search begins with a unique initial tree 
formed from the first two taxa in the input data set. 
The third taxon is inserted into every possible 
branch of the initial tree to form all possible three-
taxon trees. The three-taxon tree with minimum 
flip distance is chosen. Each successive taxon is 
added in this way until a complete tree is 
obtained.

To find the best place to add the k-th taxon to 
the (k − 1)-taxon tree, we use our optimum rSPR 
neighbor algorithm. In this case, the tree being 
grafted has a single node containing taxon k and 
there are 2k − 3 ways to add this taxon to the (k − 
1) -taxon tree. The time per regraft is O(km), 
yielding a total running time of O(n2m) for the 
entire addition sequence. We note that the perfor-
mance the MRF heuristic may be improved by 
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repeating the greedy taxon addition using different 
permutations of the taxa and thus generating 
multiple starting trees.

Data Sets and Results
We examined the performance of MRF, and compared 
it to two other supertree methods, MRP and MMC, 
using three large, empirical data sets. MRF supertree 
analyses, implemented in HeuristicMFT2 (Chen, 
2005), used rSPR and rTBR branch swapping on three 
random addi tion sequence replicates and saved a 
maximum of ten trees. MRP supertrees were 
constructed using PAUP* (Swofford, 2002), and used 
TBR branch swapping on three random-addition 
sequence replicates and saved a maximum of 100 
trees. MMC supertrees were constructed with a 
program supplied by Rod Page (Page, 2003). The data 
sets (see Table 1) were taken from large, published 
supertree studies of marsupials (Cardillo et al. 2004), 
mammals (Price et al. 2005), and legumes 
(Wojciechowski et al. 2000).

The performance of each supertree method was 
evaluated by measuring the degree to which the 
supertrees agree with the input trees (e.g. Eulen-
stein et al. 2004). Two measures were used for this 
purpose: 1) the average MAST-fit between the 
supertree and the input trees and 2) the average 
triplet-fit from the supertree to the input trees. The 
MAST-fit between a supertree and an input tree is 
the number of leaves in their maximum agreement 
subtree (Gordon, 1980; Kubicka et al. 1992) 
divided by the number of leaves in common 
between the two trees. This was calculated using 
PAUP* (Swofford, 2002). The triplet-fit from a 
supertree to an input tree is 1 − (d + r) / (d + r + s), 
where s is the number of rooted triplets that are 
identically resolved in the supertree and the input 
trees, d is the number of triplets resolved differently 
in both trees, and r is the number of triplets resolved 
in the input tree but not in the supertree (Page, 
2002). The triplet-fit, unlike the MAST-fit, is an 
asymmetric similarity measure. If there was more 
than one optimal supertree, we present the average 

Table 1. Supertree data sets. The second column lists the total number of input trees in each data set, and the 
third column lists the number of taxa that are found in the set of all input trees. The last column lists the number 
of characters in the binary matrix representation of the set of input trees.

Data set  Num. of input trees  Num. of taxa  Num. of characters

Marsupial  158  267  1775
Cetartiodactyla  201  290  1975
Legume  20  571  765

3
u

z

x y

T yT
x

2

Tz

1
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x y

T y
T

x
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y z
T z

T
y

u

x z
T z

T
x

1  2
3

Figure 2. Internal node u and the three possible pairs of subtrees it may have, depending on the rooting. Each requires a different 
assignment.
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score of all optimal supertrees to each of the input 
trees. In addition to measuring the quality of the 
supertrees, we also compared the CPU-time for 
each supertree method to provide a rough estimate 
of the computational requirements for each method. 
All the analyses were conducted on a Linux plat-
form with a 3.0 GHz Pentium IV processor.

In the analyses of each of the three data sets, 
the MRF supertree had an equal or higher average 
MAST-fit and triplet-fit to the input trees than 
MMC or MRP supertrees (Table 2). In the marsu-
pial and Cetartiodactyla data sets, the MAST and 
triplet-fit scores for the MRP supertrees were very 
similar to the scores for the MRF supertrees, while 
the scores for the MMC supertree were lower 
(Table 2). However, in the supertree analyses of 
the legume data set, the MAST and triplet-fit scores 
of the MRF supertree were noticeably (≥6%) 
higher than for the MMC or MRP supertrees. Also 
in the analyses of the legume data set, the triplet-fit 
score for the MRP supertree was higher than that 
of the MMC supertree, but the MAST-fit score of 
the MMC supertree was higher than that of the 
MRP supertree (Table 2). There was little if any 
difference in the performance of rSPR or rTBR 
algorithms in MRF analyses, though rTBR anal-
yses required more CPU time than rSPR analyses 
(Table 2). In the analyses of the marsupial and 
Cetartiodactyla data sets, MRF with rSPR still 
required the most CPU time of the three supertree 
methods, but in the analysis of the legume data set, 

MRF with rSPR branch swapping used less CPU 
time than the MRP heuristic (Table 2).

