Close
Help




JOURNAL

Biomarker Insights

From “Directed Differentiation” to “Neuronal Induction”: Modeling Neuropsychiatric Disease

Submit a Paper


Biomarker Insights 2015:Suppl. 1 31-41

Review

Published on 27 Apr 2015

DOI: 10.4137/BMI.S20066


Further metadata provided in PDF



Sign up for email alerts to receive notifications of new articles published in Biomarker Insights

Abstract

Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsychiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, “directed differentiation” and “neuronal induction,” by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.



Downloads

PDF  (1.93 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML

PMC HTML


Sharing


What Your Colleagues Say About Biomarker Insights
I would like to extend my gratitude for creating the next generation of a scientific journal -- the science journal of tomorrow. The entire process bespoke of exceptional efficiency, celerity, professionalism, competency, and service.
Dr Jason B. Nikas (Medical School University of Minnesota, Minneapolis, MN, USA)
More Testimonials

Quick Links


New article and journal news notification services
Email Alerts RSS Feeds
Facebook Google+ Twitter
Pinterest Tumblr YouTube