Discussion
The new heuristic algorithm makes MRF analyses 
feasible for large empirical data sets. The previous 
MRF algorithm was not only slow, its performance 
and implementation were questioned (Goloboff, 
2005). Eulenstein et al. (2004) reported that the 
previous rSPR heuristic performed better than the 
rTBR heuristic for MRF. Goloboff (2005, p 289) 
interpreted this to mean that “SPR usually produced 
a better agreement with the model [true] tree.” 
However, Eulenstein et al.’s (2004) statement only 
referred to an anecdotal observation that rSPR was 
faster than rTBR and that the flip distances of rSPR 
and rTNR trees were very similar if not identical. 
In this study, we again observed that the MRF 
heuristic with rSPR branch swap ping is much faster 
than the heuristic with rTBR branch swapping, and 
that both algorithms yield trees with similar flip 
distances (Table 2). The similarity between the 
performance of rSPR and rTBR may seem intui-
tively surprising (e.g. Goloboff, 2005), but it likely 
results from the nature of rooted branch swapping. 
rSPR and rTBR differ in that the latter may reroot 
the pruned subtree before regrafting. In most situ-
ations, it appears that rerooting does not reduce the 
flip distance. That is, the best rSPR and rTBR 
neighbors usually have the same flip distance. The 

Table 2. Results of the supertree analyses of three empirical data sets. The triplet-fit and MAST-fit columns show 
the average triplet-fit or MAST-fit distances of the input trees to the supertree. The Pars. score column shows 
the parsimony score of the supertree based on the binary matrix representa tion of input trees, and the Flip dist. 
column shows the minimum flip distance of the supertree based on the binary matrix representation of input 
trees. CPU time is the computational time for each supertree algorithm.

Data set Supertree Triplet-fit MAST-fit Pars. score Flip dist. CPU time (sec)

Marsupial MMC 0.544 0.542 3891 3058 164
 MRP 0.823 0.713 2274 823 583
 MRF(rSPR) 0.823 0.717 2296 801 989 
 MRF(rTBR) 0.823 0.717 2594 801 1398

Cetartiodactyla MMC 0.489 0.508 5017 4339 144
 MRP 0.796 0.654 2510 904 805
 MRF(rSPR) 0.803 0.659 2524 893 2258
 MRF(rTBR) 0.804 0.659 2523 893 2895

Legume MMC 0.713 0.711 1489 1567 39
 MRP 0.789 0.663 962 710 6884
 MRF(rSPR) 0.849 0.764 1043 397 4958
 MRF(rTBR) 0.856 0.764 1041 392 8099
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implementation of the new heuristic also fixes a 
bug in the implementation of the previous MRF 
heuristic that caused the program to save subop-
timal trees with rTBR and rNNI branch swapping 
(see Goloboff, 2005). Both rSPR and rTBR heuris-
tics generally produce supertrees with lower flip 
distances than supertrees produced with rNNI 
heuristics (not shown). Though there appears to be 
little benefit in using the rTBR as opposed to rSPR 
heuristic in a quick MRF analysis, a thorough MRF 
analysis should include rTBR branch swapping.

The speed of the new heuristic makes it possible 
to assess the performance of the MRF supertree 
method using data sets that would have been too 
computationally demanding for the previous 
heuristic method. In fact, these are among the first 
reported MRF analyses using empirical data sets 
(but see Burleigh et al. 2004). In all three analyses, 
MRF appears to perform at least as well and often 
better than MMC and MRP (Table 2). The results 
also emphasize the differences that may exist 
between MRP and MRF supertrees. In previous 
simulation and empirical studies that used small 
input trees, the average similarity scores of MRP 
and MRF supertrees to the input trees were nearly 
identical (Chen et al. 2003; Burleigh et al. 2004; 
Eulenstein et al. 2004). However, this does not 
necessarily mean that MRF and MRP supertrees 
are similar to each other. In the analyses of the 
marsupial and Cetartiodactyla data sets, there is a 
notable difference in flip distance and parsimony 
scores of the MRF and MRP supertrees, even 
though the similarity of MRF and MRP supertrees 
to the input trees appears nearly identical. In the 
analysis of the legume data set, the difference in 
the parsimony scores and flip distances of the MRF 
and MRP supertrees is much larger (Table 2). These 
examples also demonstrate that the parsimony 
score of a supertree based on its binary matrix 
representation may not be a good indicator of the 
similarity of the supertree to the input trees. MRF 
trees with higher (worse) parsimony scores 
resemble the input trees more than the optimal 
MRP trees (Table 2). In these cases, minimizing 
the flip distance appears to be a better optimality 
criterion than minimizing the parsimony score. The 
legume supertree analyses also demonstrate that 
the MMC supertree method, which uses no true 
optimality criterion, can produce supertrees that 
appear more similar to the input trees than MRP. 
Thus, it may be unwise to rely solely on an MRP 
supertree analysis.

A good supertree method must balance computa-
tional speed with accuracy. For example, the MMC 
supertree method has a fast polynomial time algo-
rithm (Page, 2002), but it often results in low quality 
supertrees (Table 2; Eulenstein et al. 2004). Conversely, 
the MRF supertree method appears to be accurate 
relative to other supertree methods, but previously its 
heuristics were too slow for large supertree studies 
(Eulenstein et al. 2004). However, the availability of 
heuristics should not dictate one’s choice of supertree 
methods. Rather, the properties of a supertree method 
should motivate the development of useful heuristics. 
Though a number of supertree methods have been 
proposed (see Bininda-Emonds, 2004), there has been 
much less focus on developing fast implementations 
of these methods. This study demonstrates that such 
work can benefit supertree analyses. We do not 
suggest that MRF is now the optimal supertree 
method. In some cases, MRF may exhibit undesirable 
properties (e.g. Goloboff, 2005; Wilkinson 
et al. 2005), and the speed of the new heuristics may 
still be a limitation for building supertrees with many 
thousand taxa or for implementing supertree boot-
strapping replicates (e.g. Creevey et al. 2004; Philip 
et al. 2005; Burleigh et al. 2006). Still, with the new 
heuristics, MRF is, in many cases, a viable supertree 
method that should be considered along with other 
methods.
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Appendix: Finding the Best rNNI Neighbor
A rNNI operation on an internal node v of T resulting in a neighbor tree T' is depicted in Figure 3. 
Observe that T and T' have the same clusters, except that T' does not contain cluster L(Tv) = L(Tx) U
L(Ty) and that T' has a cluster L(T'v') = L(T'z)  UL(T'y) not present in T.

Prior to starting the search for the best rNNI neighbor, we execute the bottom-up assign ment algo-
rithm. Next, we traverse T in preorder, computing fj(T − Tv) for each node v of T as follows. If v is the 
root of T, then T − Tv is an empty tree, denoted by Ø, and we define fj(Ø) = +∞. Now, suppose v has 
parent p and sibling z and assume that fj(T − Tp) has been correctly computed. Then,

 fj(T − Tv) = min{fj(T − Tp), fj(p), fj(Tz)} 

Since fj(p) and fj(Tz) are known after bottom-up assignment, fj(T − Tv) can be computed in constant 
time. There are 2n − 1 nodes in a binary tree T, and each visit of a node v takes constant time. Thus, 
the entire preorder traversal takes O(n) time per character, and O(nm) total.

Thus, we have zj(v), oj(v), fj(v), and fj(Tv), and fj(T − Tv) for each node v and every character j. We 
now show how this information can be used to obtain the flip distance of each neighbor tree in constant 
time per character.

By Equation (2),

 fj(T') = min{fj(T'v), fj(T' − T'v)}. (10) 

We now argue that fj(T'v) and fj(T' − T'v) can be computed in O(1) time, and, thus, so can fj(T').
Note that

 fj(T'v') = min{fj(v'), fj(T'z), fj(T'y)}
          = min{fj(v'), fj(Tz), fj(Ty)}. (11) 

The values of fj(Tz) and fj(Ty) are known, while fj(v') can be obtained in constant time using the 
precomputed values of zj and oj for nodes z and y, and Equations (1) and (5). Thus, fj(T'v') can be obtained 
in constant time.

On the other hand,

 fj(T' − T'v')  = min{fj(T' − T'p), fj(p' ), fj(T'x)}
 = min{fj(T−Tp), fj(p' ), fj(Tx)}. (12) 

The values of fj(T − Tp) and fj(Tx) are known, while, like fj(v' ) above, fj(p' ) can be obtained in O(1) 
time from the pre-computed information.

Hence, for each rNNI neighbor T' of T, fj(T' ) can be computed in O(1) time and fM(T' ) can be computed 
in O(m) time for a matrix of m characters. Thus, the best rNNI neighbor can be found in time O(nm).

T

v

yx z

p

Tx TrTy Tz
. . .

T’

v'

yz x
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Figure 3. A rNNI operation on an internal node v of T.

356



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


